首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inhibition of protein kinases has gained general acceptance as an effective approach to treat a wide range of cancers. However, in many cases, prolonged administration of kinase inhibitors often leads to acquired resistance, and the therapeutic effect is subsequently diminished. The wealth of recent studies using biochemical, kinetic, and structural approaches have revealed the molecular basis for the clinically observed resistance. In this review, we highlight several of the most common molecular mechanisms that lead to acquired resistance to kinase inhibitors observed with the cAbl (cellular form of the Abelson leukemia virus tyrosine kinase) and the type III receptor tyrosine kinase cKit, including a newly identified mechanism resulting from accelerated kinase activation caused by mutations in the activation loop. Strategies to overcome the loss of drug sensitivity that represents a challenge currently facing the field and the emerging approaches to circumvent resistance are discussed.  相似文献   

2.
Waterman H  Yarden Y 《FEBS letters》2001,490(3):142-152
The major process that regulates the amplitude and kinetics of signal transduction by tyrosine kinase receptors is endocytic removal of active ligand–receptor complexes from the cell surface, and their subsequent sorting to degradation or to recycling. Using the ErbB family of receptor tyrosine kinases we exemplify the diversity of the down regulation process, and concentrate on two sorting steps whose molecular details are emerging. These are the Eps15-mediated sorting to clathrin-coated regions of the plasma membrane and the c-Cbl-mediated targeting of receptors to lysosomal degradation. Like in yeast cells, sorting involves not only protein phosphorylation but also conjugation of ubiquitin molecules. The involvement of other molecules is reviewed and recent observations that challenge the negative regulatory role of endocytosis are described. Finally, we discuss the relevance of receptor down regulation to cancer therapy.  相似文献   

3.
Molecular mechanisms of drug resistance.   总被引:10,自引:0,他引:10       下载免费PDF全文
  相似文献   

4.
5.
Chemotherapy is the main strategy for the treatment of cancer. However, the main problem limiting the success of chemotherapy is the development of multidrug resistance. The resistance can be intrinsic or acquired. The resistance phenotype is associated with the tumor cells that gain a cross-resistance to a large range of drugs that are structurally and functionally different. Multidrug resistance arises via many unrelated mechanisms, such as overexpression of energy-dependent efflux proteins, decrease in uptake of the agents, increase or alteration in drug targets, modification of cell cycle checkpoints, inactivation of the agents, compartmentalization of the agents, inhibition of apoptosis and aberrant bioactive sphingolipid metabolism. Exact elucidation of resistance mechanisms and molecular and biochemical approaches to overcome multidrug resistance have been a major goal in cancer research. This review comprises the mechanisms guiding multidrug resistance in cancer chemotherapy and also touches on approaches for reversing the resistance.  相似文献   

6.
7.
8.
Receptor tyrosine kinases: mechanisms of activation and signaling   总被引:11,自引:0,他引:11  
Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication. These single-pass transmembrane receptors, which bind polypeptide ligands - mainly growth factors - play key roles in processes such as cellular growth, differentiation, metabolism and motility. Recent progress has been achieved towards an understanding of the precise (and varied) mechanisms by which RTKs are activated by ligand binding and by which signals are propagated from the activated receptors to downstream targets in the cell.  相似文献   

9.
As the post-genome era is approaching, with vast amount of sequence information available and new technology developed, scientists are presented with opportunities to explore in simple analysis the structure and expression pattern of not just a single gene, but of an entire family of genes, if not the entire genome. The concept of molecular profiling or expression array has thus emerged. The need to simultaneously see all genes in the same family is obvious under the precept of the combinatorial process being an underlying principle of complex biological systems: no gene exists in isolation, for virtually every molecule participates in intermolecular interactions. The activation of receptor tyrosine kinases through homo or hetero-dimerization is the prototypic example. In this review, a tyrosine kinase profile technique and its application to studying the expression of tyrosine kinases and the identification of novel kinases will be discussed. This serves as an introduction to the several interesting papers published in this special kinase issue of theJournal of Biomedical Sciences, using this technique. A new simplified approach, kinase display, which is an extension of the profiling method and requires only restriction digestion and gel analysis will also be introduced.  相似文献   

