首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Growth and regeneration of segments were recorded in the polychaeteOphryotrocha puerilis. In one experiment the ventral nerve cords (VNCs) of the animals were cut; in the other, VNCs were left intact. VNC lesion in some specimens resulted in the outgrowth of supernumerary posterior parts from the site of operation. The characteristics of outgrowth of these supernumeraries were essentially the same as in normal specimens without double tails. After removing different numbers of caudal setigers, each of the two tails of the same double-tail monster independently regenerated different segment numbers within a given time. A simple model is proposed, allowing for these results, which states that the larval body of a polychaete consists of two regions with completely different positional values (episphere — prostomium; hyposphere — pygidium). During growth, segments with intervening positional values are intercalated. The rate of segment formation is high when there is a wide gap in positional values between pygidium and adjoining budding zone and the posteriormost segment. As this gap narrows, the growth rate slows down. During caudal regeneration, first of all a new pygidium with an adjacent proliferation zone is formed and the original positional value of the posteriormost part of the body is reestablished. Segment regeneration follows the same rules as segment growth. The results presented here also demonstrate that the VNC plays an important role, not only in segment proliferation, but also in signalling positional information to the newly formed segments.  相似文献   

2.
Ovarian follicle cells of wild type Drosophila melanogaster simultaneously secrete yolk polypeptides (YP1, YP2 and YP3) and vitelline membrane proteins. In order to understand the relationship between these two secretory activities, we have investigated the ultrastructure of a female sterile mutation that alters YP1 secretion and vitelline membrane deposition. Homozygous fs(1)1163 females lay eggs that collapse and contain reduced quantities of YP1. Secretory granules in follicle cells contain an electron-translucent component that is assembled into the developing vitelline membrane in both mutant and wild-type ovaries, and an electron-dense component that disperses after secretion in wild-type ovaries. Mutant ovaries differ from wild-type by (1) having larger secretory granules (2) forming clumps of the dense secretory component within the developing vitelline membrane (3) accumulating more tubules in the cortical ooplasm of vitellogenic oocytes, and (4) possessing altered yolk spheres. Mutant ovaries implanted into wild-type hosts showed no improvement in the secretory granules and slight improvement in the vitelline membrane clumps but amelioration of the oocyte phenotypes. Since genetic evidence suggests that the fs(1)1163 mutation resides in or near the Yp1 gene and biochemical data show that the mutation alters YP1 structure, we conclude that the ultrastructural phenotypes are due to a structurally abnormal YP1 in the mutant. The alteration in vitelline membrane structure caused by the dense clumps could account for collapsed eggs and, hence, the female sterility of the mutant.  相似文献   

3.
Summary

Oogenesis in the marine turbellarian proseriat Monocelis lineata was investigated at the ultrastructural level. Oocyte differentiation is not synchronous so that successive stages of germ cell maturation were simultaneously detected in each of the two ovaries. Each developing oocyte is enveloped by follicle cell projections which are presumably involved in a morphologically undetectable support of vitellogenesis. The main features evidenced during oocyte differentiation are: (1) The synthesis of cortical granules by the rough endoplasmic reticulum and Golgi complex, occurring in the earlier stages of oogenesis; (2) The synthesis of yolk globules by the rough endoplasmic reticulum (RER) and Golgi complex, occurring in the later stages of oogenesis, namely late meiotic prophase I. Neither morphologically visible endocytotic activity, nor the presence of intercellular bridges, nor even the development of microvilli were observed at the oolemma or cortical ooplasm, so that the sole mechanism of vitellogenesis appears to be autosynthetic. The significance of these findings is discussed in relation to the taxonomic position of M. lineata and more generally in relation to the phylogenetic history of the class Turbellaria.  相似文献   

4.
The ultrastructure of the ovary of Milnesium tardigradum during early vitellogenesis is described. Within the ovary, there were large multinuclear cells surrounded by many mononuclear oocytes. Observation of serial sections revealed four multinuclear cells that were connected to each other by cytoplasmic bridges. Each peripheral oocyte was connected to the multinuclear cell. An enormous ER-like structure was conspicuous in the centre of the multinuclear cell. The presence of large numbers of lipid droplets and yolk granules in both multinuclear cells and many mononuclear oocytes suggested a role as nurse cells. A small number of these oocytes grow to be eggs. The structural features of the multinuclear nurse cell were compared with other known examples.  相似文献   

