首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore the functional interactions between apoA-I and ABCA1, we correlated the cross-linking properties of several apoA-I mutants with their ability to promote cholesterol efflux. In a competitive cross-linking assay, amino-terminal deletion and double amino- and carboxy-terminal deletion mutants of apoA-I competed effectively the cross-linking of WT (125)I-apoA-I to ABCA1, while the carboxy-terminal deletion mutant apoA-I[Delta(220-243)] competed poorly. Direct cross-linking of WT apoA-I, amino-terminal, and double deletion mutants of apoA-I to ABCA1 showed similar apparent K(d) values (49-74 nM), whereas the apparent K(d) values of the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] were increased 3-fold. Analysis of several internal deletions and point mutants of apoA-I showed that apoA-I[Delta(61-78)], apoA-I[Delta(89-99)], apoA-I[Delta(136-143)], apoA-I[Delta(144-165)], apoA-I[D102A/D103A], apoA-I[E125K/E128K/K133E/E139K], apoA-I[L141R], apoA-I[R160V/H162A], and WT apoA-I had similar ABCA1-mediated lipid efflux, and all competed efficiently the cross-linking of WT (125)I-apoA-I to ABCA1. WT apoA-I and ABCA1 could be cross-linked with a 3 A cross-linker. The WT apoA-I, amino, carboxy and double deletion mutants of apoA-I showed differences in the cross-linking to WT ABCA1 and the mutant ABCA1[W590S]. The findings are consistent with a direct association of different combinations of apoA-I helices with a complementary ABCA1 domain. Mutations that alter ABCA1/apoA-I association affect cholesterol efflux and inhibit biogenesis of HDL.  相似文献   

2.
It is well accepted that both apolipoprotein A-I (apoA-I) and ABCA1 play crucial roles in HDL biogenesis and in the human atheroprotective system. However, the nature and specifics of apoA-I/ABCA1 interactions remain poorly understood. Here, we present evidence for a new cellular apoA-I binding site having a 9-fold higher capacity to bind apoA-I compared with the ABCA1 site in fibroblasts stimulated with 22-(R)-hydroxycholesterol/9-cis-retinoic acid. This new cellular apoA-I binding site was designated "high-capacity binding site" (HCBS). Glyburide drastically reduced (125)I-apoA-I binding to the HCBS, whereas (125)I-apoA-I showed no significant binding to the HCBS in ABCA1 mutant (Q597R) fibroblasts. Furthermore, reconstituted HDL exhibited reduced affinity for the HCBS. Deletion of the C-terminal region of apoA-I (Delta187-243) drastically reduced the binding of apoA-I to the HCBS. Interestingly, overexpressing various levels of ABCA1 in BHK cells promoted the formation of the HCBS. The majority of the HCBS was localized to the plasma membrane (PM) and was not associated with membrane raft domains. Importantly, treatment of cells with phosphatidylcholine-specific phospholipase C, but not sphingomyelinase, concomitantly reduced the binding of (125)I-apoA-I to the HCBS, apoA-I-mediated cholesterol efflux, and the formation of nascent apoA-I-containing particles. Together, these data suggest that a functional ABCA1 leads to the formation of a major lipid-containing site for the binding and the lipidation of apoA-I at the PM. Our results provide a biochemical basis for the HDL biogenesis pathway that involves both ABCA1 and the HCBS, supporting a two binding site model for ABCA1-mediated nascent HDL genesis.  相似文献   

