首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During attempted visual fixation, saccades of a range of sizes occur. These “fixational saccades” include microsaccades, which are not apparent in regular clinical tests, and “saccadic intrusions”, predominantly horizontal saccades that interrupt accurate fixation. Square-wave jerks (SWJs), the most common type of saccadic intrusion, consist of an initial saccade away from the target followed, after a short delay, by a “return saccade” that brings the eye back onto target. SWJs are present in most human subjects, but are prominent by their increased frequency and size in certain parkinsonian disorders and in recessive, hereditary spinocerebellar ataxias. Here we asked whether fixational saccades showed distinctive features in various parkinsonian disorders and in recessive ataxia. Although some saccadic properties differed between patient groups, in all conditions larger saccades were more likely to form SWJs, and the intervals between the first and second saccade of SWJs were similar. These findings support the proposal of a common oculomotor mechanism that generates all fixational saccades, including microsaccades and SWJs. The same mechanism also explains how the return saccade in SWJs is triggered by the position error that occurs when the first saccadic component is large, both in the healthy brain and in neurological disease.  相似文献   

2.
On average our eyes make 3–5 saccadic movements per second when we read, although their neural mechanism is still unclear. It is generally thought that saccades help redirect the retinal fovea to specific characters and words but that actual discrimination of information only occurs during periods of fixation. Indeed, it has been proposed that there is active and selective suppression of information processing during saccades to avoid experience of blurring due to the high-speed movement. Here, using a paradigm where a string of either lexical (Chinese) or non-lexical (alphabetic) characters are triggered by saccadic eye movements, we show that subjects can discriminate both while making saccadic eye movement. Moreover, discrimination accuracy is significantly better for characters scanned during the saccadic movement to a fixation point than those not scanned beyond it. Our results showed that character information can be processed during the saccade, therefore saccades during reading not only function to redirect the fovea to fixate the next character or word but allow pre-processing of information from the ones adjacent to the fixation locations to help target the next most salient one. In this way saccades can not only promote continuity in reading words but also actively facilitate reading comprehension.  相似文献   

3.
Saccadic intrusions (SIs), predominantly horizontal saccades that interrupt accurate fixation, include square-wave jerks (SWJs; the most common type of SI), which consist of an initial saccade away from the fixation target followed, after a short delay, by a return saccade that brings the eye back onto target. SWJs are present in most human subjects, but are prominent by their increased frequency and size in certain parkinsonian disorders and in recessive, hereditary spinocerebellar ataxias. SWJs have been also documented in monkeys with tectal and cerebellar etiologies, but no studies to date have investigated the occurrence of SWJs in healthy nonhuman primates. Here we set out to determine the characteristics of SWJs in healthy rhesus macaques (Macaca mulatta) during attempted fixation of a small visual target. Our results indicate that SWJs are common in healthy nonhuman primates. We moreover found primate SWJs to share many characteristics with human SWJs, including the relationship between the size of a saccade and its likelihood to be part of a SWJ. One main discrepancy between monkey and human SWJs was that monkey SWJs tended to be more vertical than horizontal, whereas human SWJs have a strong horizontal preference. Yet, our combined data indicate that primate and human SWJs play a similar role in fixation correction, suggesting that they share a comparable coupling mechanism at the oculomotor generation level. These findings constrain the potential brain areas and mechanisms underlying the generation of fixational saccades in human and nonhuman primates.  相似文献   

4.
The paper deals with the initiation of visually guided saccades, in order to break down the saccadic reaction time into functionally different periods of time. It takes into account that spatial processing of information is so basic that modelling of saccadic control properties should include spatio-temporal arrangements. The output signal of the saccadic system was measured in response to visual stimuli in which the time between the appearance of a visual stimulus in the peripheral field and the disappearance of the central fixation point was varied. The variation of the mean saccadic latency time, measured with respect to the onset of the peripheral stimulus, as a function of stimulus asynchrony was highly significant. This variation may be represented by a so-called gap-overlap curve, which is characterized here by means of five parameters. A facilitation model is introduced to fit the results of the gap-overlap experiments. The facilitation model for the initiation of visually evoked saccades incorporates a mechanism which governs the efficiency of processing of signals that arise from a stimulus presented at a particular position in space. It explains how visual information may be affected by other sensory information before it is used to command further saccades. It allows determination of saccadic system parameters, such as the peripheral and the foveal afferent processing time, the central processing time for a saccade and the degree of facilitation. These quantities were found to be characteristic for the given test subjects, and where these data could be compared with neurophysiological data, the agreement was within the experimental error.  相似文献   