5.
We studied the ultrastructural organization of the ovarian follicles in a placentotrophic Andean lizard of the genus Mabuya. The oocyte of the primary follicle is surrounded by a single layer of follicle cells. During the previtellogenic stages, these cells become stratified and differentiated in three cell types: small, intermediate, and large globoid, non pyriform cells. Fluid‐filled spaces arise among follicular cells in late previtellogenic follicles and provide evidence of cell lysis. In vitellogenic follicles, the follicular cells constitute a monolayered granulosa with large lacunar spaces; the content of their cytoplasm is released to the perivitelline space where the zona pellucida is formed. The oolemma of younger oocytes presents incipient short projections; as the oocyte grows, these projections become organized in a microvillar surface. During vitellogenesis, cannaliculi develop from the base of the microvilli and internalize materials by endocytosis. In the juxtanuclear ooplasm of early previtellogenic follicles, the Balbiani's vitelline body is found as an aggregate of organelles and lipid droplets; this complex of organelles disperses in the ooplasm during oocyte growth. In late previtellogenesis, membranous organelles are especially abundant in the peripheral ooplasm, whereas abundant vesicles and granular material occur in the medullar ooplasm. The ooplasm of vitellogenic follicles shows a peripheral band constituted by abundant membranous organelles and numerous vesicular bodies, some of them with a small lipoprotein core. No organized yolk platelets, like in lecithotrophic reptiles, were observed. Toward the medullary ooplasm, electron‐lucent vesicles become larger in size containing remains of cytoplasmic material in dissolution. The results of this study demonstrate structural similarities between the follicles of this species and other Squamata; however, the ooplasm of the mature oocyte of Mabuya is morphologically similar to the ooplasm of mature oocytes of marsupials, suggesting an interesting evolutionary convergence related to the evolution of placentotrophy and of microlecithal eggs. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
The study was aimed at understanding the process of reproduction and the changes happening in the ovary of Portunus pelagicus during maturation, which would be useful for its broodstock development for hatchery purposes. For that, tissue samples from different regions of the ovary at various stages of maturation were subjected to light and electron microscopy, and based on the changes revealed and the differences in ovarian morphology, the ovary was divided into five stages such as immature (previtellogenic oocytes), early maturing (early vitellogenic oocytes), late maturing (late vitellogenic oocytes), mature (vitellogenic oocytes), and spent (resorbing oocytes). The ovarian wall comprised of an outermost thin pavement epithelium, a middle layer of connective tissue, and an innermost layer of germinal epithelium. The oocytes matured as they moved from the centrally placed germinal zone toward the ovarian wall. The peripheral arrangement of nucleolar materials and the high incidence of cell organelles during the initial stages indicated vitellogenesis I. Movement of follicle cells toward oocytes in the early maturing stage and low incidence of mitochondria and endoplasmic reticulum in the ooplasm during late vitellogenic stage marked the commencement and end of vitellogenesis II, respectively. Yolk granules at various stages of development were seen in the ooplasm from late vitellogenic stage onwards. The spent ovary had an area with resorbing oocytes and empty follicle cells denoting the end of one reproductive cycle and another area with oogonial cells and previtellogenic oocytes indicating the beginning of the next.  相似文献   

7.
During vitellogenesis the transport of yolk precursor proteins, the vitellogenins (VTG), from the hemolymph into the oocyte is achieved by receptor-mediated endocytosis. Recently the receptor for the VTG of Locusta migratoria has been isolated. Now a new protocol has been developed for the purification of the VTG receptor of this locust from ovarian membranes. By CHAPS solubilization of the membranes followed by ion exchange and immunoaffinity chromatography, a 100-fold purification of the VTG receptor was achieved. The amino acid composition of the receptor protein has been determined. However, first attempts to sequence the receptor failed due to the N-terminal blocking of the molecule. With the same methods the VTG receptor of another locust, Schistocerca gregaria, has been isolated, purified, and characterized. This receptor has an apparent Mr of 186 kDa under nonreducing conditions. It recognizes L. migratoria VTG and vice versa. However, in cross-competition experiments in which the Schistocerca VTG competed with Locusta VTG for binding to the Locusta VTG receptor, the Schistocerca VTG was less efficient. Furthermore, the VTG receptor proteins of S. gregaria and L. migratoria are immunologically related as revealed by Western blotting with anti-Locusta VTG receptor antibodies. It appears that important structural elements required for efficient and specific endocytosis of VTG have been conserved. © 1994 Wiley-Liss, Inc.  相似文献   

