首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA) isomers have attracted great interest because of their potential health benefits. Formation of CLA and CLNA takes place in the rumen during biohydrogenation. Several studies have indicated that certain types of intestinal bacteria, including bifidobacteria, are able to convert linoleic acid (LA) to CLA. The role of intestinal bacteria in the formation of CLNA isomers is largely unknown. In the present study, a screening of 36 different Bifidobacterium strains for their ability to produce CLA and CLNA from free LA and α-linolenic acid (LNA), respectively, was performed. The strains were grown in MRS broth, to which LA or LNA (0.5 mg ml−1) were added after 7 h of bacterial growth. Cultures were further incubated at 37°C for 72 h. Six strains (four Bifidobacterium breve strains, a Bifidobacterium bifidum strain and a Bifidobacterium pseudolongum strain) were able to produce different CLA and CLNA isomers. Conversion percentages varied from 19.5% to 53.5% for CLA production and from 55.6% to 78.4% for CLNA production among these strains. The CLA isomers produced were further identified with Ag+-HPLC. LA was mainly converted to t9t11-CLA and c9t11-CLA. The main CLNA isomers were identified with GC-MS as c9t11c15-CLNA and t9t11c15-CLNA.  相似文献   

2.
Butyrivibrio fibrisolvens A38 inocula were inhibited by as little as 15 microM linoleic acid (LA), but growing cultures tolerated 10-fold more LA before growth was inhibited. Growing cultures did not produce significant amounts of cis-9, trans-11 conjugated linoleic acid (CLA) until the LA concentration was high enough to inhibit biohydrogenation, growth was inhibited, and lysis was enhanced. Washed-cell suspensions that were incubated anaerobically with 350 microM LA converted most of the LA to hydrogenated products, and little CLA was detected. When the washed-cell suspensions were incubated aerobically, biohydrogenation was inhibited, CLA production was at least twofold greater, and CLA persisted. The LA isomerase reaction was very rapid, but the LA isomerase did not recycle like a normal enzyme to catalyze more substrate. Cells that were preincubated with CLA lost their ability to produce more CLA from LA, and the CLA accumulation was directly proportional (r(2) = 0.98) to the initial cell density. Growing cells were as sensitive to CLA as LA, the LA isomerase and reductases of biohydrogenation were linked, and free CLA was not released. Because growing cultures of B. fibrisolvens A38 did not produce significant amounts of CLA until the LA concentration was high, biohydrogenation was arrested, and the cell density had declined, the flow of CLA from the rumen may be due to LA-dependent bacterial inactivation, death, or lysis.  相似文献   

3.
Conventional beliefs surrounding the linolenic acid (LNA; cis-9 cis-12 cis-15 C18:3) biohydrogenation (BH) pathway propose that it converts to stearic acid (SA) without the formation of conjugated linoleic acid (CLA) as intermediate isomers. However, an advanced study (Lee and Jenkins, 2011) verified that LNA BH yields multiple CLAs. This study utilized the stable isotope tracer to investigate the BH intermediates of 13C-LNA with different pH conditions (5.5 and 6.5). The 13C enrichment was calculated as a 13C/12C ratio of labeled minus unlabeled. After 24 h, eight CLA isomers were significantly enriched on both pH treatment, this result verifies that these CLAs originated from 13C-LNA BH which supports the results of Lee and Jenkins (2011). The enrichment of cis-cis double bond CLAs (cis-9 cis-11 and cis-10 cis-12 CLA) were significantly higher at low pH conditions. Furthermore, the concentration of cis-10 cis-12 CLA at low pH was four times higher than at high pH conditions after a 3 h incubation. These differences support the LNA BH pathways partial switch under different pH conditions, with a strong influence on the cis-cis CLA at low pH. Several mono-, di-, and tri-enoic fatty acid isomers were enriched during 24 h of incubation, but the enrichment was decreased or restricted at low pH treatment. Based on these results, it is proposed that low pH conditions may cause a changed or limited capacity of the isomerization and reduction steps in BH.  相似文献   