5.
The difference in parameters of visually guided and memory-guided saccades was shown. Increase in the memory-guided saccade latency as compared to that of the visually guided saccades may indicate the deceleration of saccadic programming on the basis of information extraction from the memory. The comparison of parameters and topography of evoked components N1 and P1 of the evoked potential on the signal to make a memory- or visually guided saccade suggests that the early stage of the saccade programming associated with the space information processing is performed predominantly with top-down attention mechanism before the memory-guided saccade and bottom-up mechanism before the visually guided saccade. The findings show that the increase in the latency of the memory-guided saccades is connected with decision making at the central stage of the saccade programming. We proposed that wave N2, which develops in the middle of the latent period of the memory-guided saccades, is correlated with this process. Topography and spatial dynamics of components N1, P1 and N2 testify that the memory-guided saccade programming is controlled by the frontal mediothalamic system of selective attention and left-hemispheric brain mechanisms of motor attention.  相似文献   

6.
Patients with bilateral vestibular dysfunction cannot fully compensate passive head rotations with eye movements, and experience disturbing oscillopsia. To compensate for the deficient vestibulo-ocular reflex (VOR), they have to rely on re-fixation saccades. Some can trigger “covert” saccades while the head still moves; others only initiate saccades afterwards. Due to their shorter latency, it has been hypothesized that covert saccades are particularly beneficial to improve dynamic visual acuity, reducing oscillopsia. Here, we investigate the combined effect of covert saccades and the VOR on clear vision, using the Head Impulse Testing Device – Functional Test (HITD-FT), which quantifies reading ability during passive high-acceleration head movements. To reversibly decrease VOR function, fourteen healthy men (median age 26 years, range 21–31) were continuously administrated the opioid remifentanil intravenously (0.15 µg/kg/min). VOR gain was assessed with the video head-impulse test, functional performance (i.e. reading) with the HITD-FT. Before opioid application, VOR and dynamic reading were intact (head-impulse gain: 0.87±0.08, mean±SD; HITD-FT rate of correct answers: 90±9%). Remifentanil induced impairment in dynamic reading (HITD-FT 26±15%) in 12/14 subjects, with transient bilateral vestibular dysfunction (head-impulse gain 0.63±0.19). HITD-FT score correlated with head-impulse gain (R = 0.63, p = 0.03) and with gain difference (before/with remifentanil, R = −0.64, p = 0.02). One subject had a non-pathological head-impulse gain (0.82±0.03) and a high HITD-FT score (92%). One subject triggered covert saccades in 60% of the head movements and could read during passive head movements (HITD-FT 93%) despite a pathological head-impulse gain (0.59±0.03) whereas none of the 12 subjects without covert saccades reached such high performance. In summary, early catch-up saccades may improve dynamic visual function. HITD-FT is an appropriate method to assess the combined gaze stabilization effect of both VOR and covert saccades (overall dynamic vision), e.g., to document performance and progress during vestibular rehabilitation.  相似文献   

7.
Previous studies have indicated that saccadic eye movements correlate positively with perceptual alternations in binocular rivalry, presumably because the foveal image changes resulting from saccades, rather than the eye movement themselves, cause switches in awareness. Recently, however, we found evidence that retinal image shifts elicit so-called onset rivalry and not percept switches as such. These findings raise the interesting question whether onset rivalry may account for correlations between saccades and percept switches.We therefore studied binocular rivalry when subjects made eye movements across a visual stimulus and compared it with the rivalry in a ‘replay’ condition in which subjects maintained fixation while the same retinal displacements were reproduced by stimulus displacements on the screen. We used dichoptic random-dot motion stimuli viewed through a stereoscope, and measured eye and eyelid movements with scleral search-coils.Positive correlations between retinal image shifts and perceptual switches were observed for both saccades and stimulus jumps, but only for switches towards the subjects'' preferred eye at stimulus onset. A similar asymmetry was observed for blink-induced stimulus interruptions. Moreover, for saccades, amplitude appeared crucial as the positive correlation persisted for small stimulus jumps, but not for small saccades (amplitudes < 1°). These findings corroborate our tenet that saccades elicit a form of onset rivalry, and that rivalry is modulated by extra-retinal eye movement signals.  相似文献   