8.
The organization of the ovaries in representative of the Salifidae (Hirudinida, Erpobdelliformes) was studied at the ultrastructural level for the first time. Like in other leeches, the ovaries of Barbronia weberi are composed of an outer envelope (i.e., an ovisac made up of two coelomic epithelia, muscle cells, and connective tissue) and several internal units, which are broadly similar to the ovary cords found in representatives of the Erpobdellidae. There are usually 6–8 ovary cords that are twisted or cambered with a narrow apical part and a broader, irregularly shaped distal end in each ovisac of B. weberi. Each ovary cord is built from somatic and germ‐line cells and the latter tend to form multicellular cysts that are equipped with a central cytoplasmic core (cytophore). There are two morphologically different subpopulations of germ‐line cells: oocytes and more numerous nurse cells. Growing oocytes form protuberances on the ovary cord surface and eventually detach from the cord and float freely in the ovisac lumen, whereas the other components of germ‐line cysts (i.e., nurse cells and cytophore) degenerate. It should be pointed out that there is a prominent gradient of germ‐cell development along the long axis of the cord. The somatic cells form the ovary cord envelope (the so‐called spongiosa cells) and also penetrate the spaces between germ‐line cells. Both kinds of the somatic cells, that is, those forming the cord envelope and the somatic cells that are associated with oocytes (follicular cells) have a well‐developed system of intercellular channels. Additionally, one prominent somatic cell, the apical cell, was found at the apical tip of each ovary cord. Because the aforementioned features of ovary cords found in B. weberi are very similar (with a few minor exceptions) to the ovary cords that have been described in Erpobdella octoculata and E. johanssoni, we propose the term “ovary cords of the Erpobdella type” for them. Our results support a close phylogenetic relationship between Salifidae and Erpobdellidae. J. Morphol. 275:479–488, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The oesophagus of Nereis virens is divided into anterior and posterior regions and possesses several peculiar features not previously described for cuticle or glands of Polychaetes either in body or foregut integument. The mucous cells which are permanent glands in both regions secrete a carboxylated acidic mucus and possess apical mechanisms permitting the opening and closing of the neck of the glands. The cuticle of the posterior oesophagus bears numerous striated spines and several hypotheses concerning their physiological role are discussed.  相似文献   

10.
Tannic acid impregnation has revealed the existence of a T-system in the helical fibers of Branchiobdella pentodonta (Annelida, Clitellata). T-tubules are L-shaped inside the fiber, within the plane of the I-band: after a short horizontal tract they run longitudinally for a long tract keeping contact with many sarcoplasmic reticulum cisternae and forming dyads. The presence of a T-system in this annelid, the only one demonstrated up to now in annelids, is to be ascribed to the thickness of the contractile layer of those fibers.  相似文献   

11.
The development of Bucephaloides gracilescens metacercariae was studied using a range of cultivation conditions. The most rapid development occurred at 18°C in a medium containing NCTC 135 supplemented with 25% chicken serum, 25% hen egg yolk and 25% hen egg albumen, with a gas phase of air. Under these conditions, shell-protein synthesis was triggered by day 3 in culture; secondary oocytes were apparent in the ovary by day 10; and egg production began by day 14. Survival of worms in media containing chicken serum was twice as long as that achieved with either whiting or angler fish serum. The ingestion of yolk (feeding) appeared to be a necessary prerequisite to development and egg production. The presence of yolk in the culture medium greatly increased the amount of 3H-thymidine incorporated by the reproductive system of freshly excysted metacercariae but had little effect on the uptake and incorporation of tyrosine. The eggs produced in vitro failed to embryonale and were abnormal in appearance, being non-operculate with irregularly thickened shells.  相似文献   

12.
To clarify the annual reproductive cycle of wild female mosquitofish,Gambusia affinis, in Mie Prefecture, central Japan, changes in ovarian histology were investigated. Female mosquitofish kept in aquaria under constant temperature (25°C) and photoperiod (16L: 8D) conditions produced successive broods at intervals of 22.1±0.46 days (n=7). Between days 0–3 following parturition, females began active vitellogenesis. Between days 3–5, fully grown oocytes matured and were fertilized, and embryonic development began in the follicles. By day 10, as fertilized eggs continued embryonic development, some oocytes at the oil-droplet stage had begun to accumulate yolk globules for the next gestation. Thus, vitellogenesis of the succeeding batch of oocytes overlaps with gestation during reproduction in the mosquitofish. A rearing experiment showed the annual reproductive cycle of mosquitofish breeding in Nagashima to be as follows. Although oocytes had not at that point developed to the yolk globule stage, copulation occurred in February. Females began vitellogenesis in early May, the first pregnancy of the year commencing in mid-May. From mid-May to August, females repeated the gestation cycle (vitellogenesis, maturation, fertilization, pregnancy and parturition) at around one month intervals. In September, oocyte recruitment from the oil-droplet to the yolk globule stage ceased. After the final parturition, the ovaries contained only non-vitellogenic oocytes. Spermatozoa in the ovarian cavity were scare from November to January.  相似文献   

