首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Projection neurons in the developing cerebral cortex of rodents are basically born near the ventricle and migrate radially to beneath the marginal zone, whereas their cortical interneurons are generated in the ventral telencephalon and migrate tangentially to the cortex. The origins and migratory profiles of each interneuron subtype have been studied extensively in the last decade, and an enormous effort has been made to clarify the cellular and molecular mechanisms that regulate interneuron migration. More recently, the interaction between projection neurons and migrating interneurons, including how they are incorporated into their proper layers, has begun to be analyzed. In this review, I outline the most recent findings in regard to these issues and discuss the mechanisms underlying the development of cortical cytoarchitecture.  相似文献   

2.
3.
Minhan Ka  Amanda L. Smith 《Autophagy》2017,13(8):1348-1363
Interneuron progenitors in the ganglionic eminence of the ventral telencephalon generate most cortical interneurons during brain development. However, the regulatory mechanism of interneuron progenitors remains poorly understood. Here, we show that MTOR (mechanistic target of rapamycin [serine/threonine kinase]) regulates proliferation and macroautophagy/autophagy of interneuron progenitors in the developing ventral telencephalon. To investigate the role of MTOR in interneuron progenitors, we conditionally deleted the Mtor gene in mouse interneuron progenitors and their progeny by using Tg(mI56i-cre,EGFP)1Kc/Dlx5/6-Cre-IRES-EGFP and Nkx2–1-Cre drivers. We found that Mtor deletion markedly reduced the number of interneurons in the cerebral cortex. However, relative positioning of cortical interneurons was normal, suggesting that disruption of progenitor self-renewal caused the decreased number of cortical interneurons in the Mtor-deleted brain. Indeed, Mtor-deleted interneuron progenitors showed abnormal proliferation and cell cycle progression. Additionally, we detected a significant activation of autophagy in Mtor-deleted brain. Our findings suggest that MTOR plays a critical role in the regulation of cortical interneuron number and autophagy in the developing brain.  相似文献   

4.
5.
GABAergic interneurons influence the development and function of the cerebral cortex through the actions of a variety of subtypes. Despite the relevance to cortical function and dysfunction, including seizure disorders and neuropsychiatric illnesses, the molecular determinants of interneuron fate remain largely unidentified. Challenges to this endeavor include the difficulty of studying fate determination of cells that even in rodents do not fully mature until weeks after their embryonic birth. However, in recent years a strong literature has grown on the temporal and spatial origins of distinct interneuron groups and types. Here we seek to highlight these findings, particularly in mice. Our goal is to lay the groundwork for future studies that use mouse genetics to study cortical interneuron fate determination and function.  相似文献   

6.
The cerebral cortex is composed of a large variety of different neuron types. All cortical neurons, except some interneurons, are born in two proliferative zones, the cortical ventricular (VZ) and subventricular (SVZ) zones. The relative contribution of both proliferative zones to the generation of the diversity of the cortical neurons is not well understood. To further dissect the underlying mechanism, molecular markers specific for the SVZ are required. Towards this end we performed a subtraction of cDNA libraries, generated from E15.5 and E18.5 mouse cerebral cortex. A novel cDNA, Svet1, was cloned which was specifically expressed in the proliferating cells of the SVZ but not the VZ. The VZ is marked by the expression of the Otx1 gene. Later in development, Svet1 and Otx1 were expressed in subsets of cells of upper (II-IV) and deep (V-VI) layers, respectively. In the reeler cortex, where the layers are inverted, Svet1 and Otx1 label precursors of the upper and deeper layers, respectively, in their new location. Interestingly, in the Pax6/small eye mutant, Svet1 activity was abolished in the SVZ and in the upper part of the cortical plate while the Otx1 expression domain remained unchanged. Therefore, using Svet1 and Otx1 as cell-type-specific molecular markers for the upper and deep cortical layers we conclude that the Sey mutation affects predominantly the differentiation of the SVZ cells that fail to migrate into the cortical plate. The abnormality of the SVZ coincides with the absence of upper layer cells in the cortex. Taken together our data suggest that while the specification of deep cortical layers occurs in the ventricular zone, the SVZ is important for the proper specification of upper layers.  相似文献   

