首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Induction of a functional subset of HIV-specific CD4+ T cells that is resistant to HIV infection could enhance immune protection and decrease the rate of HIV disease progression. CMV-specific CD4+ T cells, which are less frequently infected than HIV-specific CD4+ T cells, are a model for such an effect. To determine the mechanism of this protection, we compared the functional response of HIV gag-specific and CMV pp65-specific CD4+ T cells in individuals co-infected with CMV and HIV. We found that CMV-specific CD4+ T cells rapidly up-regulated production of MIP-1α and MIP-1β mRNA, resulting in a rapid increase in production of MIP-1α and MIP-1β after cognate antigen stimulation. Production of β-chemokines was associated with maturational phenotype and was rarely seen in HIV-specific CD4+ T cells. To test whether production of β-chemokines by CD4+ T cells lowers their susceptibility to HIV infection, we measured cell-associated Gag DNA to assess the in vivo infection history of CMV-specific CD4+ T cells. We found that CMV-specific CD4+ T cells which produced MIP-1β contained 10 times less Gag DNA than did those which failed to produce MIP-1β. These data suggest that CD4+ T cells which produce MIP-1α and MIP-1β bind these chemokines in an autocrine fashion which decreases the risk of in vivo HIV infection.  相似文献   

2.
Recent studies have demonstrated that the β-chemokines RANTES, MIP-1α, and MIP-1β suppress human immunodeficiency virus type 1 (HIV-1) replication in vitro and may play an important role in protecting exposed but uninfected individuals from HIV-1 infection. However, levels of β-chemokines in AIDS patients are comparable to and can exceed levels in nonprogressing individuals, indicating that global β-chemokine production may have little effect on HIV-1 disease progression. We sought to clarify the role of β-chemokines in nonprogressors and AIDS patients by examination of β-chemokine production and HIV-1 infection in patient T-lymphocyte clones established by herpesvirus saimiri immortalization. Both CD4+ and CD8+ clones were established, and they resembled primary T cells in their phenotypes and expression of activated T-cell markers. CD4+ T-cell clones from all patients had normal levels of mRNA-encoding CCR5, a coreceptor for non-syncytium-inducing (NSI) HIV-1. CD4+ clones from nonprogressors and CD8+ clones from AIDS patients secreted high levels of RANTES, MIP1α, and MIP-1β. In contrast, CD4+ clones from AIDS patients produced no RANTES and little or no MIP-1α or MIP-1β. The infection of CD4+ clones with the NSI HIV-1 strain ADA revealed an inverse correlation to β-chemokine production; clones from nonprogressors were poorly susceptible to ADA replication, but clones from AIDS patients were highly infectable. The resistance to ADA infection in CD4+ clones from nonprogressors could be partially reversed by treatment with anti-β-chemokine antibodies. These results indicate that CD4+ cells can be protected against NSI-HIV-1 infection in culture through endogenously produced factors, including β-chemokines, and that β-chemokine production by CD4+, but not CD8+, T cells may constitute one mechanism of disease-free survival for HIV-1-infected individuals.  相似文献   

3.
In vitro evidence suggests that memory CD4+ cells are preferentially infected by human immunodeficiency virus type 1 (HIV-1), yet studies of HIV-1-infected individuals have failed to detect preferential memory cell depletion. To explore this paradox, we stimulated CD45RA+ CD4+ (naïve) and CD45RO+ CD4+ (memory) cells with antibodies to CD3 and CD28 and infected them with either CCR5-dependent (R5) or CXCR4-dependent (X4) HIV-1 isolates. Naïve CD4+ cells supported less X4 HIV replication than their memory counterparts. However, naïve cells were susceptible to R5 viral infection, while memory cells remained resistant to infection and viral replication. As with the unseparated cells, mixing the naïve and memory cells prior to infection resulted in cells resistant to R5 infection and highly susceptible to X4 infection. While both naïve and memory CD4+ subsets downregulated CCR5 expression in response to CD28 costimulation, only the memory cells produced high levels of the β-chemokines RANTES, MIP-1α, and MIP-1β upon stimulation. Neutralization of these β-chemokines rendered memory CD4+ cells highly sensitive to infection with R5 HIV-1 isolates, indicating that downregulation of CCR5 is not sufficient to mediate complete protection from CCR5 strains of HIV-1. These results indicate that susceptibility to R5 HIV-1 isolates is determined not only by the level of CCR5 expression but also by the balance of CCR5 expression and β-chemokine production. Furthermore, our results suggest a model of HIV-1 transmission and pathogenesis in which naïve rather than memory CD4+ T cells serve as the targets for early rounds of HIV-1 replication.  相似文献   

