首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chalker DL 《Current biology : CB》2008,18(19):R923-R925
Dynamin and dynamin-related proteins (DRPs) mediate an array of membrane fission processes. A Tetrahymena DRP has adopted a new role, assisting in nuclear differentiation, a finding that further highlights these proteins - and this ciliate - as biological innovators.  相似文献   

2.
The polarized transport of the phytohormone auxin [1], which is crucial for the regulation of different stages of plant development [2, 3], depends on the asymmetric plasma membrane distribution of the PIN-FORMED (PIN) auxin efflux carriers [4,?5]. The PIN polar localization results from clathrin-mediated endocytosis (CME) from the plasma membrane and subsequent polar recycling [6]. The Arabidopsis genome encodes two groups of dynamin-related proteins (DRPs) that show homology to mammalian dynamin-a protein required for fission of endocytic vesicles during CME [7, 8]. Here we show by coimmunoprecipitation (coIP), bimolecular fluorescence complementation (BiFC), and F?rster resonance energy transfer (FRET) that members of the DRP1 group closely associate with PIN proteins at the cell plate. Localization and phenotypic analysis of novel drp1 mutants revealed a requirement for DRP1 function in correct PIN distribution and in auxin-mediated development. We propose that rapid and specific internalization of PIN proteins mediated by the DRP1 proteins and the associated CME machinery from the cell plate membranes during cytokinesis is an important mechanism for proper polar PIN positioning in interphase cells.  相似文献   

3.
Over the past several decades, blood-soluble drag reducing polymers (DRPs) have been shown to significantly enhance hemodynamics in various animal models when added to blood at nanomolar concentrations. In the present study, the effects of the DRPs on blood circulation were tested in anesthetized rats exposed to acute hemorrhagic shock. The animals were acutely resuscitated either with a 2.5% dextran solution (Control) or using the same solution containing 0.0005% or 5 parts per million (ppm) concentration of one of two blood soluble DRPs: high molecular weight (MW=3500 kDa) polyethylene glycol (PEG-3500) or a DRP extracted from Aloe vera (AVP). An additional group of animals was resuscitated with 0.0075% (75 ppm) polyethylene glycol of molecular weight of 200 kDa (PEG-200), which possesses no drag-reducing ability. All of the animals were observed for two hours following the initiation of fluid resuscitation or until they expired. We found that infusion of the DRP solutions significantly improved tissue perfusion, tissue oxygenation, and two-hour survival rate, the latter from 19% (Control) and 14% (PEG-200) to 100% (AVP) and 100% (PEG-3500). Furthermore, the Control and PEG-200 animals that survived required three times more fluid to maintain their blood pressure than the AVP and PEG-3500 animals. Several hypotheses regarding the mechanisms underlying these observed beneficial hemodynamic effects of DRPs are discussed. Our findings suggest that the drag-reducing polymers warrant further investigation as a potential clinical treatment for hemorrhagic shock and possibly other microcirculatory disorders.  相似文献   

4.
Dynamin-related proteins (DRPs) are large self-assembling GTPases whose common function is to regulate membrane dynamics in a variety of cellular processes. Dnm1, which is a yeast DRP (Drp1/Dlp1 in humans), is required for mitochondrial division, but its mechanism is unknown. We provide evidence that Dnm1 likely functions through self-assembly to drive the membrane constriction event that is associated with mitochondrial division. Two regulatory features of Dnm1 self-assembly were also identified. Dnm1 self-assembly proceeded through a rate-limiting nucleation step, and nucleotide hydrolysis by assembled Dnm1 structures was highly cooperative with respect to GTP. Dnm1 formed extended spirals, which possessed diameters greater than those of dynamin-1 spirals but whose sizes, remarkably, were equal to those of mitochondrial constriction sites in vivo. These data suggest that Dnm1 has evolved to form structures that fit the dimensions of mitochondria.  相似文献   