4.
The objective of this study was to evaluate the effect of soluble carbohydrates (glucose, cellobiose), pH (6.0, 6.5, 7.0), and rumen microbial growth factors (VFA, vitamins) on biohydrogenation of linoleic acid (LA) by mixed rumen fungi. Addition of glucose or cellobiose to culture media slowed the rate of biohydrogenation;only 35-40% of LA was converted to conjugated linoleic acid (CLA) or vaccenic acid (VA) within 24 h of incubation, whereas in the control treatment, 100% of LA was converted within 24 h. Addition of VFA or vitamins did not affect biohydrogenation activity or CLA production. Culturing rumen fungi at pH 6.0 slowed biohydrogenation compared with pH 6.5 or 7.0. CLA production was reduced by pH 6.0 compared with control (pH 6.5), but was higher with pH 7.0. Biohydrogenation of LA to VA was complete within 72 h at pH 6.0, 24 h at pH 6.5, and 48 h at pH 7.0. It is concluded that optimum conditions for biohydrogenation of LA and for CLA production by rumen fungi were provided without addition of soluble carbohydrates, VFA or vitamins to the culture medium; optimum pH was 6.5 for biohydrogenation and 7.0 for CLA production.  相似文献   

5.
A method for the production of conjugated linoleic acid (CLA) from linoleic acid (LA) using growing cultures of Propionibacterium freudenreichii ssp. shermanii JS was developed. The growth inhibitory effect of LA was eliminated by dispersing it in a sufficient concentration of polyoxyethylene sorbitan monooleate detergent. For the whey permeate medium used, the optimum LA:detergent ratio was 1:15 (w/w). As a result, the cultures tolerated at least 1000 microg x mL(-1) LA, which was converted to CLA with 57%-87% efficiency. The cis-9, trans-11 and trans-9, cis-11 isomers constituted 85%-90% of the CLA produced. The feasibility of the method was demonstrated also in de Man Rogosa-Sharpe (MRS) broth.  相似文献   

6.
Conjugated linoleic acid metabolism   总被引:10,自引:0,他引:10  
Conjugated linoleic acid (CLA) is a naturally occurring fatty acid that is produced by a bio-hydrogenation process in the rumen, and thus is present in dairy products and ruminant meat. In this case the predominant isomer formed is 9cis,11trans. However, CLA includes 28 positional and geometrical isomers, of which only 9cis,11trans and 10trans,12cis have thus far been proven to possess biological activities. Both of these CLA isomers have been shown to undergo elongation and desaturation processes similar to those that occur with linoleic acid, maintaining the conjugated diene structure. There are evidences supporting the hypothesis that CLA metabolism may interfere with eicosanoid formation. Other metabolites with 16 carbon atoms (conjugated 16:2 and 16:3, which are probably derived from peroxisomal beta-oxidation of CLA and its metabolites, respectively) have been detected. This suggests an efficient metabolism of CLA and its metabolites in peroxisomes, which might be linked to their capacity to activate peroxisome proliferator-activated receptors.  相似文献   

7.
Conjugated linoleic acid (CLA) has shown a number of health benefits, particularly on controlling body fat while improving lean mass. As one of CLA cognates, conjugated nonadecadienoic acid (CNA, 19-carbon conjugated fatty acid) has been previously reported to have greater efficacy on body fat control. In this report, we compared the efficacy of dietary CLA and CNA on body fat regulation and also compared the mechanism of body fat control using a mouse model. Effects of 0.1% dietary CNA on body fat reduction were comparable to that of 0.5% dietary CLA. The mechanisms of dietary CNA on body fat control were similar to those of CLA: increased energy expenditure and increased fatty acid β-oxidation. Dietary CNA, but not CLA, also improved expression of hormone-sensitive lipase from white adipose tissue, and this may help explain how CNA has better efficacy on body fat control than CLA. Dietary CNA had similar effects as CLA on liver weights; however, unlike CLA, CNA improved glucose tolerance. Thus, CNA has potential to be used as a pharmacological agent to assist current efforts to reduce obesity with less adverse effects than CLA.  相似文献   