8.
The interest in saccadic IOR is funneled by the hypothesis that it serves a clear functional purpose in the selection of fixation points: the facilitation of foraging. In this study, we arrive at a different interpretation of saccadic IOR. First, we find that return saccades are performed much more often than expected from the statistical properties of saccades and saccade pairs. Second, we find that fixation durations before a saccade are modulated by the relative angle of the saccade, but return saccades show no sign of an additional temporal inhibition. Thus, we do not find temporal saccadic inhibition of return. Interestingly, we find that return locations are more salient, according to empirically measured saliency (locations that are fixated by many observers) as well as stimulus dependent saliency (defined by image features), than regular fixation locations. These results and the finding that return saccades increase the match of individual trajectories with a grand total priority map evidences the return saccades being part of a fixation selection strategy that trades off exploration and exploitation.  相似文献   

9.
1. Voluntary saccadic eye movements were made toward flashes of light on the horizontal meridian, whose duration and distance from the point of fixation were varied; eye movements were measured using d.c.-electrooculography.—2. Targets within 10°–15° eccentricity are usually reached by one saccadic eye movement. When the eyes turn toward targets of more than 10°–15° eccentricity, the first saccadic eye movement falls short of the target by an angle usually not exceeding 10°. The presence of the image of the target off the fovea (visual error signal) subsequent to such an undershoot elicits, after a short interval, corrective saccades (usually one) which place the image of the target on the fovea. In the absence of a visual error signal, the probability of occurrence of corrective saccades is low, but it increases with greater target eccentricities. These observations suggest that there are different, eccentricity-dependent modes of programming saccadic eye movements.—3. Saccadic eye movements appear to be programmed in retinal coordinates. This conclusion is based on the observations that, irrespective of the initial position of the eyes in the orbit, a) there are different programming modes for eye movements to targets within and beyond 10°–15° from the fixation point, and b_ the maximum velocity of saccadic eye movements is always reached at 25° to 30° target eccentricity. —4. Distributions of latency and intersaccadic interval (ISI) are frequently multimodal, with a separation between modes of 30 to 40 msec. These observations suggest that saccadic eye movements are produced by mechanisms which, at a frequency of 30 Hz, process visual information. —5. Corrective saccades may occur after extremely short intervals (30 to 60 msec) regardless of whether or not a visual error signal is present; the eyes may not even come to a complete stop during these very short intersaccadic intervals. It is suggested that these corrective saccades are triggered by errors in the programming of the initial saccadic eye movements, and not by a visual error signal. —6. The exitence of different, eccentricity-dependent programming modes of saccadic eye movements, is further supported by anatomical, physiological, psychophysical, and neuropathological observations that suggest a dissociation of visual functions dependent on retinal eccentricity. Saccadic eye movements to targets more eccentric than 10°–15° appear to be executed by a mechanism involving the superior colliculus (perhaps independent of the visual cortex), whereas saccadic eye movements to less eccentric targets appear to depend on a mechanism involving the geniculo-cortical pathway (perhaps in collaboration with the superior colliculus).  相似文献   

10.

Introduction

Dual-task performance is known to affect postural stability in children. This study focused on the effect of oculomotor tasks like saccadic eye movements on postural stability, studied in a large population of children by recording simultaneously their eye movements and posture.

Materials and Methods

Ninety-five healthy children from 5.8 to 17.6 years old were examined. All children were free of any vestibular, neurological, ophtalmologic and orthoptic abnormalities. Postural control was measured with a force platform TechnoConcept®, and eye movements with video oculography (MobilEBT®). Children performed two oculomotor tasks: fixation of a stable central target and horizontal saccades. We measured the saccade latency and the number of saccades during fixation as well as the surface, length and mean velocity of the center of pressure.