5.
Drag-reducing polymers (DRPs) significantly increase blood flow, tissue perfusion, and tissue oxygenation in various animal models. In rectangular channel microfluidic systems, DRPs were found to significantly reduce the near-wall cell-free layer (CFL) as well as modify traffic of red blood cells (RBC) into microchannel branches. In the current study we further investigated the mechanism by which DRP enhances microvascular perfusion. We studied the effect of various concentrations of DRP on RBC distribution in more relevant round microchannels and the effect of DRP on CFL in the rat cremaster muscle in vivo. In round microchannels hematocrit was measured in parent and daughter branch at baseline and after addition of DRP. At DRP concentrations of 5 and 10 ppm, the plasma skimming effect in the daughter branch was eliminated, as parent and daughter branch hematocrit were equivalent, compared to a significantly lowered hematocrit in the daughter branch without DRPs. In anesthetized rats (N=11) CFL was measured in the cremaster muscle tissue in arterioles with a diameter of 32.6 ± 1.7 µm. In the control group (saline, N=6) there was a significant increase in CFL in time compared to corresponding baseline. Addition of DRP at 1 ppm (N=5) reduced CFL significantly compared to corresponding baseline and the control group. After DRP administration the CFL reduced to about 85% of baseline at 5, 15, 25 and 35 minutes after DRP infusion was complete. These in vivo and in vitro findings demonstrate that DRPs induce a reduction in CFL width and plasma skimming in the microvasculature. This may lead to an increase of RBC flux into the capillary bed, and thus explain previous observations of a DRP mediated enhancement of capillary perfusion.  相似文献   

6.
Water-soluble drag-reducing polymers (DRPs) were previously demonstrated to significantly increase blood flow, tissue perfusion, and tissue oxygenation when injected intravenously at nanomolar concentrations in various animal models. Turbulent flow drag-reducing ability was proven to be the most important factor defining the potential of polymers to favorably affect blood circulation. Several DRPs were applied in previous in vivo tests, but the search continues for suitable DRPs for biomedical applications. We demonstrated that poly(N-vinylformamide) (PNVF) with a molecular weight of 4.5 x 10(6) Da significantly reduced resistance to turbulent flow in a pipe and thus presents a DRP. We also found that the PNVF mechanical degradation is much slower than that of the most commonly used DRP, poly(ethylene oxide). PNVF is known to have low toxicity. Furthermore, our pilot in vivo study showed that PNVF had acceptable biocompatibility and hemodynamic effectiveness and thus could be considered as a DRP candidate for potential clinical use.  相似文献   

7.
Dynamin-related proteins (DRPs) are key components of the organelle division machineries, functioning as molecular scissors during the fission process. In Arabidopsis, DRP3A and DRP3B are shared by peroxisomal and mitochondrial division, whereas the structurally-distinct DRP5B (ARC5) protein is involved in the division of chloroplasts and peroxisomes. Here, we further investigated the roles of DRP3A, DRP3B, and DRP5B in organelle division and plant development. Despite DRP5B's lack of stable association with mitochondria, drp5B mutants show defects in mitochondrial division. The drp3A-2 drp3B-2 drp5B-2 triple mutant exhibits enhanced mitochondrial division phenotypes over drp3A-2 drp3B-2, but its peroxisomal morphology and plant growth phenotypes resemble those of the double mutant. We further demonstrated that DRP3A and DRP3B form a supercomplex in vivo, in which DRP3A is the major component, yet DRP5B is not a constituent of this complex. We thus conclude that DRP5B participates in the division of three types of organelles in Arabidopsis, acting independently of the DRP3 complex. Our findings will help elucidate the precise composition of the DRP3 complex at organelle division sites, and will be instrumental to studies aimed at understanding how the same protein mediates the morphogenesis of distinct organelles that are linked by metabolism.  相似文献   

8.
Benign Prostatic Hyperplasia (BPH) patients are at risk of acquiring drug-related problems (DRPs), as it is present in the majority of aging men. To date, DRPs among BPH patients have not been well studied. We conducted this retrospective study in a tertiary hospital in Malaysia from January 2009 to June 2012 with the aim of identifying the factors associated with DRPs among BPH patients. The Pharmaceutical Care Network Europe Classification Version (PCNE) 5.01 was used as a tool to classify DRPs. We enrolled 203 patients from 259 hospital admissions. A total of 390 DRPs were found and there was an average of 1.5±1.3 problems per hospitalization. 76.1% of hospital admissions included at least one DRP. The most common DRP categories encountered were drug choice problems (45.9%), drug interactions (24.9%), and dosing problems (13.3%). Factors such as advanced age (p = 0.005), a hospital stay of more than 6 days (p = 0.001), polydrug treatments (p<0.001), multiple comorbidities (p<0.001), and comorbid cardiovascular disease (p = 0.011), diabetes mellitus(p = 0.001), hypertension (p<0.001) and renal impairment (p = 0.011) were significantly associated with the occurrence of DRPs. These data indicated that the prevalence of DRPs is high among BPH patients. The identification of different subtypes of DRPs and the factors associated with DRPs may facilitate risk reduction for BPH patients.  相似文献   