4.
Th17 cells are enriched in the gut mucosa and play a critical role in maintenance of the mucosal barrier and host defense against extracellular bacteria and fungal infections. During chronic human immunodeficiency virus (HIV) infection, Th17 cells were more depleted compared to Th1 cells, even when the patients had low or undetectable viremia. To investigate the differential effects of HIV infection on Th17 and Th1 cells, a culture system was used in which CCR6+ CD4+ T cells were sorted from healthy human peripheral blood and activated in the presence of interleukin 1β (IL-1β) and IL-23 to drive expansion of Th17 cells while maintaining Th1 cells. HIV infection of these cultures had minimal effects on Th1 cells but caused depletion of Th17 cells. Th17 loss correlated with greater levels of virus-infected cells and cell death. In identifying cellular factors contributing to higher susceptibility of Th17 cells to HIV, we compared Th17-enriched CCR6+ and Th17-depleted CCR6 CD4 T cell cultures and noted that Th17-enriched CCR6+ cells expressed higher levels of α4β7 and bound HIV envelope in an α4β7-dependent manner. The cells also had greater expression of CD4 and CXCR4, but not CCR5, than CCR6 cells. Moreover, unlike Th1 cells, Th17 cells produced little CCR5 ligand, and transfection with one of the CCR5 ligands, MIP-1β (CCL4), increased their resistance against HIV. These results indicate that features unique to Th17 cells, including higher expression of HIV receptors and lack of autocrine CCR5 ligands, are associated with enhanced permissiveness of these cells to HIV.  相似文献   

5.
All human immunodeficiency virus (HIV) isolates can grow readily in primary CD4+ T cells, but they can be distinguished by their ability to replicate in macrophages and established T-cell lines. The macrophage-tropic viruses are generally non-syncytium inducing (NSI), whereas the T-cell-line-tropic viruses are syncytium inducing (SI) in cultured cells. We now demonstrate that infection of CD4+ T cells by NSI and SI viruses shows a differential effect on production of β-chemokines and gamma interferon. Infection by NSI viruses increased production of MIP-1α, MIP-1β, and gamma interferon, whereas infection by SI viruses had no effect or decreased production of these cytokines. Production of RANTES was slightly increased during infection by both virus phenotypes. This differential effect of NSI and SI viruses was observed at the level of β-chemokine mRNA as well as at the level of protein expression. Infection by NSI viruses also increased CD4+ cell proliferation. These results may have relevance for a differential role of HIV strains in AIDS pathogenesis.  相似文献   

6.

Background

Human promoter polymorphisms in the chemokine co-receptor 5 gene (CCR5) have been noted for association with mother-to-child transmission of HIV (HIV MTCT) as well as reduced receptor expression in vitro, but have not been clearly associated with CCR5 expression in vivo. Placental expression of CCR5 may be influenced by such polymorphisms as well as other in vivo regulatory factors.

Methodology/Principal Findings

We evaluated the associations between infant CCR5 polymorphisms, measures of maternal infection, and placental expression of CCR5 among mother-infant pairs in Blantyre, Malawi. RNA was extracted from placental tissue and used in multiplex real-time PCR to quantify gene expression. Through linear regression, we observed that CCR5-2554T (β = −0.67, 95% CI = −1.23, −0.11) and -2132T (β = −0.75, 95% CI = −0.131, −0.18) were significantly associated with reduced placental expression of CCR5. An incremental increase in CCR5 expression was observed for incremental increases in expression of two heparan sulfate genes involved in viral infection, HS3ST3A1 (β = 0.27, 95% CI = 0.18, 0.35) and HS3ST3B1 (β = 0.11, 95% CI = 0.06, 0.18). Among HIV infected mothers, an incremental increase in maternal HIV viral load was also associated with higher CCR5 expression (β = 0.76, 95% CI = 0.12, 1.39). Maternal HIV status had no overall effect (β = 0.072, 95% CI = −0.57, −0.72). Higher CCR5 expression was observed for mothers with malaria but was not statistically significant (β = 0.37, 95% CI = −0.43, 1.18).