Results

During postural measurement, we observed a correlation between the age on the one hand and a decrease in saccade latency as well as an improvement in the quality of fixation on the other. Postural sway decreases with age and is reduced in the dual task (saccades) in comparison with a simple task of fixation.

Discussion - Conclusion

These results suggest a maturation of neural circuits controlling posture and eye movements during childhood. This study also shows the presence of an interaction between the oculomotor system and the postural system. Engaging in oculomotor tasks results in a reduction of postural sway.  相似文献   

11.
Latency of visually evoked saccadic eye movements   总被引:1,自引:0,他引:1  
The validness of a model describing the relation between mean saccadic latency and stimulus asynchrony based on facilitation instead of suppression was tested experimentally. As a result, suppression of signals generated by the onset of a peripheral stimulus due to fixation of another target, giving rise to an increase of mean saccadic latency, does not seem very likely. The influence of the intensity of the fixation target on the latency of visually evoked saccades was studied. According to the facilitation model, the offset of the fixation target induces after an afferent delay, a transition of the state of the facilitation mechanism from the unfacilitated condition into a mode of maximal facilitation. The time-period during which this change is accomplished is called Facilitation-Rise-Time (FRT). An interpretation within the context of the facilitation model of gap-overlap latency data for different values of the intensity of the fixation stimulus suggests, in combination with computer-computations of the model, that lowering of this intensity causes an increase in FRT. The results in normal subjects of step stimulus experiments with a dim fixation point substantiate the hypothesis of a facilitation mechanism, which is triggerable not only by an external signal such as the offset of the fixation point, but also by some internal stimulus independent signal. Moreover, data for tracking by an amblyopic eye seem to support this conclusion. The findings of increased saccadic latencies in amblyopic and Optic Neuritis (ON) eyes suggest a slowing of processing of visual information in the sensory pathways from the central retina, subsequently utilized by the oculomotor system in the generation of saccades.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Attention governs action in the primate frontal eye field   总被引:1,自引:0,他引:1  
Schafer RJ  Moore T 《Neuron》2007,56(3):541-551
While the motor and attentional roles of the frontal eye field (FEF) are well documented, the relationship between them is unknown. We exploited the known influence of visual motion on the apparent positions of targets, and measured how this illusion affects saccadic eye movements during FEF microstimulation. Without microstimulation, saccades to a moving grating are biased in the direction of motion, consistent with the apparent position illusion. Here we show that microstimulation of spatially aligned FEF representations increases the influence of this illusion on saccades. Rather than simply impose a fixed-vector signal, subthreshold stimulation directed saccades away from the FEF movement field, and instead more strongly in the direction of visual motion. These results demonstrate that the attentional effects of FEF stimulation govern visually guided saccades, and suggest that the two roles of the FEF work together to select both the features of a target and the appropriate movement to foveate it.  相似文献   

13.
This paper presents a computer simulation of the three-loop model for the temporal aspects of the generation of visually guided saccadic eye movements. The intention is to reproduce complex experimental reaction time distributions by a simple neural network. The operating elements are artificial but realistic neurones. Four modules are constructed, each consisting of 16 neural elements. Within each module, the elements are connected in an all-to-all manner. The modules are working parallel and serial according to the anatomically and physiologically identified visuomotor pathways including the superior colliculus, the frontal eye fields, and the parietal cortex. Two transient-sustained input lines drive the network: one represents the visual activity produced by the onset of the saccade target, the other represents a central activity controlling the preparation of saccades, e.g. the end of active fixation. The model works completely deterministically; its stochastic output is a consequence of the stochastic properties of the input only. Simulations show how multimodal distributions of saccadic reaction times are produced as a natural consequence of the model structure. The gap effect on saccadic reaction times is correctly produced by the model: depending only on the gap duration (all model parameters unchanged) express, fast-regular, and slow-regular saccades are obtained in different numbers. In agreement with the experiments, bi- or trimodal distributions are produced only for medium gap durations (around 200 ms), while for shorter or longer gaps the express mode disappears and the distributions turn bi- or even unimodal. The effect of varying the strength of the transient-sustained components and the ongoing activity driving the hierarchically highest module are considered to account for the interindividual variability of the latency distributions obtained from different subjects, effects of different instructions to the same subject, and the observation of express makers (subjects who produce exclusively express saccades). How the model can be extended to describe the spatial aspects of the saccade system will be discussed as well as the effects of training and/or rapid adaptation to experimental conditions.  相似文献   