9.
This study sought to delineate the presynaptic role of the locus coeruleus (LC) on hindlimb primary afferent terminals. Changes in presynaptic function in response to LC stimulation were assessed by measuring the dorsal root potential (DRP), interaction of LC- and peripherally-evoked DRPs, and intraspinal afferent terminal excitability. LC stimulation in unanesthetized, decerebrate cats produced a sequence of early and late positive DRPs succeeded by a small-sized negative DRP. Conditioning the negative DRPs elicited from individual hindlimb nerve branches with LC stimuli led to a decrease in test DRPs. Similarly, there was a predominant decrease in excitability in both large muscle and cutaneous afferent terminals. These data suggest a presynaptic role of the LC in augmenting afferent impulse transmission, presumably through inhibition of tonically active interneurons having axoaxonic contacts on primary afferents; functionally, presynaptic facilitation.  相似文献   

10.
Mitochondrial fission is achieved partially by the activity of self-assembling dynamin-related proteins (DRPs) in diverse organisms. Mitochondrial fission in Arabidopsis thaliana is mediated by DRP3A and DRP3B, but the other genes and molecular mechanisms involved have yet to be elucidated. To identify these genes, we screened and analyzed Arabidopsis mutants with longer and fewer mitochondria than those of the wild type. ELM1 was found to be responsible for the phenotype of elongated mitochondria. This phenotype was also observed in drp3a plants. EST and genomic sequences similar to ELM1 were found in seed plants but not in other eukaryotes. ELM1:green fluorescent protein (GFP) was found to surround mitochondria, and ELM1 interacts with both DPR3A and DRP3B. In the elm1 mutant, DRP3A:GFP was observed in the cytosol, whereas in wild-type Arabidopsis, DRP3A:GFP localized to the ends and constricted sites of mitochondria. These results collectively suggest that mitochondrial fission in Arabidopsis is mediated by the plant-specific factor ELM1, which is required for the relocalization of DRP3A (and possibly also DRP3B) from the cytosol to mitochondrial fission sites.  相似文献   

11.
Dorsal root potentials (DRPs) were recorded by a sucrose gap method in experiments on parasagittal slices of the isolated rat spinal cord. In most cases the DRP consisted of fast and slow waves. The fast wave of DRP was inhibited by the GABA antagonist picrotoxin and the blocker of GABA-activated chloride channels, furosemide, but it was potentiated by pentobarbital sodium. The slow wave of DRP disappeared if the extracellular K+ concentration was raised to 10 mM and it was depressed by tetraethylammonium and 4-aminopyridine, blockers of electrically excitable potassium channels. It is concluded that the fast wave of DRP and the initial components of the slow wave of DRP are GABA-ergic in origin; the slow wave of DRP, however, is linked with an increase in extracellular K+ concentration near the primary afferent terminals. The possible mechanisms of the increase in extracellular K+ concentration during dorsal root stimulation are discussed.A. M. Gor'kii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 796–800, November–December, 1984.  相似文献   

12.
The DNA mismatch repair machinery is involved in the correction of a wide variety of mutational intermediates. In bacterial cells, homodimers of the MutS protein bind mismatches and MutL homodimers couple mismatch recognition to downstream processing steps [1]. Eukaryotes possess multiple MutS and MutL homologs that form discrete, heterodimeric complexes with specific mismatch recognition and repair properties. In yeast, there are six MutS (Msh1-6p) and four MutL (Mlh1-3p and Pms1p) family members [2] [3]. Heterodimers comprising Msh2p and Msh3p or Msh2p and Msh6p recognize mismatches in nuclear DNA [4] [5] and the subsequent processing steps most often involve a Mlh1p-Pms1P heterodimer [6] [7]. Mlh1p also forms heterodimeric complexes with Mlh2p and Mlh3p [8], and a minor role for Mlh3p in nuclear mismatch repair has been reported [9]. No mismatch repair function has yet been assigned to the fourth yeast MutL homolog, Mlh2p, although mlh2 mutants exhibit weak resistance to some DNA damaging agents [10]. We have used two frameshift reversion assays to examine the roles of the yeast Mlh2 and Mlh3 proteins in vivo. This analysis demonstrates, for the first time, that yeast Mlh2p plays a role in the repair of mutational intermediates, and extends earlier results implicating Mlh3p in mismatch repair.  相似文献   