13.
Yolk formation in Isohypsibius (Eutardigrada)   总被引:1,自引:0,他引:1  
Summary In Isohypsibius granulifer, yolk is autosynthesized. The Golgi apparatus is mainly responsible for the formation of yolk, which consists of irregular platelets with heterogeneous contents and a diameter of about 1 m. Dense globules, 300 nm in diameter, are visible among yolk platelets. These develop in the vesicles of the rough endoplasmic reticulum. The genesis of these vesicles is associated with the outer membrane of the nuclear envelope, which forms blebs intensively during previtellogenesis and early vitellogenesis. The developing oocytes are assisted by nurse cells, to which they are jointed by cytoplasmic bridges. For every oocyte, there are a number nurse cells, which are sister cells of the oocyte. In addition to rRNA, nurse cells transfer to the oocyte lipids, platelets of yolk formed in their cytoplasm, mitochondria and cortical granules.  相似文献   

14.
Ultrastructure of oogenesis in the bluefin tuna, Thunnus thynnus   总被引:1,自引:0,他引:1  
Ovarian ultrastructure of the Atlantic bluefin tuna (Thunnus thynnus) was investigated during the reproductive season with the aim of improving our understanding of the reproductive biology in this species. The bluefin, like the other tunas, has an asynchronous mode of ovarian development; therefore, all developmental stages of the oocyte can be found in mature ovaries. The process of oocyte development can be divided into five distinct stages (formation of oocytes from oogonia, primary growth, lipid stage, vitellogenesis, and maturation). Although histological and ultrastructural features of most these stages are similar among all studied teleosts, the transitional period between primary growth and vitellogenesis exhibits interspecific morphological differences that depend on the egg physiology. Although the most remarkable feature of this stage in many teleosts is the occurrence of cortical alveoli, in the bluefin tuna, as is common in marine fishes, the predominant cytoplasmic inclusions are lipid droplets. Nests of early meiotic oocytes derive from the germinal epithelium that borders the ovarian lumen. Each oocyte in the nest becomes surrounded by extensions of prefollicle cells derived from somatic epithelial cells and these form the follicle that is located in the stromal tissue. The primary growth stage is characterized by intense RNA synthesis and the differentiation of the vitelline envelope. Secondary growth commences with the accumulation of lipid droplets in the oocyte cytoplasm (lipid stage), which is then followed by massive uptake and processing of proteins into yolk platelets (vitellogenic stage). During the maturation stage the lipid inclusions coalesce into a single oil droplet, and hydrolysis of the yolk platelets leads to the formation of a homogeneous mass of fluid yolk in mature eggs.  相似文献   

15.
During vitellogenesis, the oocytes of oviparous species accumulate in the cytoplasm a large amount of proteic nutrients synthetized in the liver. Once incorporated into the oocytes, these nutrients, especially represented by vitellogenin (VTG) and very low‐density lipoprotein (VLDL), are cleaved into a characteristic set of polypeptides forming yolk platelets. We have studied the molecular mechanisms involved in yolk formation in a reptilian species Podarcis sicula, a lizard characterized by a seasonal reproductive cycle. Our results demonstrate the existence in the lizard ovary of an aspartic proteinase having a maximal activity at acidic pH and a molecular mass of 40 kDa. The full‐length aspartic proteinase cDNA produced from total RNA by RT‐PCR is 1,442 base pairs long and encodes a protein of 403 amino acids. A comparison of the proteic sequence with aspartic proteinases from various sources demonstrates that the lizard enzyme is a cathepsin D. Lizard ovarian cathepsin D activity is maximal in June, in coincidence with vitellogenesis and ovulation, and is especially abundant in vitellogenic follicles and in eggs. Ovarian cathepsin D activity can be enhanced during the resting period by treatment with FSH in vivo. Northern blot analysis shows that cathepsin D mRNA is exceedingly abundant during the reproductive period, and accumulates preferentially in previtellogenic oocytes. Mol. Reprod. Dev. 52:126–134, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

16.
杨佐娟  何建平 《昆虫知识》2006,43(4):447-452
细胞凋亡是动物发育过程中的基本生命现象,是多细胞生物体一种重要的自我稳定机制。除体细胞发生凋亡外,生殖细胞在其发生过程中也有细胞凋亡。对近10年来昆虫卵子发生过程中细胞凋亡的研究作了综述。重点关注昆虫卵子发生过程中细胞凋亡发生的阶段、凋亡的形态特征、凋亡的调控及意义等,以期为相关研究提供基础资料。  相似文献   