14.
Over the past decades, the relation between reading skills and eye movement behavior has been well documented in English-speaking cohorts. As English and German differ substantially with regard to orthographic complexity (i.e. grapheme-phoneme correspondence), we aimed to delineate specific characteristics of how reading speed and reading comprehension interact with eye movements in typically developing German-speaking (Austrian) adolescents. Eye movements of 22 participants (14 females; mean age = 13;6 years;months) were tracked while they were performing three tasks, namely silently reading words, texts, and pseudowords. Their reading skills were determined by means of a standardized German reading speed and reading comprehension assessment (Lesegeschwindigkeits- und -verständnistest für Klassen 6−12). We found that (a) reading skills were associated with various eye movement parameters in each of the three reading tasks; (b) better reading skills were associated with an increased efficiency of eye movements, but were primarily linked to spatial reading parameters, such as the number of fixations per word, the total number of saccades and saccadic amplitudes; (c) reading speed was a more reliable predictor for eye movement parameters than reading comprehension; (d) eye movements were highly correlated across reading tasks, which indicates consistent reading performances. Contrary to findings in English-speaking cohorts, the reading skills neither consistently correlated with temporal eye movement parameters nor with the number or percentage of regressions made while performing any of the three reading tasks. These results indicate that, although reading skills are associated with eye movement patterns irrespective of language, the temporal and spatial characteristics of this association may vary with orthographic consistency.  相似文献   

15.
Saccades occur several times each second in normal human vision. The visual image moves across the retina at high velocity during a saccade, yet no blurring of the visual scene is perceived . Active suppression of visual input may account for this perceptual continuity, but the neural mechanisms underlying such saccadic suppression remain unclear. We used functional MRI to specifically examine responses in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) during saccades. Activity in both V1 and LGN was strongly modulated by saccades. Furthermore, this modulation depended on whether visual stimulation was present or absent. In complete darkness, saccades led to reliable signal increases in V1 and LGN, whereas in the presence of visual stimulation, saccades led to suppression of visually evoked responses. These findings represent unequivocal evidence for saccadic suppression in human LGN and retinotopically defined V1 and are consistent with the earliest site of saccadic suppression lying at or before V1.  相似文献   

16.
ABSTRACT. Horizontal head movements of the praying mantis, Sphodromantis lineola Burm., were recorded continuously. They responded to the presence of a live blowfly prey in the antero-lateral visual field with a rapid saccadic head movement. The angular movement of a fixation saccade was correlated positively to the displacement of the prey from the prothoracic midline. Saccade magnitude and velocity are related. After the stimulus moved out of the visual field, the mantis made a second saccadic head movement, a return saccade towards the body midline. We observed return saccades in which the head overshot or undershot the body midline, as well as saccades which returned the head exactly to its initial position. In 92% of trials with intact mantids, the return movement succeeded eventually in rotating the head back to its initial position, whereas after removal of the neck hair plates this occurred in only 47% of trials. There is a consistent relation between saccade extent and velocity. Velocities of return saccades were slower than those of fixation saccades. It is suggested that sensory inputs from the neck hair plate proprioceptors modify both the magnitude and the angular velocity of fixation and return saccadic head movements.  相似文献   