Conclusions/Significance

These results provide in vivo evidence for genetic and environmental factors involved in the regulation of CCR5 expression in the placenta. Our findings also suggest that the measurement of placental expression of CCR5 alone is not an adequate indicator of the risk of mother-to-child transmission of HIV.  相似文献   

7.
Characterization of immune responses induced by live attenuated simian immunodeficiency virus (SIV) strains may yield clues to the nature of protective immunity induced by this vaccine approach. We investigated the ability of CD8+ T lymphocytes from rhesus macaques immunized with the live, attenuated SIV strain SIVmac239Δnef or SIVmac239Δ3 to inhibit SIV replication. CD8+ T lymphocytes from immunized animals were able to potently suppress SIV replication in autologous SIV-infected CD4+ T cells. Suppression of SIV replication by unstimulated CD8+ T cells required direct contact and was major histocompatibility complex (MHC) restricted. However, CD3-stimulated CD8+ T cells produced soluble factors that inhibited SIV replication in an MHC-unrestricted fashion as much as 30-fold. Supernatants from stimulated CD8+ T cells were also able to inhibit replication of both CCR5- and CXCR4-dependent human immunodeficiency virus type 1 (HIV-1) strains. Stimulation of CD8+ cells with cognate cytotoxic T-lymphocyte epitopes also induced secretion of soluble factors able to inhibit SIV replication. Production of RANTES, macrophage inhibitory protein 1α (MIP-1α), or MIP-1β from stimulated CD8+ T cells of vaccinated animals was almost 10-fold higher than that from stimulated CD8+ T cells of control animals. However, addition of antibodies that neutralize these β-chemokines, either alone or in combination, only partly blocked inhibition of SIV and HIV replication by soluble factors produced by stimulated CD8+ T cells. Our results indicate that inhibition of SIV replication by CD8+ T cells from animals immunized with live attenuated SIV strains involves both MHC-restricted and -unrestricted mechanisms and that MHC-unrestricted inhibition of SIV replication is due principally to soluble factors other than RANTES, MIP-1α, and MIP-1β.  相似文献   

8.
We have studied the breadth and potency of the inhibitory actions of the CC chemokines macrophage inhibitory protein 1α (MIP-1α), MIP-1β, and RANTES against macrophage-tropic (M-tropic) primary isolates of human immunodeficiency virus type 1 (HIV-1) and of the CXC chemokine stromal cell-derived factor 1α against T-cell-tropic (T-tropic) isolates, using mitogen-stimulated primary CD4+ T cells as targets. There was considerable interisolate variation in the sensitivity of HIV-1 to chemokine inhibition, which was especially pronounced for the CC chemokines and M-tropic strains. However, this variation was not obviously dependent on the genetic subtype (A through F) of the virus isolates. Peripheral blood mononuclear cell donor-dependent variation in chemokine inhibition potency was also observed. Among the CC chemokines, the rank order for potency (from most to least potent) was RANTES, MIP-1β, MIP-1α. Some M-tropic isolates, unexpectedly, were much more sensitive to RANTES than to MIP-1β, whereas other isolates showed sensitivities comparable to those of these two chemokines. Down-regulation of the CCR5 and CXCR4 receptors occurred in cells treated with the cognate chemokines and probably contributes to anti-HIV-1 activity. Thus, for CCR5, the rank order for down-regulation was also RANTES, MIP-1β, MIP-1α.  相似文献   