10.
The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability.  相似文献   

11.
Vancomycin and related glycopeptides are drugs of last resort for the treatment of severe infections caused by Gram‐positive bacteria such as Enterococcus species, Staphylococcus aureus, and Clostridium difficile. Vancomycin was long considered immune to resistance due to its bactericidal activity based on binding to the bacterial cell envelope rather than to a protein target as is the case for most antibiotics. However, two types of complex resistance mechanisms, each comprised of a multi‐enzyme pathway, emerged and are now widely disseminated in pathogenic species, thus threatening the clinical efficiency of vancomycin. Vancomycin forms an intricate network of hydrogen bonds with the d ‐Ala‐d ‐Ala region of Lipid II, interfering with the peptidoglycan layer maturation process. Resistance to vancomycin involves degradation of this natural precursor and its replacement with d ‐Ala‐d ‐lac or d ‐Ala‐d ‐Ser alternatives to which vancomycin has low affinity. Through extensive research over 30 years after the initial discovery of vancomycin resistance, remarkable progress has been made in molecular understanding of the enzymatic cascades responsible. Progress has been driven by structural studies of the key components of the resistance mechanisms which provided important molecular understanding such as, for example, the ability of this cascade to discriminate between vancomycin sensitive and resistant peptidoglycan precursors. Important structural insights have been also made into the molecular evolution of vancomycin resistance enzymes. Altogether this molecular data can accelerate inhibitor discovery and optimization efforts to reverse vancomycin resistance. Here, we overview our current understanding of this complex resistance mechanism with a focus on the structural and molecular aspects.  相似文献   

12.
13.
《Trends in microbiology》2002,10(10):s8-s14
Microorganisms and viruses have developed numerous resistance mechanisms that enable them to evade the effect of antimicrobials and antivirals. As a result, many have become resistant to almost every available means of treatment. This problem, although not new, is becoming increasingly acute and it is now clear that a fundamental understanding of the mechanisms that microbes and viruses deploy in the development of resistance is essential if we are to gain new insights into ways to combat this problem.  相似文献   

14.
15.
达托霉素耐药分子机制研究进展   总被引:1,自引:0,他引:1  
环脂肽抗生素达托霉素抗菌活性强,致病菌不容易产生耐药性,已成为治疗革兰氏阳性菌特别是耐药菌感染的一线药物。但由于广泛使用,仍然出现了达托霉素耐药菌。细胞膜磷脂代谢和细胞壁结构动态与致病菌达托霉素耐药密切相关。文中综述了达托霉素作用机制和耐药机制,以期对药物研发和临床用药有所裨益。  相似文献   

16.
Molecular mechanisms of azole resistance in fungi   总被引:11,自引:0,他引:11  
  相似文献   

17.
18.
Epidermal growth factor receptors (ErbB1-4) are oncogenic receptor tyrosine kinases (RTKs) that regulate diverse cellular processes. In this study, we combine measurement and mathematical modeling to quantify phospho-turnover at ErbB receptors in human cells and to determine the consequences for signaling and drug binding. We find that phosphotyrosine residues on ErbB1 have half-lives of a few seconds and therefore turn over 100-1000 times in the course of a typical immediate-early response to ligand. Rapid phospho-turnover is also observed for EGF-activated ErbB2 and ErbB3, unrelated RTKs, and multiple intracellular adaptor proteins and signaling kinases. Thus, the complexes formed on the cytoplasmic tail of active receptors and the downstream signaling kinases they control are highly dynamic and antagonized by potent phosphatases. We develop a kinetic scheme for binding of anti-ErbB1 drugs to receptors and show that rapid phospho-turnover significantly impacts their mechanisms of action.  相似文献   

19.
20.
Molecular mechanisms of antibacterial multidrug resistance   总被引:16,自引:0,他引:16  
Alekshun MN  Levy SB 《Cell》2007,128(6):1037-1050
Treatment of infections is compromised worldwide by the emergence of bacteria that are resistant to multiple antibiotics. Although classically attributed to chromosomal mutations, resistance is most commonly associated with extrachromosomal elements acquired from other bacteria in the environment. These include different types of mobile DNA segments, such as plasmids, transposons, and integrons. However, intrinsic mechanisms not commonly specified by mobile elements-such as efflux pumps that expel multiple kinds of antibiotics-are now recognized as major contributors to multidrug resistance in bacteria. Once established, multidrug-resistant organisms persist and spread worldwide, causing clinical failures in the treatment of infections and public health crises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号