8.
Thirty lactating dairy cows were used in a 3 × 3 Latin-square design to investigate the effects of a raw or extruded blend of linseed and wheat bran (70:30) on plasma and milk fatty-acids (FA). Linseed diets, containing 16.6% linseed blend on a dry-matter basis, decreased milk yield and protein percentage. They decreased the proportions of FA with less than 18 carbons in plasma and milk and resulted in cis-9, cis-12, cis-15 18:3 proportions that were more than three and four times higher in plasma and milk, respectively, whereas cis-9, cis-12 18:2 proportions were decreased by 10-15%. The cis-9, trans-11, cis-15 18:3 isomer of conjugated linolenic acid was not detected in the milk of control cows, but was over 0.15% of total FA in the milk fat of linseed-supplemented cows. Similarly, linseed increased plasma and milk proportions of all biohydrogenation (BH) intermediates in plasma and milk, including the main isomer of conjugated linoleic acid cis-9, trans-11 18:2, except trans-4 18:1 and cis-11, trans-15 18:2 in plasma lipids. In milk fat, compared with raw linseed, extruded linseed further reduced 6:0-16:0 even-chain FA, did not significantly affect the proportions of 18:0, cis-9 18:1 and cis-9, cis-12 18:2, tended to increase cis-9, cis-12, cis-15 18:3, and resulted in an additional increase in the proportions of most BH intermediates. It was concluded that linseed addition can improve the proportion of conjugated linoleic and linolenic acids, and that extrusion further increases the proportions of intermediates of ruminal BH in milk fat.  相似文献   

9.
Lee SO  Hong GW  Oh DK 《Biotechnology progress》2003,19(3):1081-1084
Lactobacillus reuteri was immobilized on silica gel to evaluate the bioconversion of linoleic acid (LA) into conjugated linoleic acid (CLA), consisting of cis-9,trans-11 and trans-10,cis-12 isomers. The amount of cell to carrier, the reaction time, and the substrate concentration, pH, and temperature for CLA production were optimized at 10 mg of cells/(g of carrier), 1 h, 500 mg/L LA, 10.5, and 55 degrees C, respectively. In the presence of 1.0 mM Cu(2+), CLA production increased by 110%. Under the optimal conditions, the immobilized cells produced 175 mg/L CLA from 500 mg/L LA for 1 h with a productivity of 175 mg/(L.h) and accumulated 5.5 times more CLA than that obtained from bioconversion by free washed cells. The CLA-producing ability of reused cells was investigated over five reuse reactions and was maximal at pH 7.5, 25 degrees C, and 1.0 mM Cu(2+). The total amount of CLA by the combined five reuse reactions was 344 mg of CLA/L reaction volume. This was 8.6 times higher than the amount obtained from reuse reactions by free washed cells.  相似文献   

10.
The conversion of β-myrcene to the furanoid flavour compound perillene by Pleurotus ostreatus was investigated using trideutero β-myrcene, trideutero α-(Z)-acaridiol and non-labeled 1,2- and 3,10-epoxy-β-myrcene, α,α-acarilactol, and perillene as substrates. Myrcene diols were formed from the cleavage of myrcene epoxides, but only α-(Z)-acaridiol, a 1,4-butanediol derivative most likely generated through a base-catalysed epoxide opening, was a suitable precursor of perillene. Once formed, this key intermediate was rapidly oxidised and the resulting cyclic lactol was dehydrated to yield perillene. Bioconversion of the supplemented perillene to α,α-acariolide indicated that perillene was another intermediate of the pathway and prone to further oxidative degradation. The data suggest that the fungus converted the cytotoxic β-myrcene in its environment into a metabolically useable carbon source along this route.  相似文献   