3.
The dynamics of ABCA1-mediated apoA-I lipidation were investigated in intact human fibroblasts induced with 22(R)-hydroxycholesterol and 9-cis-retinoic acid (stimulated cells). Specific binding parameters of (125)I-apoA-I to ABCA1 at 37 degrees C were determined: K(d) = 0.65 microg/ml, B(max) = 0.10 ng/microg cell protein. Lipid-free apoA-I inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than pre-beta(1)-LpA-I, reconstituted HDL particles r(LpA-I), or HDL(3) (IC(50) = 0.35 +/- 1.14, apoA-I; 1.69 +/- 1.07, pre-beta(1)-LpA-I; 17.91 +/- 1.39, r(LpA-I); and 48.15 +/- 1.72 microg/ml, HDL(3)). Treatment of intact cells with either phosphatidylcholine-specific phospholipase C or sphingomyelinase affected neither (125)I-apoA-I binding nor (125)I-apoA-I/ABCA1 cross-linking. We next investigated the dynamics of apoA-I lipidation by monitoring the kinetic of apoA-I dissociation from ABCA1. The dissociation of (125)I-apoA-I from normal cells at 37 degrees C was rapid (t((1/2)) = 1.4 +/- 0.66 h; n = 3) but almost completely inhibited at either 15 or 4 degrees C. A time course analysis of apoA-I-containing particles released during the dissociation period showed nascent apoA-I-phospholipid complexes that exhibited alpha-electrophoretic mobility with a particle size ranging from 9 to 20 nm (designated alpha-LpA-I-like particles), whereas lipid-free apoA-I incubated with ABCA1 mutant (Q597R) cells was unable to form such particles. These results demonstrate that: 1) the physical interaction of apoA-I with ABCA1 does not depend on membrane phosphatidylcholine or sphingomyelin; 2) the association of apoA-I with lipids reduces its ability to interact with ABCA1; and 3) the lipid translocase activity of ABCA1 generates alpha-LpA-I-like particles. This process plays in vivo a key role in HDL biogenesis.  相似文献   

4.
It has been suggested that ABCA1 interacts preferentially with lipid-poor apolipoprotein A-I (apoA-I). Here, we show that treatment of plasma with dimyristoyl phosphatidylcholine (DMPC) multilamellar vesicles generates prebeta(1)-apoA-I-containing lipoproteins (LpA-I)-like particles similar to those of native plasma. Isolated prebeta(1)-LpA-I-like particles inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than HDL(3) (IC(50) = 2.20 +/- 0.35 vs. 37.60 +/- 4.78 microg/ml). We next investigated the ability of DMPC-treated plasma to promote phospholipid and unesterified (free) cholesterol efflux from J774 macrophages stimulated or not with cAMP. At 2 mg DMPC/ml plasma, both phospholipid and free cholesterol efflux were increased ( approximately 50% and 40%, respectively) in cAMP-stimulated cells compared with unstimulated cells. Similarly, both phospholipid and free cholesterol efflux to either isolated native prebeta(1)-LpA-I and prebeta(1)-LpA-I-like particles were increased significantly in stimulated cells. Furthermore, glyburide significantly inhibited phospholipid and free cholesterol efflux to DMPC-treated plasma. Removal of apoA-I-containing lipoproteins from normolipidemic plasma drastically reduced free cholesterol efflux mediated by DMPC-treated plasma. Finally, treatment of Tangier disease plasma with DMPC affected the amount of neither prebeta(1)-LpA-I nor free cholesterol efflux. These results indicate that DMPC enrichment of normal plasma resulted in the redistribution of apoA-I from alpha-HDL to prebeta-HDL, allowing for more efficient ABCA1-mediated cellular lipid release. Increasing the plasma prebeta(1)-LpA-I level by either pharmacological agents or direct infusions might prevent foam cell formation and reduce atherosclerotic vascular disease.  相似文献   

5.

Aim

ABCA1 protects against atherosclerosis by facilitating cholesterol efflux from macrophage foam cells in the arterial wall to extracellular apolipoprotein (apo) A-I. In contrast to apoA-I, apoE is secreted by macrophages and can, like apoA-I, induce ABCA1-mediated cholesterol efflux. Yet, the combined effect of macrophage ABCA1 and apoE on lesion development is unexplored.