9.
Osteoclasts are unique multinucleated cells formed by fusion of preosteoclasts derived from cells of the monocyte/macrophage lineage, which are induced by RANKL. However, characteristics and subpopulations of osteoclast precursor cells are poorly understood. We show here that a combination of TNF-α, TGF-β, and M-CSF efficiently generates mononuclear preosteoclasts but not multinucleated osteoclasts (MNCs) in rat bone marrow cultures depleted of stromal cells. Using a rat osteoclast-specific mAb, Kat1, we found that TNF-α and TGF-β specifically increased Kat1+c-fms+ and Kat1+c-fms cells but not Kat1c-fms+ cells. Kat1c-fms+ cells appeared in early stages of culture, but Kat1+c-fms+ and Kat1+c-fms cells increased later. Preosteoclasts induced by TNF-α, TGF-β, and M-CSF rapidly differentiated into osteoclasts in the presence of RANKL and hydroxyurea, an inhibitor of DNA synthesis, suggesting that preosteoclasts are terminally differentiated cells. We further analyzed the expression levels of genes encoding surface proteins in bone marrow macrophages (BMM), preosteoclasts, and MNCs. Preosteoclasts expressed itgam (CD11b) and chemokine receptors CCR1 and CCR2; however, in preosteoclasts the expression of chemokine receptors CCR1 and CCR2 was not up-regulated compared to their expression in BMM. However, addition of RANKL to preosteoclasts markedly increased the expression of CCR1. In contrast, expression of macrophage antigen emr-1 (F4/80) and chemokine receptor CCR5 was down-regulated in preosteoclasts. The combination of TNF-α, TGF-β, and M-CSF induced Kat1+CD11b+ cells, but these cells were also induced by TNF-α alone. In addition, MIP-1α and MCP-1, which are ligands for CCR1 and CCR2, were chemotactic for preosteoclasts, and promoted multinucleation of preosteoclasts. Finally, we found that Kat1+c-fms+ cells were present in bone tissues of rats with adjuvant arthritis. These data demonstrate that TNF-α in combination with TGF-β efficiently generates preosteoclasts in vitro. We delineated characteristics that are useful for identifying and isolating rat preosteoclasts, and found that CCR1 expression was regulated in the fusion step in osteoclastogenesis.  相似文献   

10.
Human herpesvirus 6 (HHV-6), which belongs to the betaherpesvirus subfamily and infects mainly T cells in vitro, causes acute and latent infections. HHV-6 contains two genes (U12 and U51) that encode putative homologs of cellular G-protein-coupled receptors (GCR), while three other betaherpesviruses, human cytomegalovirus, murine cytomegalovirus, and human herpesvirus 7, have three, one, and two GCR-homologous genes, respectively. The U12 gene is expressed late in infection from a spliced mRNA. The U12 gene was cloned, and the protein was expressed in cells and analyzed for its biological characteristics. U12 functionally encoded a calcium-mobilizing receptor for β-chemokines such as regulated upon activation, normal T expressed and secreted (RANTES), macrophage inflammatory proteins 1α and 1β (MIP-1α and MIP-1β) and monocyte chemoattractant protein 1 but not for the α-chemokine interleukin-8, suggesting that the chemokine selectivity of the U12 product was distinct from that of the known mammalian chemokine receptors. These findings suggested that the product of U12 may play an important role in the pathogenesis of HHV-6 through transmembrane signaling by binding with β-chemokines.  相似文献   

11.
Chronic immune activation and inflammation (e.g., as manifest by production of type I interferons) are major determinants of disease progression in primate lentivirus infections. To investigate the impact of such activation on intrathymic T-cell production, we studied infection of the human thymus implants of SCID-hu Thy/Liv mice with X4 and R5 HIV. X4 HIV was observed to infect CD3CD4+CD8CXCR4+CCR5 intrathymic T-cell progenitors (ITTP) and to abrogate thymopoiesis. R5 HIV, by contrast, first established a nonpathogenic infection of thymic macrophages and then, after many weeks, began to replicate in ITTP. We demonstrate here that the tropism of R5 HIV is expanded and pathogenicity enhanced by upregulation of CCR5 on these key T-cell progenitors. Such CCR5 induction was mediated by interferon-α (IFN-α) in both thymic organ cultures and in SCID-hu mice, and antibody neutralization of IFN-α in R5 HIV-infected SCID-hu mice inhibited both CCR5 upregulation and infection of the T-cell progenitors. These observations suggest a mechanism by which IFN-α production may paradoxically expand the tropism of R5 HIV and, in so doing, accelerate disease progression.  相似文献   

12.
The β chemokine known as 6-C-kine, secondary lymphoid-tissue chemokine (SLC), TCA4, or Exodus-2 (herein referred to as 6CK/SLC) can trigger rapid integrin-dependent arrest of lymphocytes rolling under physiological shear and is highly expressed by high endothelial venules, specialized vessels involved in lymphocyte homing from the blood into lymph nodes and Peyer's patches. We show that 6CK/SLC is an agonist for the lymphocyte chemoattractant receptor, CCR7 (EBI-1, BLR-2), previously described as a receptor for the related β chemokine MIP-3β (ELC or Exodus-3). Moreover, 6CK/SLC and MIP-3β attract the same major populations of circulating lymphocytes, including naive and memory T cells > B cells (but not natural killer cells); desensitization to MIP-3β inhibits lymphocyte chemotaxis to 6CK/SLC but not to the α chemokine SDF-1 (stromal cell–derived factor); and 6CK/SLC competes for MIP-3β binding to resting mouse lymphocytes. The findings suggest that the majority of circulating lymphocytes respond to 6CK/SLC and MIP-3β in large part through their common receptor CCR7 and that these molecules may be important mediators of physiological lymphocyte recirculation in vivo.  相似文献   