7.
Interneurons of the cerebral cortex represent a heterogeneous population of cells with important roles in network function. At present, little is known about how these neurons are specified in the developing telencephalon. To explore whether this diversity is established in the early progenitor populations, we conducted in utero fate-mapping of the mouse medial and caudal ganglionic eminences (MGE and CGE, respectively), from which most cortical interneurons arise. Mature interneuron subtypes were assessed by electrophysiological and immunological analysis, as well as by morphological reconstruction. At E13.5, the MGE gives rise to fast-spiking (FS) interneurons, whereas the CGE generates predominantly regular-spiking interneurons (RSNP). Later at E15.5, the CGE produces RSNP classes distinct from those generated from the E13.5 CGE. Thus, we provide evidence that the spatial and temporal origin of interneuron precursors in the developing telencephalic eminences predicts the intrinsic physiological properties of mature interneurons.  相似文献   

8.
9.
Fate determination in the mammalian forebrain, where mature phenotypes are often not achieved until postnatal stages of development, has been an elusive topic of study despite its relevance to neuropsychiatric disease. In the ventral telencephalon, major subgroups of cerebral cortical interneurons originate in the medial ganglionic eminence (MGE), where the signaling molecule sonic hedgehog (Shh) continues to be expressed during the period of neuronogenesis. To examine whether Shh regulates cortical interneuron specification, we studied mice harboring conditional mutations in Shh within the neural tube. At embryonic day 12.5, NestinCre:Shh(Fl/Fl) mutants have a relatively normal index of S-phase cells in the MGE, but many of these cells do not co-express the interneuron fate-determining gene Nkx2.1. This effect is reproduced by inhibiting Shh signaling in slice cultures, and the effect can be rescued in NestinCre:Shh(Fl/Fl) slices by the addition of exogenous Shh. By culturing MGE progenitors on a cortical feeder layer, cell fate analyses suggest that Shh signaling maintains Nkx2.1 expression and cortical interneuron fate determination by MGE progenitors. These results are corroborated by the examination of NestinCre:Shh(Fl/Fl) cortex at postnatal day 12, in which there is a dramatic reduction in cell profiles that express somatostatin or parvalbumin. By contrast, analyses of Dlx5/6Cre:Smoothened(Fl/Fl) mutant mice suggest that cell-autonomous hedgehog signaling is not crucial to the migration or differentiation of most cortical interneurons. These results combine in vitro and ex vivo analyses to link embryonic abnormalities in Shh signaling to postnatal alterations in cortical interneuron composition.  相似文献   

10.
The Kv1.3 protein is a member of the large family of voltage‐dependent K+ subunits (Kv channels), which assemble to form tetrameric membrane‐spanning channels that provide a selective pore for the conductance of K+ across the cell membrane. Kv1.3 differs from most other Kv channels in that deletion of Kv1.3 gene produces very striking changes in development and structure of the olfactory bulb, where Kv1.3 is expressed at high levels, resulting in a lower threshold for detection of odors, an increased number of synaptic glomeruli and alterations in the levels of a variety of neuronal signaling molecules. Because Kv1.3 is also expressed in the cerebral cortex, we have now examined the effects of deletion of the Kv1.3 gene on the expression of interneuron populations of the cerebral cortex. Using unbiased stereology we found an increase in the number of parvalbumin (PV) cells in whole cerebral cortex of Kv1.3?/? mice relative to that in wild‐type mice, and a decrease in the number of calbindin (CB), calretinin (CR), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and somatostatin (SOM) interneurons. These changes are accompanied by a decrease in the cortical volume such that the cell density of PV interneurons is significantly increased and that of SOM neurons is decreased in Kv1.3?/? animals. Our studies suggest that, as in the olfactory bulb, Kv1.3 plays a unique role in neuronal differentiation and/or survival of interneuron populations and that expression of Kv1.3 is required for normal cortical function. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73:841–855, 2013  相似文献   

11.
Most GABAergic interneurons originate from the basal forebrain and migrate tangentially into the cortex. The migratory pathways and mode of interneuron migration within the developing cerebral cortex, however, previously was largely unknown. Time-lapse imaging and in vivo labelling with glutamate decarboxylase (GAD)67-green fluorescence protein (GFP) knock-in embryonic mice with expression of GFP in gamma-aminobutyric acid (GABA)ergic neurons indicated that multidirectional tangential (MDT) migration of interneurons takes place in both the marginal zone (MZ) and the ventricular zone (VZ) of the cortex. Quantitative analysis of migrating interneurons showed that rostrocaudally migrating neurons outnumber those migrating mediolaterally in both of these zones. In vivo labelling with a lipophilic dye showed that the MDT migration in the MZ occurs throughout the cortex over distances of up to 3 mm during a period of a few days. These results indicate that MZ cortical interneurons undergo a second phase of tangential migration in all directions and over long distances, after reaching the cortex by dorsomedial tangential migration. The MDT migration in the MZ may disperse and intermix interneurons within the cortex, resulting in a balanced distribution of interneuron subtypes.  相似文献   