17.
Extracellular recordings were carried out in the visual cortex of behaving monkeys trained on a fixation/detection task, during which a target light was displayed stationary or suddenly moving on a tangent translucent screen. The responses of visual cortical cells to fast moving stimuli during steady fixation and those obtained during rapid eye movements (saccades) which moved their receptive field across a stationary stimulus, were studied. Areas V1 and V2 were explored. When tested with rapidly moving stimuli (500 deg/sec) during steady fixation, neurons in each area behaved in almost the same way. About one fourth of them were activated, the remainder showing either no response (little more than a half of them) or a reduction of the spontaneous firing rate. In both areas, some of the neurons activated during steady fixation did not respond or responded very weakly during eye motion at saccadic velocity (500 +/- 50 deg/sec). Neurons of this type, which we refer to as 'real motion' cells, could somehow contribute to the maintenance of visual stability during the execution of large eye movements.  相似文献   

18.
Saccadic eye movements and fixations are the behavioral means by which we visually sample text during reading. Human oculomotor control is governed by a complex neurophysiological system involving the brain stem, superior colliculus, and several cortical areas. A very widely held belief among researchers investigating primate vision is that the oculomotor system serves to orient the visual axes of both eyes to fixate the same target point in space. It is argued that such precise positioning of the eyes is necessary to place images on corresponding retinal locations, such that on each fixation a single, nondiplopic, visual representation is perceived. Vision works actively through a continual sampling process involving saccades and fixations. Here we report that during normal reading, the eyes do not always fixate the same letter within a word. We also demonstrate that saccadic targeting is yoked and based on a unified cyclopean percept of a whole word since it is unaffected if different word parts are delivered exclusively to each eye via a dichoptic presentation technique. These two findings together suggest that the visual signal from each eye is fused at a very early stage in the visual pathway, even when the fixation disparity is greater than one character (0.29 deg), and that saccade metrics for each eye are computed on the basis of that fused signal.  相似文献   

19.
The impulse discharges of neurons in the inferior parietal association cortex (area 7) were studied in the alert, behaving rhesus monkey, trained to fixate and follow visual targets. Four classes of cells related to visual or visuomotor function were found. Cells of one of these are sensitive to visual stimuli and have large, contralateral receptive fields with maximal sensitivity in the far temporal quadrants. Cells of the other three classes are related to visuomotor functions: visual fixation, tracking, and saccades. They are neither sensory nor motor in the usual sense for they are activated only by interested fixation of gaze or tracking, or before visually evoked saccadic eye movements. They are not activated during the spontaneous saccades and fixations that the monkey makes while casually exploring his environment. It is hypothesized that the light-sensitive neurons provide the visual input to the visuomotor cells that, in turn, produce a command signal for the direction of visual attention and for shifting the focus of attention from one target to another.  相似文献   

20.
Reduction of glutamine synthetase (GS) function is closely related to established epilepsy, but little is known regarding its role in epileptogenesis. The present study aimed to elucidate the functional changes of GS in the brain and its involvement in epileptogenesis using the amygdala kindling model of epilepsy induced by daily electrical stimulation of basolateral amygdala in rats. Both expression and activity of GS in the ipsilateral dentate gyrus (DG) were upregulated when kindled seizures progressed to stage 4. A single dose of L-methionine sulfoximine (MSO, in 2 µl), a selective GS inhibitor, was administered into the ipsilateral DG on the third day following the first stage 3 seizure (just before GS was upregulated). It was found that low doses of MSO (5 or 10 µg) significantly and dose-dependently reduced the severity of and susceptibility to evoked seizures, whereas MSO at a high dose (20 µg) aggravated kindled seizures. In animals that seizure acquisition had been successfully suppressed with 10 µg MSO, GS upregulation reoccurred when seizures re-progressed to stage 4 and re-administration of 10 µg MSO consistently reduced the seizures. GLN at a dose of 1.5 µg abolished the alleviative effect of 10 µg MSO and deleterious effect of 20 µg MSO on kindled seizures. Moreover, appropriate artificial microRNA interference (1 and 1.5×106 TU/2 µl) of GS expression in the ipsilateral DG also inhibited seizure progression. In addition, a transient increase of GS expression and activity in the cortex was also observed during epileptogenesis evoked by pentylenetetrazole kindling. These results strongly suggest that a transient and region-specific upregulation of GS function occurs when epilepsy develops into a certain stage and eventually promotes the process of epileptogenesis. Inhibition of GS to an adequate degree and at an appropriate timing may be a potential therapeutic approach to interrupting epileptogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号