13.
Microglia are the main human immunodeficiency virus (HIV) reservoir in the central nervous system and most likely play a major role in the development of HIV dementia (HIVD). To characterize human adult microglial chemokine receptors, we analyzed the expression and calcium signaling of CCR5, CCR3, and CXCR4 and their roles in HIV entry. Microglia expressed higher levels of CCR5 than of either CCR3 or CXCR4. Of these three chemokine receptors, only CCR5 and CXCR4 were able to transduce a signal in microglia in response to their respective ligands, MIP-1β and SDF-1α, as recorded by single-cell calcium flux experiments. We also found that CCR5 is the predominant coreceptor used for infection of human adult microglia by the HIV type 1 dementia isolates HIV-1DS-br, HIV-1RC-br, and HIV-1YU-2, since the anti-CCR5 antibody 2D7 was able to dramatically inhibit microglial infection by both wild-type and single-round luciferase pseudotype reporter viruses. Anti-CCR3 (7B11) and anti-CXCR4 (12G5) antibodies had little or no effect on infection. Last, we found that virus pseudotyped with the DS-br and RC-br envelopes can infect cells transfected with CD4 in conjunction with the G-protein-coupled receptors APJ, CCR8, and GPR15, which have been previously implicated in HIV entry.  相似文献   

14.
Ex vivo foreskin models have demonstrated that inner foreskin is more susceptible to HIV-1 infection than outer foreskin. In the present study we characterized the compartition of HIV-1 target cells and quantified these cells in the epidermis and dermis of inner and outer foreskins using immunohistochemistry and flow cytometry. Our data showed that the epidermis of the inner foreskin was more enriched with CD4+ T cells and Langerhans cells (LCs), with the co-expression of CCR5 and α4β7 receptors, than the outer foreskin. Interestingly, the vast majority of CD4+ T cells and LCs expressed CCR5, but not CXCR4, indicating that the inner foreskin might capture and transmit R5-tropic HIV strains more efficiently. In addition, lymphoid aggregates, composed of T cells, macrophages and dendritic cells (DCs) in the dermis, were closer to the epithelial surface in the inner foreskin than in the outer foreskin. As dendritic cells are able to capture and pass HIV particles to susceptible target cells, HIV may be able to more efficiently infect the inner foreskin by hijacking the augmented immune communication pathways in this tissue. After the inoculation of HIV-1 particles in a foreskin explant culture model, the level of p24 antigen in the supernatant from the inner foreskin was slightly higher than that from the outer foreskin, although this difference was not significant. The present study is the first to employ both CCR5 and α4β7 to identify HIV target cells in the foreskin. Our data demonstrated that the inner foreskin was more enriched with HIV target immune cells than the outer foreskin, and this tissue was structured for efficient communication among immune cells that may promote HIV transmission and replication. In addition, our data suggests the R5-tropism of HIV sexual transmission is likely shaped through the inherent receptor composition on HIV target cells in the mucosa.  相似文献   

