共查询到20条相似文献,搜索用时 15 毫秒
1.
Isabel C. Romero Patrick T. Schwing Gregg R. Brooks Rebekka A. Larson David W. Hastings Greg Ellis Ethan A. Goddard David J. Hollander 《PloS one》2015,10(5)
The Deepwater Horizon (DWH) spill released 4.9 million barrels of oil into the Gulf of Mexico (GoM) over 87 days. Sediment and water sampling efforts were concentrated SW of the DWH and in coastal areas. Here we present geochemistry data from sediment cores collected in the aftermath of the DWH event from 1000 – 1500 m water depth in the DeSoto Canyon, NE of the DWH wellhead. Cores were analyzed at high-resolution (at 2 mm and 5 mm intervals) in order to evaluate the concentration, composition and input of hydrocarbons to the seafloor. Specifically, we analyzed total organic carbon (TOC), aliphatic, polycyclic aromatic hydrocarbon (PAHs), and biomarker (hopanes, steranes, diasteranes) compounds to elucidate possible sources and transport pathways for deposition of hydrocarbons. Results showed higher hydrocarbon concentrations during 2010-2011 compared to years prior to 2010. Hydrocarbon inputs in 2010-2011 were composed of a mixture of sources including terrestrial, planktonic, and weathered oil. Our results suggest that after the DWH event, both soluble and highly insoluble hydrocarbons were deposited at enhanced rates in the deep-sea. We proposed two distinct transport pathways of hydrocarbon deposition: 1) sinking of oil-particle aggregates (hydrocarbon-contaminated marine snow and/or suspended particulate material), and 2) advective transport and direct contact of the deep plume with the continental slope surface sediments between 1000-1200 m. Our findings underline the complexity of the depositional event observed in the aftermath of the DWH event in terms of multiple sources, variable concentrations, and spatial (depth-related) variability in the DeSoto Canyon, NE of the DWH wellhead. 相似文献
2.
Patrick T. Schwing Isabel C. Romero Gregg R. Brooks David W. Hastings Rebekka A. Larson David J. Hollander 《PloS one》2015,10(3)
Sediment cores were collected from three sites (1000–1200 m water depth) in the northeastern Gulf of Mexico from December 2010 to June 2011 to assess changes in benthic foraminiferal density related to the Deepwater Horizon (DWH) event (April-July 2010, 1500 m water depth). Short-lived radioisotope geochronologies (210Pb, 234Th), organic geochemical assessments, and redox metal concentrations were determined to relate changes in sediment accumulation rate, contamination, and redox conditions with benthic foraminiferal density. Cores collected in December 2010 indicated a decline in density (80–93%). This decline was characterized by a decrease in benthic foraminiferal density and benthic foraminiferal accumulation rate (BFAR) in the surface 10 mm relative to the down-core mean in all benthic foraminifera, including the dominant genera (Bulimina spp., Uvigerina spp., and Cibicidoides spp.). Cores collected in February 2011 documented a site-specific response. There was evidence of a recovery in the benthic foraminiferal density and BFAR at the site closest to the wellhead (45 NM, NE). However, the site farther afield (60 NM, NE) recorded a continued decline in benthic foraminiferal density and BFAR down to near-zero values. This decline in benthic foraminiferal density occurred simultaneously with abrupt increases in sedimentary accumulation rates, polycyclic aromatic hydrocarbon (PAH) concentrations, and changes in redox conditions. Persistent reducing conditions (as many as 10 months after the event) in the surface of these core records were a possible cause of the decline. Another possible cause was the increase (2–3 times background) in PAH’s, which are known to cause benthic foraminifera mortality and inhibit reproduction. Records of benthic foraminiferal density coupled with short-lived radionuclide geochronology and organic geochemistry were effective in quantifying the benthic response and will continue to be a valuable tool in determining the long-term effects of the DWH event on a larger spatial scale. 相似文献
3.
4.