12.
In the embryonic neocortex, neuronal precursors are generated in the ventricular zone (VZ) and accumulate in the cortical plate. Recently, the subventricular zone (SVZ) of the embryonic neocortex was recognized as an additional neurogenic site for both principal excitatory neurons and GABAergic inhibitory neurons. To gain insight into the neurogenesis of GABAergic neurons in the SVZ, we investigated the characteristics of intermediate progenitors of GABAergic neurons (IPGNs) in mouse neocortex by immunohistochemistry, immunocytochemistry, single-cell RT-PCR and single-cell array analysis. IPGNs were identified by their expression of some neuronal and cell cycle markers. Moreover, we investigated the origins of the neocortical IPGNs by Cre-loxP fate mapping in transgenic mice and the transduction of part of the telencephalic VZ by Cre-reporter plasmids, and found them in the medial and lateral ganglionic eminence. Therefore, they must migrate tangentially within the telencephalon to reach the neocortex. Cell-lineage analysis by simple-retrovirus transduction revealed that the neocortical IPGNs self-renew and give rise to a small number of neocortical GABAergic neurons and to a large number of granule and periglomerular cells in the olfactory bulb. IPGNs are maintained in the neocortex and may act as progenitors for adult neurogenesis.  相似文献   

13.
14.
Radial Glia (RG) cells constitute the major population of neural progenitors of the mouse developing brain. These cells are located in the ventricular zone (VZ) of the cerebral cortex and during neurogenesis they support the generation of cortical neurons. Later on, during brain maturation, RG cells give raise to glial cells and supply the adult mouse brain of Neural Stem Cells (NSC). Here we used a novel transgenic mouse line expressing the CreER(T2) under the control of AspM promoter to monitor the progeny of an early cohort of RG cells during neurogenesis and in the post natal brain. Long term fate mapping experiments demonstrated that AspM-expressing RG cells are multi-potent, as they can generate neurons, astrocytes and oligodendrocytes of the adult mouse brain. Furthermore, AspM descendants give also rise to proliferating progenitors in germinal niches of both developing and post natal brains. In the latter--i.e. the Sub Ventricular Zone--AspM descendants acquired several feature of neural stem cells, including the capability to generate neurospheres in vitro. We also performed the selective killing of these early progenitors by using a Nestin-GFP(flox)-TK allele. The forebrain specific loss of early AspM expressing cells caused the elimination of most of the proliferating cells of brain, a severe derangement of the ventricular zone architecture, and the impairment of the cortical lamination. We further demonstrated that AspM is expressed by proliferating cells of the adult mouse SVZ that can generate neuroblasts fated to become olfactory bulb neurons.  相似文献   

15.
16.
The size of brain regions depends on the balance between proliferation and differentiation. During development of the mouse cerebral cortex, ventricular zone (VZ) progenitors, neuroepithelial and radial glial cells, enlarge the progenitor pool by proliferative divisions, while basal progenitors located in the subventricular zone (SVZ) mostly divide in a differentiative mode generating two neurons. These differences correlate to the existence of an apico-basal polarity in VZ, but not SVZ, progenitors. Only VZ progenitors possess an apical membrane domain at which proteins of the Par complex are strongly enriched. We describe a prominent decrease in the amount of Par-complex proteins at the apical surface during cortical development and examine the role of these proteins by gain- and loss-of-function experiments. Par3 (Pard3) loss-of-function led to premature cell cycle exit, reflected in reduced clone size in vitro and the restriction of the progeny to the lower cortical layers in vivo. By contrast, Par3 or Par6 (Pard6alpha) overexpression promoted the generation of Pax6+ self-renewing progenitors in vitro and in vivo and increased the clonal progeny of single progenitors in vitro. Time-lapse video microscopy revealed that a change in the mode of cell division, rather than an alteration of the cell cycle length, causes the Par-complex-mediated increase in progenitors. Taken together, our data demonstrate a key role for the apically located Par-complex proteins in promoting self-renewing progenitor cell divisions at the expense of neurogenic differentiation in the developing cerebral cortex.  相似文献   