13.
14.
Like other subcellular organelles, peroxisomes divide and segregate to daughter cells during cell division, but this organelle can also proliferate or be degraded in response to environmental cues. Although the mechanisms and genes involved in these processes are still under active investigation, an important player in peroxisome proliferation is a dynamin-related protein (DRP) that is recruited to the organelle membrane by a DRP receptor. Related DRPs also function in the division of mitochondria and chloroplasts. Many other proteins and signals regulate peroxisome division and proliferation, but their modes of action are still being studied.  相似文献   

15.
First discovered in the fungus Aspergillus nidulans[1], γ-tubulin is a ubiquitous component of microtubule organizing centres [2]. In centrosomes, γ-tubulin has been immunolocalized at the pericentriolar material, suggesting a role in cytoplasmic microtubule nucleation [3], as well as within the centriole core itself [4]. Although its function in the nucleation of the mitotic spindle and of cytoplasmic interphasic microtubules has been demonstrated in vitro[5], [6] and in vivo[7], [8], [9], the hypothesis that γ-tubulin could intervene in centriole assembly has never been experimentally addressed because the mitotic arrest caused by the inactivation of γ-tubulin in vivo precludes any further phenotypic analysis of putative centriole defects. The issue can be addressed in the ciliate Paramecium, which is characterized by numerous basal bodies that are similar to centrioles but the biogenesis of which is not tightly coupled to the nuclear division cycle. We demonstrate that the inactivation of the Paramecium γ-tubulin genes leads to inhibition of basal body duplication.  相似文献   

16.
A nuclear pore complex-associated nucleoside triphosphatase (NTPase) activity is believed to provide energy for nuclear export of poly(A)+ mRNA. This study was initiated to determine if nuclear membrane lipid composition is altered during chronic hyperlipidemia, and what effect this has on NTPase activity. The JCR:LA-cp corpulent rat model is characterized by severe hypertriglyceridemia and moderate hypercholesterolemia, and thus represents an ideal animal model in which to study nuclear cholesterol and NTPase activity. NTPase activity was markedly increased in purified hepatic nuclei from corpulent female JCR:LA-cp rats in comparison to lean control rats as a function of assay time, [GTP], [ATP], and [Mg2+]. Nuclear membrane cholesterol and phospholipid content were significantly elevated in the corpulent animals. Nuclei of corpulent animals were less resistant to salt-induced lysis than nuclei of lean animals, suggesting a change in relative membrane integrity. Together, these results indicate that altered lipid metabolism in a genetic corpulent animal model can lead to changes in nuclear membrane lipid composition, which in turn may alter nuclear membrane NTPase activity and integrity. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Peroxisomes are highly dynamic organelles involved in various metabolic pathways. The division of peroxisomes is regulated by factors such as the PEROXIN11 (PEX11) proteins that promote peroxisome elongation and the dynamin-related proteins (DRPs) and FISSION1 (FIS1) proteins that function together to mediate organelle fission. In Arabidopsis thaliana, DRP3A/DRP3B and FIS1A (BIGYIN)/FIS1B are two pairs of homologous proteins known to function in both peroxisomal and mitochondrial division. Here, we report that DRP5B, a DRP distantly related to the DRP3s and originally identified as a chloroplast division protein, also contributes to peroxisome division. DRP5B localizes to both peroxisomes and chloroplasts. Mutations in the DRP5B gene lead to peroxisome division defects and compromised peroxisome functions. Using coimmunoprecipitation and bimolecular fluorescence complementation assays, we further demonstrate that DRP5B can interact or form a complex with itself and with DRP3A, DRP3B, FIS1A, and most of the Arabidopsis PEX11 isoforms. Our data suggest that, in contrast with DRP3A and DRP3B, whose orthologs exist across plant, fungal, and animal kingdoms, DRP5B is a plant/algal invention to facilitate the division of their organelles (i.e., chloroplasts and peroxisomes). In addition, our results support the notion that proteins involved in the early (elongation) and late (fission) stages of peroxisome division may act cooperatively.  相似文献   