Zhenmei Lu Ye Deng Joy D Van Nostrand Zhili He James Voordeckers Aifen Zhou Yong-Jin Lee Olivia U Mason Eric A Dubinsky Krystle L Chavarria Lauren M Tom Julian L Fortney Regina Lamendella Janet K Jansson Patrik D'haeseleer Terry C Hazen Jizhong Zhou 《The ISME journal》2012,6(2):451-460
The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in the United State history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared with outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep sea. Various other microbial functional genes that are relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could have a significant role in biodegradation of oil spills in deep-sea environments. 相似文献
5.
6.
Population Structure and Phylogenetic Characterization of Marine Benthic Archaea in Deep-Sea Sediments 总被引:6,自引:12,他引:6 下载免费PDF全文
Costantino Vetriani Holger W. Jannasch Barbara J. MacGregor David A. Stahl Anna-Louise Reysenbach 《Applied microbiology》1999,65(10):4375-4384
During the past few years Archaea have been recognized as a widespread and significant component of marine picoplankton assemblages and, more recently, the presence of novel archaeal phylogenetic lineages has been reported in coastal marine benthic environments. We investigated the relative abundance, vertical distribution, phylogenetic composition, and spatial variability of Archaea in deep-sea sediments collected from several stations in the Atlantic Ocean. Quantitative oligonucleotide hybridization experiments indicated that the relative abundance of archaeal 16S rRNA in deep-sea sediments (1500 m deep) ranged from about 2.5 to 8% of the total prokaryotic rRNA. Clone libraries of PCR-amplified archaeal rRNA genes (rDNA) were constructed from 10 depth intervals obtained from sediment cores collected at depths of 1,500, 2,600, and 4,500 m. Phylogenetic analysis of rDNA sequences revealed the presence of a complex archaeal population structure, whose members could be grouped into discrete phylogenetic lineages within the two kingdoms, Crenarchaeota and Euryarchaeota. Comparative denaturing gradient gel electrophoresis profile analysis of archaeal 16S rDNA V3 fragments revealed a significant depth-related variability in the composition of the archaeal population. 相似文献
7.
Nathan F. Putman F. Alberto Abreu-Grobois I?aky Iturbe-Darkistade Emily M. Putman Paul M. Richards Philippe Verley 《Biology letters》2015,11(12)
We investigated the extent that the 2010 Deepwater Horizon oil spill potentially affected oceanic-stage sea turtles from populations across the Atlantic. Within an ocean-circulation model, particles were backtracked from the Gulf of Mexico spill site to determine the probability of young turtles arriving in this area from major nesting beaches. The abundance of turtles in the vicinity of the oil spill was derived by forward-tracking particles from focal beaches and integrating population size, oceanic-stage duration and stage-specific survival rates. Simulations indicated that 321 401 (66 199–397 864) green (Chelonia mydas), loggerhead (Caretta caretta) and Kemp''s ridley (Lepidochelys kempii) turtles were likely within the spill site. These predictions compared favourably with estimates from in-water observations recently made available to the public (though our initial predictions for Kemp''s ridley were substantially lower than in-water estimates, better agreement was obtained with modifications to mimic behaviour of young Kemp''s ridley turtles in the northern Gulf). Simulations predicted 75.2% (71.9–76.3%) of turtles came from Mexico, 14.8% (11–18%) from Costa Rica, 5.9% (4.8–7.9%) from countries in northern South America, 3.4% (2.4–3.5%) from the United States and 1.6% (0.6–2.0%) from West African countries. Thus, the spill''s impacts may extend far beyond the current focus on the northern Gulf of Mexico. 相似文献
8.