17.
Distinct cortical migrations from the medial and lateral ganglionic eminences   总被引:39,自引:0,他引:39  
Recent evidence suggests that projection neurons and interneurons of the cerebral cortex are generally derived from distinct proliferative zones. Cortical projection neurons originate from the cortical ventricular zone (VZ), and then migrate radially into the cortical mantle, whereas most cortical interneurons originate from the basal telencephalon and migrate tangentially into the developing cortex. Previous studies using methods that label both proliferative and postmitotic cells have found that cortical interneurons migrate from two major subdivisions of the developing basal telencephalon: the medial and lateral ganglionic eminences (MGE and LGE). Since these studies labeled cells by methods that do not distinguish between the proliferating cells and those that may have originated elsewhere, we have studied the contribution of the MGE and LGE to cortical interneurons using fate mapping and genetic methods. Transplantation of BrdU-labeled MGE or LGE neuroepithelium into the basal telencephalon of unlabeled telencephalic slices enabled us to follow the fate of neurons derived from each of these primordia. We have determined that early in neurogenesis GABA-expressing cells from the MGE tangentially migrate into the cerebral cortex, primarily via the intermediate zone, whereas cells from the LGE do not. Later in neurogenesis, LGE-derived cells also migrate into the cortex, although this migration occurs primarily through the subventricular zone. Some of these LGE-derived cells invade the cortical plate and express GABA, while others remain within the cortical proliferative zone and appear to become mitotically active late in gestation. In addition, by comparing the phenotypes of mouse mutants with differential effects on MGE and LGE migration, we provide evidence that the MGE and LGE may give rise to different subtypes of cortical interneurons.  相似文献   

18.
Y Shi  P Kirwan  FJ Livesey 《Nature protocols》2012,7(10):1836-1846
Efficient derivation of human cerebral neocortical neural stem cells (NSCs) and functional neurons from pluripotent stem cells (PSCs) facilitates functional studies of human cerebral cortex development, disease modeling and drug discovery. Here we provide a detailed protocol for directing the differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) to all classes of cortical projection neurons. We demonstrate an 80-d, three-stage process that recapitulates cortical development, in which human PSCs (hPSCs) first differentiate to cortical stem and progenitor cells that then generate cortical projection neurons in a stereotypical temporal order before maturing to actively fire action potentials, undergo synaptogenesis and form neural circuits in vitro. Methods to characterize cortical neuron identity and synapse formation are described.  相似文献   

19.
An understanding of the diversity of cortical GABAergic interneurons is critical to understand the function of the cerebral cortex. Recent data suggest that neurons expressing three markers, the Ca2+-binding protein parvalbumin (PV), the neuropeptide somatostatin (SST), and the ionotropic serotonin receptor 5HT3a (5HT3aR) account for nearly 100% of neocortical interneurons. Interneurons expressing each of these markers have a different embryological origin. Each group includes several types of interneurons that differ in morphological and electrophysiological properties and likely have different functions in the cortical circuit. The PV group accounts for ~40% of GABAergic neurons and includes fast spiking basket cells and chandelier cells. The SST group, which represents ~30% of GABAergic neurons, includes the Martinotti cells and a set of neurons that specifically target layerIV. The 5HT3aR group, which also accounts for ~30% of the total interneuronal population, is heterogeneous and includes all of the neurons that express the neuropeptide VIP, as well as an equally numerous subgroup of neurons that do not express VIP and includes neurogliaform cells. The universal modulation of these neurons by serotonin and acetylcholine via ionotropic receptors suggests that they might be involved in shaping cortical circuits during specific brain states and behavioral contexts.  相似文献   

20.
If the classical functional attribute of cortical GABAergic interneurons is to mediate synaptic inhibition in the adult cortex, it is becoming evident that their major task is instead to shape the spatio-temporal dynamics of the network oscillations that support most brain functions. This complex function involves a division of labour between morpho-physiologically diverse interneuron subtypes. Both the central network function and the bewildering heterogeneity of the interneuron population are especially emphasized during cortical development: at early postnatal stages, a single GABAergic neuron can efficiently pace the activity of hundreds of other cells, whereas some interneuron subtypes are still poorly developed. Given the role of coherent activity in brain development, this confers to GABAergic interneurons a major role in the proper maturation of cortical networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号