Methods and Results

LDL receptor knockout (KO) mice were transplanted with bone marrow from ABCA1/apoE double KO (dKO) mice, their respective single KO''s, and wild-type (WT) controls and were challenged with a high-fat/high-cholesterol diet for 9 weeks. In vitro cholesterol efflux experiments showed no differences between ABCA1 KO and dKO macrophages. The serum non-HDL/HDL ratio in dKO transplanted mice was 1.7-fold and 2.4-fold (p<0.01) increased compared to WT and ABCA1 KO transplanted mice, respectively. The atherosclerotic lesion area in dKO transplanted animals (650±94×103 µm2), however, was 1.9-fold (p<0.01) and 1.6-fold (p<0.01) increased compared to single knockouts (ABCA1 KO: 341±20×103 µm2; apoE KO: 402±78×103 µm2, respectively) and 3.1-fold increased (p<0.001) compared to WT (211±20×103 µm2). When normalized for serum cholesterol exposure, macrophage ABCA1 and apoE independently protected against atherosclerotic lesion development (p<0.001). Moreover, hepatic expression levels of TNFα and IL-6 were highly induced in dKO transplanted animals (3.0-fold; p<0.05, and 4.3-fold; p<0.001, respectively). In agreement, serum IL-6 levels were also enhanced in ABCA1 KO transplanted mice (p<0.05) and even further enhanced in dKO transplanted animals (3.1-fold as compared to ABCA1 KO transplanted animals; p<0.05).

Conclusions

Combined deletion of macrophage ABCA1 and apoE results in a defect in cholesterol efflux and, compared to ABCA1 KO transplanted mice, elevated serum total cholesterol levels. Importantly, these mice also suffer from enhanced systemic and hepatic inflammation, together resulting in the observed augmented atherosclerotic lesion development.  相似文献   

6.
ABCA1, an ATP-binding cassette transporter mutated in Tangier disease, promotes cellular phospholipid and cholesterol efflux by loading free apoA-I with these lipids. This process involves binding of apoA-I to the cell surface and phospholipid translocation by ABCA1. The goals of this study were to examine the relationship between ABCA1-mediated lipid efflux and apolipoprotein binding and to determine whether phospholipid and cholesterol efflux are coupled. Inhibition of lipid efflux by glybenclamide treatment or by mutation of the ATP-binding cassette of ABCA1 showed a close correlation between lipid efflux, the binding of apoA-I to cells, and cross-linking of apoA-I to ABCA1. The data suggest that a functionally important apoA-I binding site exists on ABCA1 and that the binding site could also involve lipids. After using cyclodextrin preincubation to deplete cellular cholesterol, ABCA1-mediated cholesterol efflux was abolished but phospholipid efflux and the binding of apoA-I were unaffected. The conditioned media from cyclodextrin-pretreated, ABCA1-expressing cells readily promoted cholesterol efflux when added to fresh cells not expressing ABCA1, indicating that cholesterol efflux can be dissociated from phospholipid efflux. Further, using a photoactivatable cholesterol analog, we showed that ABCA1 did not bind cholesterol directly, even though several other cholesterol-binding proteins specifically bound the cholesterol analog. The data suggest that the binding of apoA-I to ABCA1 leads to the formation of phospholipid-apoA-I complexes, which subsequently promote cholesterol efflux in an autocrine or paracrine fashion.  相似文献   

7.
Molecular interactions between apoE and ABCA1: impact on apoE lipidation   总被引:3,自引:0,他引:3  
Apolipoprotein E (apoE)/ABCA1 interactions were investigated in human intact fibroblasts induced with 22(R)-hydroxycholesterol and 9-cis-retinoic acid (stimulated cells). Here, we show that purified human plasma apoE3 forms a complex with ABCA1 in normal fibroblasts. Lipid-free apoE3 inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than reconstituted HDL particles (IC(50) = 2.5 +/- 0.4 microg/ml vs. 12.3 +/- 1.3 microg/ml). ApoE isoforms showed similar binding for ABCA1 and exhibited identical kinetics in their abilities to induce ABCA1-dependent cholesterol efflux. Mutation of ABCA1 associated with Tangier disease (C1477R) abolished both apoE3 binding and apoE3-mediated cholesterol efflux. Analysis of apoE3-containing particles generated during the incubation of lipid-free apoE3 with stimulated normal cells showed nascent apoE3/cholesterol/phospholipid complexes that exhibited prebeta-electrophoretic mobility with a particle size ranging from 9 to 15 nm, whereas lipid-free apoE3 incubated with ABCA1 mutant (C1477R) cells was unable to form such particles. These results demonstrate that 1). apoE association with lipids reduced its ability to interact with ABCA1; 2). apoE isoforms did not affect apoE binding to ABCA1; 3). apoE-mediated ABCA1-dependent cholesterol efflux was not affected by apoE isoforms in fibroblasts; and 4). the lipid translocase activity of ABCA1 generates apoE-containing high density-sized lipoprotein particles. Thus, ABCA1 is essential for the biogenesis of high density-sized lipoprotein containing only apoE particles in vivo.  相似文献   