Baelum J Borglin S Chakraborty R Fortney JL Lamendella R Mason OU Auer M Zemla M Bill M Conrad ME Malfatti SA Tringe SG Holman HY Hazen TC Jansson JK 《Environmental microbiology》2012,14(9):2405-2416
The Deepwater Horizon oil spill resulted in a massive influx of hydrocarbons into the Gulf of Mexico (the Gulf). To better understand the fate of the oil, we enriched and isolated indigenous hydrocarbon-degrading bacteria from deep, uncontaminated waters from the Gulf with oil (Macondo MC252) and dispersant used during the spill (COREXIT 9500). During 20 days of incubation at 5°C, CO(2) evolution, hydrocarbon concentrations and the microbial community composition were determined. Approximately 60% to 25% of the dissolved oil with or without COREXIT, respectively, was degraded, in addition to some hydrocarbons in the COREXIT. FeCl(2) addition initially increased respiration rates, but not the total amount of hydrocarbons degraded. 16S rRNA gene sequencing revealed a succession in the microbial community over time, with an increase in abundance of Colwellia and Oceanospirillales during the incubations. Flocs formed during incubations with oil and/or COREXIT in the absence of FeCl(2) . Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy revealed that the flocs were comprised of oil, carbohydrates and biomass. Colwellia were the dominant bacteria in the flocs. Colwellia sp. strain RC25 was isolated from one of the enrichments and confirmed to rapidly degrade high amounts (approximately 75%) of the MC252 oil at 5°C. Together these data highlight several features that provide Colwellia with the capacity to degrade oil in cold, deep marine habitats, including aggregation together with oil droplets into flocs and hydrocarbon degradation ability. 相似文献
9.
Transcriptome response of the foundation plant Spartina alterniflora to the Deepwater Horizon oil spill 下载免费PDF全文
Mariano Alvarez Julie Ferreira de Carvalho Armel Salmon Malika L. Ainouche Armand Cavé‐Radet Abdelhak El Amrani Tammy E. Foster Sydney Moyer Christina L. Richards 《Molecular ecology》2018,27(14):2986-3000
10.
Dramatic shifts in benthic microbial eukaryote communities following the Deepwater Horizon oil spill
Benthic habitats harbour a significant (yet unexplored) diversity of microscopic eukaryote taxa, including metazoan phyla, protists, algae and fungi. These groups are thought to underpin ecosystem functioning across diverse marine environments. Coastal marine habitats in the Gulf of Mexico experienced visible, heavy impacts following the Deepwater Horizon oil spill in 2010, yet our scant knowledge of prior eukaryotic biodiversity has precluded a thorough assessment of this disturbance. Using a marker gene and morphological approach, we present an intensive evaluation of microbial eukaryote communities prior to and following oiling around heavily impacted shorelines. Our results show significant changes in community structure, with pre-spill assemblages of diverse Metazoa giving way to dominant fungal communities in post-spill sediments. Post-spill fungal taxa exhibit low richness and are characterized by an abundance of known hydrocarbon-degrading genera, compared to prior communities that contained smaller and more diverse fungal assemblages. Comparative taxonomic data from nematodes further suggests drastic impacts; while pre-spill samples exhibit high richness and evenness of genera, post-spill communities contain mainly predatory and scavenger taxa alongside an abundance of juveniles. Based on this community analysis, our data suggest considerable (hidden) initial impacts across Gulf beaches may be ongoing, despite the disappearance of visible surface oil in the region. 相似文献
11.