17.
Abstract. Egg hull formation during oogenesis in the chiton Callochiton dentatus does not follow the typical model of merocrine secretion involving Golgi vesicle exocytosis. Instead, microapocrine secretions are primarily responsible for egg hull formation, although merocrine secretions contribute “areolae” and the vitelline layer. Microapocrine secretion mechanisms are poorly understood, involving a different cellular pathway than is typical. Egg hull formation in C. dentatus involves two types of microapocrine secretions released by the oocyte, one of which is described here for the first time. The plesiomorphic jelly-like egg hull of chitons, as exemplified by the eggs of members of the basal order Lepidopleurida and present also in eggs of C. dentatus (Chitonida: Callichitonidae), may have evolved solely as an oocyte secretion, whereas members of some other families in the order Chitonida form their egg hulls with considerable secretory input from the follicle cells as well.  相似文献   

18.
Summary

Primary lysosomes appear in the oocytes of A. gibbosa at the end of previtellogenesis. The lysosomes fuse with the cisternae of the endoplasmic reticulum and give rise to yolk globules containing acid phosphatase. The yolk globules then grow by fusion.  相似文献   

19.
Summary

Reproduction of A. obtectus females originating from Rubona (Rwanda) was inhibited after grouping (2 females, or 1 male—1 female). Only a few females produced mature oocytes; vitellogenin was synthesized, released into the haemolymph, but not incorporated into the oocytes. When females produced mature oocytes, their ovarian production was lower than in isolated virgin females. After pairing of a male and a female, 38% of the females mated, but mating under these conditions did not stimulate oogenesis.

Oogenesis of females originating from Tours (France) was only slightly inhibited by the presence of males or females of the same origin. “France” males and females inhibited the reproduction of “Rwanda” females under grouping conditions. However, “France” females showed only a slight sensitivity to grouping with “Rwanda” bruchids. In the presence of Phaseolus vulgaris seeds, grouping had no effect and all females, whatever their origin, produced mature oocytes. Inhibition weis relatively specific as cohabitation with bruchids of other genera (Callosobruchus maculatus-Zabrotes subfasciatus) had no effect. Cohabitation with two species of the same genus (Acanthoscelides obvelatus—A. argilaceus) inhibited oogenesis of A. obtectus “Rwanda” strain. The significance of this regulation and its importance in the maintenance of populations in nature are also analyzed.  相似文献   

20.
The tube building polychaete Hydroides elegans Haswell was found living attached to colonies of the arborescent bryozoan Bugula neritina (L.) in Port Shelter, Hong Kong. Field data collected during the period of January through May 1996, showed that H. elegans density reached 77.6 individuals of H. elegans per g wet weight of B. neritina. Density of H. elegans on B. neritina at depths from the surface to 0.5 m was lower than that at depths below 1 m. In January–March, when there were no H. elegans settling on PVC plates or found on natural substrata, numbers on B. neritina were ca. 5 per g wet weight. H. elegans settled on B. neritina and grew rapidly as mean diameter of tubes increased from 605 μm in February to 936 μm in March. In laboratory experiments, larvae of H. elegans settled and metamorphosed on branches of B. neritina and on the bottom of dishes containing B. neritina leachate. Compounds extracted from the leachate of B. neritina induced 74% of H. elegans larvae to metamorphose at a concentration of 16 μg/ml seawater, compared to 5% in dishes containing only filtered seawater (controls). Metabolites from the leachate of B. neritina which were bound to amberlite XAD-2, indicating they are lipophilic in nature, induced over 70% metamorphosis in H. elegans larvae at 56 μg/ml seawater. A biofilm from one of four strains of bacterial isolates associated with the surface of B. neritina induced low levels of metamorphosis in H. elegans larvae, while other bacterial isolates were detrimental to the survival of juvenile H. elegans. Field experiments further demonstrated that H. elegans settled preferentially on Phytagel discs embedded with whole extracts of B. neritina over control Phytagel discs. Metabolites from B. neritina deterred feeding on alginate pellets by assemblages of local fishes in field assays. Metabolites originating from B. neritina, bacteria colonizing B. neritina, and the complex structure of B. neritina contributed to the recruitment of H. elegans to B. neritina surfaces. Hydroides elegans may gain a refuge from predation by associating with B. neritina colonies both from its structural and chemical attributes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号