15.
The α-chemokine receptor CXCR4 has recently been shown to support syncytium formation mediated by strains of feline immunodeficiency virus (FIV) that have been selected for growth in the Crandell feline kidney cell line (CrFK-tropic virus). Given that both human and feline CXCR4 support syncytium formation mediated by FIV, we investigated whether human stromal cell-derived factor (SDF-1) would inhibit infection with FIV. Human SDF-1α and SDF-1β bound with a high affinity (KDs of 12.0 and 10.4 nM, respectively) to human cells stably expressing feline CXCR4, and treatment of CrFK cells with human SDF-1α resulted in a dose-dependent inhibition of infection by FIVPET. No inhibitory activity was detected when the interleukin-2 (IL-2)-dependent feline T-cell line Mya-1 was used in place of CrFK cells, suggesting the existence of a CXCR4-independent mechanism of infection. Furthermore, neither the human β-chemokines RANTES, MIP-1α, MIP-1β, and MCP-1 nor the α-chemokine IL-8 had an effect on infection of either CrFK or Mya-1 cells with CrFK-tropic virus. Envelope glycoprotein purified from CrFK-tropic virus competed specifically for binding of SDF-1α to feline CXCR4 and CXCR4 expression was reduced in FIV-infected cells, suggesting that the inhibitory activity of SDF-1α in CrFK cells may be the result of steric hindrance of the virus-receptor interaction following the interaction between SDF and CXCR4. Prolonged incubation of CrFK cells with SDF-1α led to an enhancement rather than an inhibition of infection. Flow cytometric analysis revealed that this effect may be due largely to up-regulation of CXCR4 expression by SDF-1α on CrFK cells, an effect mimicked by treatment of the cells with phorbol myristate acetate. The data suggest that infection of feline cells with FIV can be mediated by CXCR4 and that, depending on the assay conditions, infection can be either inhibited or enhanced by SDF-1α. Infection with FIV may therefore prove a valuable model in which to study the development of novel therapeutic interventions for the treatment of AIDS.The initial stage in lentiviral infection involves the binding of the viral envelope glycoprotein (Env) to a molecule on the surface of the target cell. The primary high-affinity binding receptor for human immunodeficiency virus (HIV) is CD4 (9, 26), a member of the immunoglobulin supergene family of molecules. However, binding of the viral glycoprotein to CD4 is insufficient for infection to proceed (29); for virus-cell fusion to occur, the target cell must also express an accessory molecule or coreceptor. The principal coreceptors for HIV infection have now been identified as members of the seven-transmembrane domain (7TM) superfamily of molecules. Syncytium-inducing (SI) T-cell line-tropic strains of virus require coexpression of the α-chemokine receptor CXCR4 for infection (19), whereas non-syncytium-inducing (NSI) strains of virus require coexpression of the β-chemokine receptor CCR5 for infection (1, 6, 10, 13, 14). In addition, other chemokine receptors such as CCR2b and CCR3 (6, 13, 41, 48), the receptor encoded by human cytomegalovirus US28 (39, 41), and the orphan receptor STRL33 (28) can function as coreceptors for HIV infection. More recently, additional members of the 7TM superfamily have been identified as coreceptors for infection with simian immunodeficiency virus (SIV). Two of these receptors, termed Bonzo and BOB, support infection with not only SIV but also HIV type 2 (HIV-2) and macrophage-tropic or dualtropic (both macrophage- and T-cell-tropic) strains of HIV-1 (11). Bonzo has subsequently been identified as being identical to STRL33 (28), whereas BOB is identical to GPR15 (21). A subsequent study has demonstrated that an additional molecule, designated GPR1 (30), can function as a coreceptor for SIV (18). Thus, a diverse range of 7TM molecules which can support infection with primate lentiviruses have now been identified.The selective usage of chemokine receptors as coreceptors for infection by HIV and SIV is borne out by the sensitivity of the viruses to inhibition by chemokines. Infection with viruses which use CCR5 can be inhibited by the β-chemokines RANTES, MIP-1α, and MIP-1β (7, 14), whereas those which use CXCR4 can be inhibited by stromal cell-derived factor (SDF-1) (3, 36). Although infection of primary macrophages by certain primary NSI viruses is not inhibited reproducibly by the β-chemokines RANTES, MIP-1α, and MIP-1β (14, 33, 44), analogs of the β-chemokines such as AOP-RANTES that inhibit HIV infection with an increased potency, inhibit infection of both peripheral blood mononuclear cells (PBMC) and primary macrophages, and do not trigger signalling via G proteins coupled to the chemokine receptor have been developed (47). Therefore, with the development of SDF-1 derivatives analogous to AOP-RANTES, it may be possible to generate therapeutic agents that are effective at inhibiting not only the NSI strains of HIV found in early infection but also the SI strains of virus which appear late in infection with the progression to AIDS.Feline immunodeficiency virus (FIV) induces an AIDS-like illness in its natural host, the domestic cat (38). A proportion of primary isolates of FIV can be readily adapted to grow and form syncytia in the Crandell feline kidney (CrFK) cell line (45), analagous to the isolation of SI variants of HIV. Sequencing of the env gene from CrFK-tropic viruses would suggest that the principal determinant of CrFK tropism is an increase in charge of the V3 loop of the envelope glycoprotein (45, 51), further strengthening the analogy between CrFK-tropic strains of FIV and SI strains of HIV. While the primary high-affinity binding receptor for FIV remains elusive, recent studies have demonstrated a role for the feline homolog of CXCR4 in infection with CrFK-tropic strains of FIV (53, 56). Given that the appearance of CXCR4-dependent SI variants of HIV in the peripheral blood of HIV-infected individuals accompanies the progression to AIDS (8), the ability to study the role of such CXCR4-dependent strains of virus in disease pathogenesis is of obvious interest. Moreover, as it appears that several strains of SIV show preferential usage of CCR5 and not CXCR4 for infection (5, 11, 18), then FIV infection of the domestic cat is the only animal model described to date in which the contribution of CXCR4-dependent viruses to the pathogenesis of AIDS may be studied in the natural host of the virus.In this study, we investigated the nature of the interaction between FIV and the chemokine receptor CXCR4. Given the high degree of amino acid sequence homology between human and feline CXCR4 (56), we examined the interaction between human SDF-1 and feline CXCR4. We have found that human SDF-1 binds specifically to feline CXCR4 and inhibits infection with FIV. We demonstrate that SDF-1 can upregulate CXCR4 expression with a corresponding enhancement of infection and that this effect can be mimicked by treatment of the cells with the phorbol ester phorbol myristate acetate (PMA). Moreover, infection of interleukin-2 (IL-2)-dependent T cells with FIV was resistant to the inhibitory effects of SDF-1, suggesting the existence of a CXCR4-independent mechanism of infection in these cells. These data suggest that the mechanism of infection with FIV bears striking similarities to infection with HIV and that the study of FIV infection of the domestic cat may provide a valuable insight into the pathogenesis of AIDS.  相似文献   