Olivia U Mason Nicole M Scott Antonio Gonzalez Adam Robbins-Pianka Jacob B?lum Jeffrey Kimbrel Nicholas J Bouskill Emmanuel Prestat Sharon Borglin Dominique C Joyner Julian L Fortney Diogo Jurelevicius William T Stringfellow Lisa Alvarez-Cohen Terry C Hazen Rob Knight Jack A Gilbert Janet K Jansson 《The ISME journal》2014,8(7):1464-1475
The Deepwater Horizon (DWH) oil spill in the spring of 2010 resulted in an input of ∼4.1 million barrels of oil to the Gulf of Mexico; >22% of this oil is unaccounted for, with unknown environmental consequences. Here we investigated the impact of oil deposition on microbial communities in surface sediments collected at 64 sites by targeted sequencing of 16S rRNA genes, shotgun metagenomic sequencing of 14 of these samples and mineralization experiments using 14C-labeled model substrates. The 16S rRNA gene data indicated that the most heavily oil-impacted sediments were enriched in an uncultured Gammaproteobacterium and a Colwellia species, both of which were highly similar to sequences in the DWH deep-sea hydrocarbon plume. The primary drivers in structuring the microbial community were nitrogen and hydrocarbons. Annotation of unassembled metagenomic data revealed the most abundant hydrocarbon degradation pathway encoded genes involved in degrading aliphatic and simple aromatics via butane monooxygenase. The activity of key hydrocarbon degradation pathways by sediment microbes was confirmed by determining the mineralization of 14C-labeled model substrates in the following order: propylene glycol, dodecane, toluene and phenanthrene. Further, analysis of metagenomic sequence data revealed an increase in abundance of genes involved in denitrification pathways in samples that exceeded the Environmental Protection Agency (EPA)''s benchmarks for polycyclic aromatic hydrocarbons (PAHs) compared with those that did not. Importantly, these data demonstrate that the indigenous sediment microbiota contributed an important ecosystem service for remediation of oil in the Gulf. However, PAHs were more recalcitrant to degradation, and their persistence could have deleterious impacts on the sediment ecosystem. 相似文献
12.
Sara Kleindienst Sharon Grim Mitchell Sogin Annalisa Bracco Melitza Crespo-Medina Samantha B Joye 《The ISME journal》2016,10(2):400-415
The Deepwater Horizon (DWH) oil well blowout generated an enormous plume of dispersed hydrocarbons that substantially altered the Gulf of Mexico''s deep-sea microbial community. A significant enrichment of distinct microbial populations was observed, yet, little is known about the abundance and richness of specific microbial ecotypes involved in gas, oil and dispersant biodegradation in the wake of oil spills. Here, we document a previously unrecognized diversity of closely related taxa affiliating with Cycloclasticus, Colwellia and Oceanospirillaceae and describe their spatio-temporal distribution in the Gulf''s deepwater, in close proximity to the discharge site and at increasing distance from it, before, during and after the discharge. A highly sensitive, computational method (oligotyping) applied to a data set generated from 454-tag pyrosequencing of bacterial 16S ribosomal RNA gene V4–V6 regions, enabled the detection of population dynamics at the sub-operational taxonomic unit level (0.2% sequence similarity). The biogeochemical signature of the deep-sea samples was assessed via total cell counts, concentrations of short-chain alkanes (C1–C5), nutrients, (colored) dissolved organic and inorganic carbon, as well as methane oxidation rates. Statistical analysis elucidated environmental factors that shaped ecologically relevant dynamics of oligotypes, which likely represent distinct ecotypes. Major hydrocarbon degraders, adapted to the slow-diffusive natural hydrocarbon seepage in the Gulf of Mexico, appeared unable to cope with the conditions encountered during the DWH spill or were outcompeted. In contrast, diverse, rare taxa increased rapidly in abundance, underscoring the importance of specialized sub-populations and potential ecotypes during massive deep-sea oil discharges and perhaps other large-scale perturbations. 相似文献
13.
Benthic size structures were compared between sublittoral, upper-slope and deep-sea areas of the Western Pacific using the mesh-size fractionated distribution of organisms. The average size of the individuals became smaller with increasing water depth, suggesting that the dwarfism is a more common phenomenon than the gigantism in the deep sea. Nonetheless, the mesh size of 0.037 mm was fine enough to retain meiobenthic specimens quantitatively. When the whole benthos was divided into macro- and meiofauna, the size distributions overlapped considerably in a mesh-size fraction between 1.0 and 0.5 mm. In this fraction, the meiofauna predominated over macrofauna in the deep sea, while the opposite applied to the shallower depths. From these results, recommended mesh sizes of the sieves for the studies of macro- and meiobenthos were proposed. 相似文献
14.