18.
In the ciliate Stylonychia during conjugation and the terminal stages of the division cycle, development is dependent upon presynthesized mRNA. The conjugating animals show complex nuclear and cortical changes in a chronological order. Disturbance of the cortical organization or arrest of nuclear divisions in conjugants and exconjugants does not induce the cells to adjust the developmental program; the nuclear and cortical changes proceed without any reference to each other in a defined course. Similarly the terminal stages of the division cycle are not affected by cortical amputations. In contrast, vegetative animals up to mid S phase show constant RNA turnover in relation to the progress of the division cycle. In these animals, cortical amputation leads to an immediate arrest of the cell-cycle events, which are resumed only after regeneration. Nucleocytoplasmic interactions in relation to RNA metabolism of the ciliate are discussed.  相似文献   

19.
Passage through mitosis resets cells for a new round of chromosomal DNA replication [1]. In late mitosis, the pre-replication complex - which includes the origin recognition complex (ORC), Cdc6 and the minichromosome maintenance (MCM) proteins - binds chromatin as a pre-requisite for DNA replication. S-phase-promoting cyclin-dependent kinases (Cdks) and the kinase Dbf4-Cdc7 then act to initiate replication. Before the onset of replication Cdc6 dissociates from chromatin. S-phase and M-phase Cdks block the formation of a new pre-replication complex, preventing DNA over-replication during the S, G2 and M phases of the cell cycle [1]. The nuclear membrane also contributes to limit genome replication to once per cell cycle [2]. Thus, at the end of M phase, nuclear membrane breakdown and the collapse of Cdk activity reset cells for a new round of chromosomal replication. We showed previously that protein kinase A (PKA) activity oscillates during the cell cycle in Xenopus egg extracts, peaking in late mitosis. The oscillations are induced by the M-phase-promoting Cdk [3] [4]. Here, we found that PKA oscillation was required for the following phase of DNA replication. PKA activity was needed from mitosis exit to the formation of the nuclear envelope. PKA was not required for the assembly of ORC2, Cdc6 and MCM3 onto chromatin. Inhibition of PKA activity, however, blocked the release of Cdc6 from chromatin and subsequent DNA replication. These data suggest that PKA activation in late M phase is required for the following S phase.  相似文献   

20.
The MDM2 protein targets the p53 tumor suppressor for ubiquitin-dependent degradation [1], and can function both as an E3 ubiquitin ligase [2] and as a regulator of the subcellular localization of p53 [3]. Oncogene activation stabilizes p53 through expression of the ARF protein (p14(ARF) in humans, p19(ARF) in the mouse) [4], and loss of ARF allows tumor development without loss of wild-type p53 [5] [6]. ARF binds directly to MDM2, and prevents MDM2 from targeting p53 for degradation [6] [7] [8] [9] by inhibiting the E3 ligase activity of MDM2 [2] and preventing nuclear export of MDM2 and p53 [10] [11]. Interaction between ARF and MDM2 results in the localization of both proteins to the nucleolus [12] [13] [14] through nucleolar localization signals (NoLS) in ARF and MDM2 [11] [12] [13] [14]. Here, we report a new NoLS within the highly conserved amino-terminal 22 amino acids of p14(ARF), a region that we found could interact with MDM2, relocalize MDM2 to the nucleolus and inhibit the ability of MDM2 to degrade p53. In contrast, the carboxy-terminal fragment of p14(ARF), which contains the previously described NoLS [11], did not drive nucleolar localization of MDM2, although this region could bind MDM2 and weakly inhibit its ability to degrade p53. Our results support the importance of nucleolar sequestration for the efficient inactivation of MDM2. The inhibition of MDM2 by a small peptide from the amino terminus of p14(ARF) might be exploited to restore p53 function in tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号