8.
It has been suggested that the signal transduction pathway initiated by apoA-I activates key proteins involved in cellular lipid efflux. We investigated apoA-I-mediated cAMP signaling in cultured human fibroblasts induced with (22R)-hydroxycholesterol and 9-cis-retinoic acid (stimulated cells). Treatment of stimulated fibroblasts with apoA-I for short periods of time (相似文献   

9.
Recent studies have identified an ABCA1-dependent, phosphatidylcholine-rich microdomain, called the “high-capacity binding site” (HCBS), that binds apoA-I and plays a pivotal role in apoA-I lipidation. Here, using sucrose gradient fractionation, we obtained evidence that both ABCA1 and [125I]apoA-I associated with the HCBS were found localized to nonraft microdomains. Interestingly, phosphatidylcholine (PtdCho) was selectively removed from nonraft domains by apoA-I, whereas sphingomyelin and cholesterol were desorbed from both detergent-resistant membranes and nonraft domains. The modulatory role of cholesterol on apoA-I binding to ABCA1/HCBS was also examined. Loading cells with cholesterol resulted in a drastic reduction in apoA-I binding. Conversely, depletion of membrane cholesterol by methyl-β-cyclodextrin treatment resulted in a significant increase in apoA-I binding. Finally, we obtained evidence that apoA-I interaction with ABCA1 promoted the activation and gene expression of key enzymes in the PtdCho biosynthesis pathway. Taken together, these results provide strong evidence that the partitioning of ABCA1/HCBS to nonraft domains plays a pivotal role in the selective desorption of PtdCho molecules by apoA-I, allowing an optimal environment for cholesterol release and regeneration of the PtdCho-containing HCBS. This process may have important implications in preventing and treating atherosclerotic cardiovascular disease.  相似文献   

10.
Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional cholesterol transport between RBCs and plasma lipoproteins was saturable and temperature-, energy-, and time-dependent, consistent with an active process. We did not find LDLR, ABCG1, or scavenger receptor class B type 1 in RBCs but found a substantial amount of ABCA1 mRNA and protein. However, specific cholesterol efflux from RBCs to isolated apoA-I was negligible, and ABCA1 silencing with siRNA or inhibition with vanadate and Probucol did not inhibit the efflux to apoA-I, HDL, or plasma. Cholesterol efflux from and cholesterol uptake by RBCs from Abca1+/+ and Abca1−/− mice were similar, arguing against the role of ABCA1 in cholesterol flux between RBCs and lipoproteins. Bioinformatics analysis identified ABCA7, ABCG5, lipoprotein lipase, and mitochondrial translocator protein as possible candidates that may mediate the cholesterol flux. Together, these results suggest that RBCs actively participate in cholesterol transport in the blood, but the role of cholesterol transporters in RBCs remains uncertain.  相似文献   

11.
12.
ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in apoA-I lipidation, a key step in reverse cholesterol transport. cAMP induces apoA-I binding activity and promotes cellular cholesterol efflux. We investigated the role of the cAMP/protein kinase A (PKA) dependent pathway in the regulation of cellular cholesterol efflux. Treatment of normal fibroblasts with 8-bromo-cAMP (8-Br-cAMP) increased significantly apoA-I-mediated cholesterol efflux, with specificity for apoA-I, but not for cyclodextrin. Concomitantly, 8-Br-cAMP increased ABCA1 phosphorylation in a time-dependent manner. Maximum phosphorylation was reached in <10 min, representing a 260% increase compared to basal ABCA1 phosphorylation level. Forskolin, a known cAMP regulator, increased both cellular cholesterol efflux and ABCA1 phosphorylation. In contrast, H-89 PKA inhibitor reduced cellular cholesterol efflux by 70% in a dose-dependent manner and inhibited almost completely ABCA1 phosphorylation. To determine whether naturally occurring mutants of ABCA1 may affect its phosphorylation activity, fibroblasts from subjects with familial HDL deficiency (FHD, heterozygous ABCA1 defect) and Tangier disease (TD, homozygous/compound heterozygous ABCA1 defect) were treated with 8-Br-cAMP or forskolin. Cellular cholesterol efflux and ABCA1 phosphorylation were increased in FHD but not in TD cells. Taken together, these findings provide evidence for a link between the cAMP/PKA-dependent pathway, ABCA1 phosphorylation, and apoA-I mediated cellular cholesterol efflux.  相似文献   