Kate Starbird Dharma Dailey Ann Hayward Walker Thomas M. Leschine Robert Pavia Ann Bostrom 《人类与生态风险评估》2015,21(3):605-630
This research examines how information about an oil spill, its impacts, and the use of dispersants to treat the oil, moved through social media and the surrounding Internet during the 2010 BP Deepwater Horizon oil spill. Using a collection of tweets captured during the spill, we employ a mixed-method approach including an in-depth qualitative analysis to examine the content of Twitter posts, the connections that Twitter users made with each other, and the links between Twitter content and the surrounding Internet. This article offers a range of findings to help practitioners and others understand how social media is used by a variety of different actors during a slow-moving, long-term, environmental disaster. We enumerate some of the most salient themes in the Twitter data, noting that concerns about health impacts were more likely to be communicated in tweets about dispersant use, than in the larger conversation. We describe the accounts and behaviors of highly retweeted Twitter users, noting how locals helped to shape the network and the conversation. Importantly, our results show the online crowd wanting to participate in and contribute to response efforts, a finding with implications for future oil spill response. 相似文献
15.
Tony Gutierrez David R Singleton David Berry Tingting Yang Michael D Aitken Andreas Teske 《The ISME journal》2013,7(11):2091-2104
The massive influx of crude oil into the Gulf of Mexico during the Deepwater Horizon (DWH) disaster triggered dramatic microbial community shifts in surface oil slick and deep plume waters. Previous work had shown several taxa, notably DWH Oceanospirillales, Cycloclasticus and Colwellia, were found to be enriched in these waters based on their dominance in conventional clone and pyrosequencing libraries and were thought to have had a significant role in the degradation of the oil. However, this type of community analysis data failed to provide direct evidence on the functional properties, such as hydrocarbon degradation of organisms. Using DNA-based stable-isotope probing with uniformly 13C-labelled hydrocarbons, we identified several aliphatic (Alcanivorax, Marinobacter)- and polycyclic aromatic hydrocarbon (Alteromonas, Cycloclasticus, Colwellia)-degrading bacteria. We also isolated several strains (Alcanivorax, Alteromonas, Cycloclasticus, Halomonas, Marinobacter and Pseudoalteromonas) with demonstrable hydrocarbon-degrading qualities from surface slick and plume water samples collected during the active phase of the spill. Some of these organisms accounted for the majority of sequence reads representing their respective taxa in a pyrosequencing data set constructed from the same and additional water column samples. Hitherto, Alcanivorax was not identified in any of the previous water column studies analysing the microbial response to the spill and we discuss its failure to respond to the oil. Collectively, our data provide unequivocal evidence on the hydrocarbon-degrading qualities for some of the dominant taxa enriched in surface and plume waters during the DWH oil spill, and a more complete understanding of their role in the fate of the oil. 相似文献
16.
Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill
Luis M Rodriguez-R Will A Overholt Christopher Hagan Markus Huettel Joel E Kostka Konstantinos T Konstantinidis 《The ISME journal》2015,9(9):1928-1940
Although petroleum hydrocarbons discharged from the Deepwater Horizon (DWH) blowout were shown to have a pronounced impact on indigenous microbial communities in the Gulf of Mexico, effects on nearshore or coastal ecosystems remain understudied. This study investigated the successional patterns of functional and taxonomic diversity for over 1 year after the DWH oil was deposited on Pensacola Beach sands (FL, USA), using metagenomic and 16S rRNA gene amplicon techniques. Gamma- and Alphaproteobacteria were enriched in oiled sediments, in corroboration of previous studies. In contrast to previous studies, we observed an increase in the functional diversity of the community in response to oil contamination and a functional transition from generalist populations within 4 months after oil came ashore to specialists a year later, when oil was undetectable. At the latter time point, a typical beach community had reestablished that showed little to no evidence of oil hydrocarbon degradation potential, was enriched in archaeal taxa known to be sensitive to xenobiotics, but differed significantly from the community before the oil spill. Further, a clear succession pattern was observed, where early responders to oil contamination, likely degrading aliphatic hydrocarbons, were replaced after 3 months by populations capable of aromatic hydrocarbon decomposition. Collectively, our results advance the understanding of how natural benthic microbial communities respond to crude oil perturbation, supporting the specialization-disturbance hypothesis; that is, the expectation that disturbance favors generalists, while providing (microbial) indicator species and genes for the chemical evolution of oil hydrocarbons during degradation and weathering. 相似文献
17.