11.
AIMS: To assess strains of Lactobacillus, Lactococcus, Pediococcus and Bifidobacterium for their ability to produce the health-promoting fatty acid conjugated linoleic acid (CLA) from free linoleic acid. METHODS AND RESULTS: In this study, strains of Lactobacillus, Lactococcus, Pediococcus and Bifidobacterium were grown in medium containing free linoleic acid. Growth of the bacteria in linoleic acid and conversion of the linoleic acid to CLA was assessed. Of the bacteria assessed, nine strains of Bifidobacterium produced the c9, t11 CLA isomer from free linoleic acid. The t9, t11 CLA isomer was also produced by some strains, but at much lower concentrations. CONCLUSIONS: The production of CLA by bifidobacteria exhibited considerable interspecies variation. Bifidobacterium breve and B. dentium were the most efficient CLA producers among the range of strains tested, with B. breve converting up to 65% linoleic acid to c9, t11 CLA when grown in 0.55 mg ml(-1) linoleic acid. Strains also varied considerably with respect to their sensitivity to linoleic acid. SIGNIFICANCE AND IMPACT OF THE STUDY: The production of CLA by probiotic bifidobacteria offers a possible mechanism for some health-enhancing properties of bifidobacteria and provides novel opportunities for the development of functional foods.  相似文献   

12.
13.
14.
The bioconversion of linoleic acid (LA) to conjugated linoleic acid (CLA) was investigated to examine LA-adaptation ofBifidobacterium breve KCTC 3461 to additions of 1 to 5 mg/mL of LA overtime. To induce LA-adaptation,B. breve KCTC 3461 was treated with LA, according to three schemes. For LA-adaptedB. breve the maximum concentration of CLA, 300–350 μg/mL, was obtained in cys-MRS medium containing 1 mg/mL of LA. The CLA production significantly increased with increasing LA concentration, from 1 to 4 mg/mL, but the conversion of LA to CLA gradually decreased. The CLA production capability ofB. breve, and its tolerance, improved significantly with LA-adaptation. The addition of LA (1 mg/mL) into the culture broth after 24 h of cultivation in a 100-mL media bottle was most effective at promoting CLA production. In a 2.5-L stirred-tank bioreactor, the observed conversion and productivity of 56.6% and 35.4 μgml−1h−1, respectively, by LA-adaptedB. breve were approximately 6.6 and 9.8 times higher than those of LA-unadaptedB. breve.  相似文献   

15.
Conjugated linoleic acids (CLA) are a family of polyunsaturated fatty acids (PUFA), some isomers occurring naturally in beef and dairy products and others being formed as a result of bihydrogenation of vegetable oils to form margarine. Synthetic and natural sources of CLA may have beneficial effects in a range of inflammatory conditions including colitis, atherosclerosis, metabolic syndrome and rheumatoid arthritis. Most of the biological effects have been attributed to the cis9, trans11- (c9, t11-) and the trans10, cis12- (t10, c12-) isomers. Evidence suggests that c9, t11-CLA is responsible for the anti-inflammatory effect attributed to CLA while t10, t12-CLA appears to be responsible for anti-adipogenic effects. This review will focus on the effects of CLA on the inflammatory components associated with insulin resistance, atherosclerosis and Th1 mediated inflammatory disease, at a cellular, systemic and clinical level. Whist CLA may ameliorate certain aspects of the inflammatory response, particularly within cellular and animal models, the relevance of this has yet to be clarified within the context of human health.  相似文献   

16.
Conjugated linolenic acids (CLN) refer to a group of octadecatrienoic acids with three conjugated double bonds. Minor positional and geometrical differences among CLN isomers make their separation and identification difficult. We have used GC-MS and NMR to study three common CLN isomers namely alpha-eleostearic acid, beta-eleostearic acid and punicic acid, finding that some signals of olefinic carbon atoms in NMR spectra were mistakenly assigned in the literature. The present study was therefore undertaken to re-characterize the location of CC double bonds and assign the chemical signals of proton and carbon atoms using (1)H NMR, (13)C NMR, (1)H-(1)H two-dimensional correlation spectra ((1)H-(1)H COSY) and (13)C-(1)H two-dimensional correlation spectra ((13)C-(1)H COSY). The geometrical structure of double bonds in these three CLN isomers was identified using homonuclear decoupling technique.  相似文献   