16.

Objectives

To compare the presence and quantity of cervicovaginal HIV among HIV seropositive women with clinical herpes, subclinical HSV-2 infection and without HSV-2 infection respectively; to evaluate the association between cervicovaginal HIV and HSV shedding; and identify factors associated with quantity of cervicovaginal HIV.

Design

Four groups of HIV seropositive adult female barworkers were identified and examined at three-monthly intervals between October 2000 and March 2003 in Mbeya, Tanzania: (1) 57 women at 70 clinic visits with clinical genital herpes; (2) 39 of the same women at 46 clinic visits when asymptomatic; (3) 55 HSV-2 seropositive women at 60 clinic visits who were never observed with herpetic lesions; (4) 18 HSV-2 seronegative women at 45 clinic visits. Associations of genital HIV shedding with HIV plasma viral load (PVL), herpetic lesions, HSV shedding and other factors were examined.

Results

Prevalence of detectable genital HIV RNA varied from 73% in HSV-2 seronegative women to 94% in women with herpetic lesions (geometric means 1634 vs 3339 copies/ml, p = 0.03). In paired specimens from HSV-2 positive women, genital HIV viral shedding was similar during symptomatic and asymptomatic visits. On multivariate regression, genital HIV RNA (log10 copies/mL) was closely associated with HIV PVL (β = 0.51 per log10 copies/ml increase, 95%CI:0.41–0.60, p<0.001) and HSV shedding (β = 0.24 per log10 copies/ml increase, 95% CI:0.16–0.32, p<0.001) but not the presence of herpetic lesions (β = −0.10, 95%CI:−0.28–0.08, p = 0.27).

Conclusions

HIV PVL and HSV shedding were more important determinants of genital HIV than the presence of herpetic lesions. These data support a role of HSV-2 infection in enhancing HIV transmissibility.  相似文献   