Paul L. Leberg 《Journal of Field Ornithology》2014,85(4):421-429
Marine oil spills may have extensive and deleterious effects on coastal waterbirds, but pre‐spill data sets are often not available for making comparisons of demographics to the period following a spill. The 2010 Deepwater Horizon oil spill allowed us to compare Brown Pelican (Pelecanus occidentalis) demographics during pre‐ and post‐spill years. We banded 1114 pelicans on Louisiana barrier islands from 2007 to 2009, tracked their distribution via band re‐sighting surveys from 2008 to 2011, and conducted age‐structure surveys. Across Louisiana coastal islands in 2011, we detected 7% of pelicans that had been oiled during the 2010 spill and released following rehabilitation. Similarly, 6% of pelicans (not oiled) banded at the same release site in 2007 were observed across coastal islands 1 yr after banding. We observed variation in proportions of pelicans that were 1, 2, and 3 or more years old among years (2008–2011) and across islands, but little variation could readily be assigned to spill‐related mortality. These Brown Pelican demographic trends one year following the Deepwater Horizon oil spill are contrary to other assessments of the impacts of oil contamination on marine birds. However, additional research is required to evaluate potential long‐term population trends. 相似文献
18.
Assessing the impacts of the Deepwater Horizon oil spill with a dependable baseline comparison can provide reliable insight into environmental stressors on organisms that were potentially affected by the spill. Fluctuating asymmetry (small, non-random deviations from perfect bilateral symmetry) is an informative metric sensitive to contaminants that can be used to assess environmental stress levels. For this study, the well-studied and common Gulf of Mexico estuarine fish, Menidia beryllina, was used with pre and post-oil spill collections. Comparisons of fluctuating asymmetry in three traits (eye diameter, pectoral fin length, and pelvic fin length) were made pre and post-oil spill across two sites (Old Fort Bayou and the Pascagoula River), as well as between years of collection (2011, 2012)-one and two years, respectfully, after the spill in 2010. We hypothesized that fluctuating asymmetry would be higher in post-Deepwater Horizon samples, and that this will be replicated in both study areas along the Mississippi Gulf coast. We also predicted that fluctuating asymmetry would decrease through time after the oil spill as the oil decomposed and/or was removed. Analyses performed on 1135 fish (220 pre and 915 post Deepwater Horizon) showed significantly higher post spill fluctuating asymmetry in the eye but no difference for the pectoral or pelvic fins. There was also higher fluctuating asymmetry in one of the two sites both pre and post-spill, indicating observed asymmetry may be the product of multiple stressors. Fluctuating asymmetry decreased in 2012 compared to 2011. Fluctuating asymmetry is a sensitive measure of sub lethal stress, and the observed variability in this study (pre vs. post-spill or between sites) could be due to a combination of oil, dispersants, or other unknown stressors. 相似文献
19.
Eleanor K. Bors Ashley A. Rowden Elizabeth W. Maas Malcolm R. Clark Timothy M. Shank 《PloS one》2012,7(11)
Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region. 相似文献
20.
MJ Beazley RJ Martinez S Rajan J Powell YM Piceno LM Tom GL Andersen TC Hazen JD Van Nostrand J Zhou B Mortazavi PA Sobecky 《PloS one》2012,7(7):e41305
Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems. 相似文献