17.
共轭亚油酸(Conjugated linoleic acid,CLA)具有抗癌、抗动脉粥样硬化、减肥和免疫调节等生理活性。共轭亚油酸可以通过酶法异构化获得,将底物亚油酸异构形成具有生物活性物质-共轭亚油酸的异构酶称为亚油酸异构酶。因此,通过介绍亚油酸异构酶的来源、作用机制、酶学性质和基因工程菌生产等方面的研究进展,结合不断发展的基因工程技术,旨在提高亚油酸异构酶的活性、产量和异构化效率,以扩大反应底物范围,降低生产成本,从而推进共轭亚油酸的规模化、可持续性的工业生产。  相似文献   

18.
We previously demonstrated that trans-10, cis-12 conjugated linoleic acid (CLA) reduced the triglyceride content of human adipocytes by activating mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK) signaling via interleukins (IL) 6 and 8. However, the upstream mechanism is unknown. Here we show that CLA increased (>or=6 h) the secretion of IL-6 and IL-8 in cultures containing both differentiated adipocytes and stromal vascular (SV) cells, non-differentiated SV cells, and adipose tissue explants. CLA isomer-specific induction of IL-6 and tumor necrosis factor-alpha was associated with the activation of nuclear factor kappaB (NFkappaB) as evidenced by 1) phosphorylation of IkappaBalpha, IkappaBalpha kinase, and NFkappaB p65, 2) IkappaBalpha degradation, and 3) nuclear translocation of NFkappaB. Pretreatment with selective NFkappaB inhibitors and the MEK/ERK inhibitor U0126 blocked CLA-mediated IL-6 gene expression. Trans-10, cis-12 CLA suppression of insulin-stimulated glucose uptake at 24 h was associated with decreased total and plasma membrane glucose transporter 4 proteins. Inhibition of NFkappaB activation or depletion of NFkappaB by RNA interference using small interfering NFkappaB p65 attenuated CLA suppression of glucose transporter 4 and peroxisome proliferator-activated receptor gamma proteins and glucose uptake. Collectively, these data demonstrate for the first time that trans-10, cis-12 CLA promotes NFkappaB activation and subsequent induction of IL-6, which are at least in part responsible for trans-10, cis-12 CLA-mediated suppression of peroxisome proliferator-activated receptor gamma target gene expression and insulin sensitivity in mature human adipocytes.  相似文献   

19.
本实验旨在研究透性化嗜酸乳杆菌细胞生物转化共轭亚油酸的反应动力学。探讨了细胞浓度、底物浓度、反应体系pH值和温度等因素对生物转化共轭亚油酸反应速度的影响;建立了透性化嗜酸乳杆菌细胞生物转化共轭亚油酸的动力学模型。结果表明,透性化嗜酸乳杆菌细胞有利于共轭亚油酸的生物转化,最适细胞浓度、pH值和反应温度分别为10×1010ufc/mL、4.5和45℃;生物转化共轭亚油酸存在底物抑制现象,当亚油酸的浓度为0.6mg/mL时,反应速度达到最大值17.8μg/(mL·min)。在低亚油酸浓度下,反应初始阶段的反应规律与经典米氏方程相符,而在高亚油酸浓度下,存在底物抑制现象。在最适反应条件下建立了动力学模型,模型基本反映了共轭亚油酸的生物转化特性。  相似文献   

20.
The microbiological isomerization of linoleic acid (LA) to conjugated linoleic acid (CLA) was studied in resting cell suspensions of a propionibacterium and micellar LA to identify factors critical in the isomerization efficiency. These suspensions, containing cells 5x10(10) colony-forming units ml(-1) and 510 micro g LA ml(-1), isomerized about 90% of LA to CLA. However, the yield was not improved with higher amounts of micellar LA, suggesting that the cells had a fixed capacity to carry out the isomerization. This was explained by the fact that the CLA formed had a tendency to accumulate in the cell mass rather than in the aqueous micellar phase during the isomerization. Concomitantly, cell viability and isomerization rates were gradually reduced. Upon cessation of the reaction, about 46% of all the CLA formed was in the cell material. This accumulation to the cells was prevented by adding the detergent in excess to that required for micellization of LA. Then the cells remained viable, but the rate of isomerization was drastically lowered, due to impaired availability of LA from the fortified micellar phase to the cells. It was concluded that the phase distribution of substrate and product plays a critical role in the microbiological production of CLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号