13.
ABCA1 plays a major role in HDL metabolism. Cholesterol secretion by ABCA1 is dependent on the presence of extracellular acceptors, such as lipid-free apolipoprotein A-I (apoA-I). However, the importance of the direct interaction between apoA-I and ABCA1 in HDL formation remains unclear. In contrast, ABCB4 mediates the secretion of phospholipids and cholesterol in the presence of sodium taurocholate (NaTC) but not in the presence of apoA-I. In this study, we analyzed apoA-I binding and NaTC-dependent lipid efflux by ABCA1. ABCA1 mediated the efflux of cholesterol and phospholipids in the presence of NaTC as well as in the presence of apoA-I in an ATP-dependent manner. The Tangier disease mutation W590S, which resides in the extracellular domain and impairs apoA-I-dependent lipid efflux, greatly decreased NaTC-dependent cholesterol and phospholipid efflux. However, the W590S mutation did not impair apoA-I binding and, conversely, retarded the dissociation of apoA-I from ABCA1. These results suggest that the W590S mutation impairs ATP-dependent lipid translocation and that lipid translocation or possibly lipid loading, facilitates apoA-I dissociation from ABCA1. NaTC is a good tool for analyzing ABCA1-mediated lipid efflux and allows dissection of the steps of HDL formation by ABCA1.  相似文献   

14.
It is widely accepted that functional ATP-binding cassette transporter A1 (ABCA1) is critical for the formation of nascent high density lipoprotein particles. However, the cholesterol pool(s) and the cellular signaling processes utilized by the ABCA1-mediated pathway remain unclear. Sphingomyelin maintains a preferential interaction with cholesterol in membranes, and its catabolites, especially ceramide, are potent signaling molecules that could play a role in ABCA1 regulation or function. To study the potential role of ceramide in this process, we treated a variety of cell lines with 20 microM C2-ceramide and examined apolipoprotein-mediated cholesterol efflux to lipid-free apoA-I. We found that cell lines expressing ABCA1 displayed 2-3-fold increases in cholesterol efflux to apoA-I. Cell lines not expressing ABCA1 were unaffected by ceramide. We further characterized the cholesterol efflux effect in Chinese hamster ovary cells. Ceramide treatment did not cause significant cytotoxicity or apoptosis and did not affect cholesterol efflux to non-apolipoprotein acceptors. Raising endogenous ceramide levels increased cholesterol efflux to apoA-I. Using a cell surface biotinylation method, we found that the total cellular ABCA1 and that at the plasma membrane were increased with ceramide treatment. Also ceramide enhanced the binding of fluorescently labeled apoA-I to Chinese hamster ovary cells. These data suggest that ceramide may increase the plasma membrane content of ABCA1, leading to increased apoA-I binding and cholesterol efflux.  相似文献   

15.

Aim

ATP-binding cassette transporter A1 (ABCA1) is an important mediator of macrophage cholesterol efflux. It mediates the efflux of cellular cholesterol to lipid-poor apolipoprotein A-I. LDL receptor (LDLr) knockout (KO) mice deficient for leukocyte ABCA1 (ABCA1 KO→LDLr KO) show increased atherosclerosis and splenic lipid accumulation despite largely attenuated serum cholesterol levels. In the present study, we aimed to explore the importance of the spleen for the atheroprotective effects of leukocyte ABCA1.

Methods

LDLr KO mice were transplanted with bone marrow from ABCA1 KO mice or wild-type (WT) controls. After 8 weeks recovery, mice were either splenectomized (SP-x) or underwent a sham operation, and were subsequently challenged with a Western-type diet (WTD).