17.
Thirty different genes including cytokines, chemokines, granzymes, perforin and specifically integrins were evaluated in Peyer''s patch-KdGag197–205-specific CD8+ T cells (pools of 100 cells) using Fluidigm 48.48 Dynamic arrays following three different prime-boost immunization strategies. Data revealed that the route of prime or the booster immunization differentially influenced the integrin expression profile on gut KdGag197–205-specific CD8+ T cells. Specifically, elevated numbers of integrin αE and αD expressing gut KdGag197–205-specific CD8+ T cells were detected following mucosal but not systemic priming. Also, αE/β7 and αD/β2 heterodimerization were more noticeable in an intranasal (i.n.)/i.n. vaccination setting compared to i.n./intramuscular (i.m) or i.m./i.m. vaccinations. Moreover, in all vaccine groups tested α4 appeared to heterodimerize more closely with β7 then β1. Also MIP-1β, RANTES, CCR5, perforin and integrin α4 bio-markers were significantly elevated in i.n./i.m. and i.m./i.m. immunization groups compared to purely mucosal i.n./i.n. delivery. Furthermore, when wild type (WT) BALB/c and IL-13 knockout (KO) mice were immunized using i.n./i.m. strategy, MIP-1α, MIP-1β, RANTES, integrins α4, β1 and β7 mRNA expression levels were found to be significantly different, in mucosal verses systemic KdGag197–205-specific CD8+ T cells. Interestingly, the numbers of gut KdGag197–205-specific CD8+ T cells expressing gut-homing markers α4β7 and CCR9 protein were also significantly elevated in IL-13 KO compared to WT control. Collectively, our findings further corroborate that the route of vaccine delivery, tissue microenvironment and IL-13 depleted cytokine milieu can significantly alter the antigen-specific CD8+ T cell gene expression profiles and in turn modulate their functional avidities as well as homing capabilities.  相似文献   

18.
The use of solar irradiation to sterilize water prior to its consumption has resulted in the reduction of water related illnesses in waterborne disease endemic communities worldwide. Currently, research on solar water disinfection (SODIS) has been directed towards understanding the underlying mechanisms through which solar irradiation inactivates the culturability of microorganisms in water, enhancement of the disinfection process, and the health impact of SODIS water consumption. However, the immunological consequences of SODIS water consumption have not been explored. In this study, we investigated the effect that solar irradiated V. cholerae may have had on the secretion of cytokines and chemokines by the JAWS II dendritic cell line in vitro. The JAWS II dendritic cell line was stimulated with the different strains of V. cholerae that had been: (i) prepared in PBS, (ii) inactivated through a combination of heat and chemical, (iii) solar irradiated, and (iv) non-solar irradiated, in bottled water. As controls, LPS (1 μg/ml) and CTB (1 μg/ml) were used as stimulants. After 48 hours of stimulation the tissue culture media from each treatment was qualitatively and quantitatively analysed for the presence of IL-1α, IL-1β, IL-6, IL-7, IL-10, IL-12p40, IL-12p70, IL-15, MIP-1α, MIP-1β, MIP-2, RANTES, TNF-α, IL-23 and IL-27. Results showed that solar irradiated cultures of V. cholerae induced dendritic cells to secrete significant (p<0.05) levels of pro-inflammatory cytokines in comparison to the unstimulated dendritic cells. Furthermore, the amount of pro-inflammatory cytokines secreted by the dendritic cells in response to solar irradiated cultures of V. cholerae was not as high as observed in treatments involving non-solar irradiated cultures of V. cholerae or LPS. Our results suggest that solar irradiated microorganisms are capable of inducing the secretion of pro-inflammatory cytokines and chemokines. This novel finding is key towards understanding the possible immunological consequences of consuming SODIS treated water.  相似文献   

19.
20.
Pawlak K  Pawlak D  Myśliwiec M 《Cytokine》2006,35(5-6):258-262
Inflammation and oxidative stress (SOX) have been reported in patients with chronic renal failure (CRF), but their influence on β-chemokines levels and cardiovascular disease (CVD) prevalence remains unknown. We assessed β-chemokines, SOX markers and high sensitivity C-reactive protein (hs CRP) as a marker of inflammation in 40 uraemic patients, both with as well as without CVD and 20 controls. Compared with the controls, the patients with CVD showed a significant increase in plasma concentrations of monocyte chemoattractant protein-1 (MCP-1), total peroxide (both p < 0.05), macrophage inflammatory protein 1β (MIP-1β) and hs CRP (both p < 0.01). The values of MCP-1 and hs CRP were more elevated in patients with CVD than without CVD (p < 0.01 and p < 0.05; respectively). Both subgroup of CRF patients were lower of regulated upon activation, normal T cell expressed and secreted (RANTES) levels than in the controls (both p < 0.001). The positive relationships were between hs CRP and presence of CVD, MIP-1β (both p < 0.01) and MCP-1 levels (p < 0.05). SOX markers did not show any significant correlation with β-chemokines, hs CRP and presence of CVD. We documented that increased inflammation but not SOX were associated with significant elevation in plasma β-chemokines levels and CVD prevalence in CRF patients not requiring dialysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号