Results

In agreement with previous studies, the atherosclerotic lesion area in ABCA1 KO→LDLr KO sham animals (655±82×103 µm2) was 1.4-fold (p = 0.03) larger compared to sham WT→LDLr KO mice (459±33×103 µm2) after 8 weeks WTD feeding, despite 1.7-fold (p<0.001) lower serum cholesterol levels. Interestingly, deletion of ABCA1 in leukocytes led to 1.6-fold higher neutrophil content in the spleen in absence of differences in circulating neutrophils. Levels of KC, an important chemoattractant for neutrophils, in serum, however, were increased 2.9-fold (p = 0.07) in ABCA1 KO→LDLr KO mice. SP-x induced blood neutrophilia as compared to WT→LDLr KO mice (1.9-fold; p<0.05), but did not evoke differences in serum cholesterol and anti-oxLDL antibody levels. Atherosclerotic lesion development, however, was 1.3-fold induced both in the presence and absence of leukocyte ABCA1 (WT: 614±106×103 µm2, ABCA1 KO: 786±44×103 µm2). Two-way ANOVA revealed independent effects on atherosclerosis for both leukocyte ABCA1 deficiency and SP-x (p<0.05).

Conclusions

The observed splenic alterations induced by leukocyte ABCA1 deficiency do not play a significant role in the anti-atherogenic effects of leukocyte ABCA1 on lesion development.  相似文献   

16.
We investigated the significance of hydrophobic and charged residues 218–226 on the structure and functions of apoA-I and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of apoA-I[L218A/L219A/V221A/L222A] in apoA-I−/− mice decreased plasma cholesterol and apoA-I levels to 15% of wild-type (WT) control mice and generated pre-β- and α4-HDL particles. In apoA-I−/− × apoE−/− mice, the same mutant formed few discoidal and pre-β-HDL particles that could not be converted to mature α-HDL particles by excess LCAT. Expression of the apoA-I[E223A/K226A] mutant in apoA-I−/− mice caused lesser but discrete alterations in the HDL phenotype. The apoA-I[218–222] and apoA-I[E223A/K226A] mutants had 20% and normal capacity, respectively, to promote ABCA1-mediated cholesterol efflux. Both mutants had ∼65% of normal capacity to activate LCAT in vitro. Biophysical analyses suggested that both mutants affected in a distinct manner the structural integrity and plasticity of apoA-I that is necessary for normal functions. We conclude that the alteration of the hydrophobic 218–222 residues of apoA-I disrupts apoA-I/ABCA1 interactions and promotes the generation of defective pre-β particles that fail to mature into α-HDL subpopulations, thus resulting in low plasma apoA-I and HDL. Alterations of the charged 223, 226 residues caused milder but discrete changes in HDL phenotype.  相似文献   

17.
Apolipoproteins, such as apolipoprotein A-I (apoA-I), can stimulate cholesterol efflux from cells expressing the ATP binding cassette transporter A1 (ABCA1). The nature of the molecular interaction between these cholesterol acceptors and ABCA1 is controversial, and models suggesting a direct protein-protein interaction or indirect association have been proposed. To explore this issue, we performed competition binding and chemical cross-linking assays using six amphipathic plasma proteins and an 18 amino acid amphipathic helical peptide. All seven proteins stimulated lipid efflux and inhibited the cross-linking of apoA-I to ABCA1. Cross-linking of apoA-I to ABCA1 was saturable and occurred at high affinity (Kd of 7.0 +/- 1.9 nM), as was cross-linking of apoA-II. After binding to ABCA1, apoA-I rapidly dissociated (half-life of 25 min) from the complex and was released back into the medium. A mutant form of ABCA1 (W590S) that avidly binds apoA-I but fails to promote cholesterol efflux released apoA-I with similar kinetics but without transfer of cholesterol to apoA-I. Thus, a high-affinity, saturable, protein-protein interaction occurs between ABCA1 and all of its amphipathic protein ligands. Dissociation of the complex leads to the cellular release of cholesterol and the apolipoprotein. However, dissociation is not dependent on cholesterol transfer, which is a clearly separable event, distinguishable by ABCA1 mutants.  相似文献   

18.
Reverse cholesterol transport (RCT) has been characterized as a crucial step for antiatherosclerosis, which is initiated by ATP-binding cassette A1 (ABCA1) to mediate the efflux of cellular phospholipids and cholesterol to lipid-free apolipoprotein A-I (apoA-I). However, the mechanisms underlying apoA-I/ABCA1 interaction to lead to the lipidation of apoA-I are poorly understood. There are several models proposed for the interaction of apoA-I with ABCA1 as well as the lipidation of apoA-I mediated by ABCA1. ApoA-I increases the levels of ABCA1 protein markedly. In turn, ABCA1 can stabilize apoA-I. The interaction of apoA-I with ABCA1 could activate signaling molecules that modulate posttranslational ABCA1 activity or lipid transport activity. The key signaling molecules in these processes include protein kinase A (PKA), protein kinase C (PKC), Janus kinase 2 (JAK2), Rho GTPases and Ca2+, and many factors also could influence the interaction of apoA-I with ABCA1. This review will summarize these mechanisms for the apoA-I interaction with ABCA1 as well as the signal transduction pathways involved in these processes.  相似文献   

19.
The molecular mechanisms underlying the apoA-I/ABCA1 endocytic trafficking pathway in relation to high density lipoprotein (HDL) formation remain poorly understood. We have developed a quantitative cell surface biotinylation assay to determine the compartmentalization and trafficking of apoA-I between the plasma membrane (PM) and intracellular compartments (ICCs). Here we report that (125)I-apoA-I exhibited saturable association with the PM and ICCs in baby hamster kidney cells stably overexpressing ABCA1 and in fibroblasts. The PM was found to have a 2-fold higher capacity to accommodate apoA-I as compared with ICCs. Overexpressing various levels of ABCA1 in baby hamster kidney cells promoted the association of apoA-I with PM and ICCs compartments. The C-terminal deletion of apoA-I Delta(187-243) and reconstituted HDL particles exhibited reduced association of apoA-I with both the PM and ICCs. Interestingly, cell surface biotinylation with a cleavable biotin revealed that apoA-I induces ABCA1 endocytosis. Such endocytosis was impaired by naturally occurring mutations of ABCA1 (Q597R and C1477R). To better understand the role of the endocytotic pathway in the dynamics of the lipidation of apoA-I, a pulse-chase experiment was performed, and the dissociation (re-secretion) of (125)I-apoA-I from both PM and ICCs was monitored over a 6-h period. Unexpectedly, we found that the time required for 50% dissociation of (125)I-apoA-I from the PM was 4-fold slower than that from ICCs at 37 degrees C. Finally, treatment of the cells with phosphatidylcholine-specific phospholipase C, increased the dissociation of apoA-I from the PM. This study provides evidence that the lipidation of apoA-I occurs in two kinetically distinguishable compartments. The finding that apoA-I specifically mediates the continuous endocytic recycling of ABCA1, together with the kinetic data showing that apoA-I associated with ICCs is rapidly re-secreted, suggests that the endocytotic pathway plays a central role in the genesis of nascent HDL.  相似文献   

20.
Defects in the gene encoding for the ATP binding cassette (ABC) transporter A1 (ABCA1) were shown to be one of the genetic causes for familial hypoalphalipoproteinemia (FHA). We investigated the role of ABCA1-mediated cholesterol efflux in Dutch subjects suffering from FHA. Eighty-eight subjects (mean HDL cholesterol levels 0.63 +/- 0.21 mmol/l) were enrolled. Fibroblasts were cultured and loaded with [3H]cholesterol. ABCA1 and non-ABCA1-mediated efflux was studied by using apolipoprotein A-I (apoA-I), HDL, and methyl-beta-cyclodextrin as acceptors. Efflux to apoA-I was decreased in four patients (4/88, 4.5%), and in all cases, a mutation in the ABCA1 gene was found. In the remaining 84 subjects, no correlation between efflux and apoA-I or HDL cholesterol was found. Efflux to both HDL and cyclodextrin, in contrast, did correlate with HDL cholesterol plasma levels (r = 0.34, P = 0.01; and r = 0.27, P = 0.008, respectively). The prevalence of defects in ABCA1-dependent cholesterol efflux in Dutch FHA patients is low. The significant correlation between plasma HDL cholesterol levels and methyl-beta-cyclodextrin-mediated efflux in the FHA patients with normal ABCA1 function suggests that non-ABCA1-mediated efflux might also be important for plasma HDL cholesterol levels in these individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号