首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This research was conducted to study the genetic variation among eighteen genotypes of sesame (Sesamum indicum L.) collected from various agro-climatic regions of Iran along with six exotic genotypes from the Asian countries using both agro-morphological and ISSR marker traits. The results showed significant differences among genotypes for all agro-morphological traits and a relatively high genetic coefficient of variation observed for number of fruiting branches per plant, capsules per plant, plant height and seed yield per plant. Cluster analysis based on these traits grouped the genotypes into five separate clusters. Larger interthan intra cluster distances implies the presence of higher genetic variability between the genotypes of different groups. Genotypes of two clusters with a good amount of genetic divergence and desirable agronomic traits were detected as promising genotypes for hybridization programs. The 13 ISSR primers chosen for molecular analysis revealed 170 bands, of which 130 (76.47%) were polymorphic. The generated dendrogram based on ISSR profiles divided the genotypes into seven groups. A principal coordinate analysis confirmed the results of clustering. The agro-morphological traits and ISSR markers reflected different aspects of genetic variation among the genotypes as revealed by a non significant cophenetic correlation in the Mantel test. Therefore the complementary application of both types of information is recommended to maximize the efficiency of sesame breeding programs. The discordance among diversity patterns and geographical distribution of genotypes found in this investigation implies that the parental lines for hybridization should be selected based on genetic diversity rather than the geographical distribution.  相似文献   

2.
The purpose of this study was to comparatively analyze the genetic diversity of sesame (Sesamum indicum L.) using agro-morphological and molecular markers. Twelve sesame populations collected from three regions in Cambodia and Vietnam were used in this study. A high genetic variation was revealed both by agro-morphological and RAPD markers within and among the 12 sesame populations. The range of agro-morphological trait based average taxonomic distance among populations (0.02 to 0.47) was wider than that of RAPD based genetic distance (0.06 to 0.27). The mean distance revealed by agro-morphological markers (0.23) and RAPD markers (0.22) was similar. RAPD based analysis revealed a relatively higher genetic diversity in populations from South Vietnam as compared to the other two regions. Interestingly, populations from this region also had higher values for yield related traits such as number of capsules per plant, number of seeds per capsule, and seed yield per plant suggesting positive correlation between the extent of genetic variation within population and yield related traits in sesame. A highly significant positive correlation (r = 0.88, P < 0.001) was found between agro-morphological and RAPD markers in estimating the genetic distance between populations. Both methods suggested the existence of a substantial amount of genetic diversity both in the Vietnamese and Cambodian populations. Although both agro-morphological and RAPD markers were found to be useful in genetic diversity analysis in sesame, their combined use would give superior results.  相似文献   

3.
The genetic diversity of 39 garlic accessions was investigated using eight simple sequence repeat (SSR) primer combinations and 17 inter-simple sequence repeat (ISSR) primer combinations. A total of 109 polymorphic loci were detected among these accessions, with an average of 4.63 polymorphic loci per SSR primer combination and 4.29 polymorphic loci per ISSR primer combination. The mean effective number of alleles, the mean Nei's genetic diversity, and the mean Shannon's information index for SSR were 1.4799, 0.2870, and 0.4378, respectively; and those for ISSR were 1.4847, 0.2898 and 0.4415, respectively. Cluster analysis, using the unweighted pair-group method with arithmetic averages (UPGMA) based on the allele frequency data, classified the accessions into three groups. The results of principal component analysis (PCA) were consistent with those of the cluster analysis. PCA showed that each of these three groups exhibited significant variation in agro-morphological traits. These findings suggest that the eight SSR and 17 ISSR primers identified could define valuable markers for genetic diversity for use by plant breeders.  相似文献   

4.
Morphological traits and three molecular markers techniques: start codon targeted (SCoT), inter-simple sequence repeat (ISSR) and directly amplified minisatellite DNA (DAMD) markers were compared for fingerprinting of 40 landraces chickpea genotypes collected from different geographical locations of north-west of Iran. Variance analysis of ten measured morphological traits showed significant differences existed between genotypes. Cluster analysis based on morphological traits, divided genotypes in three distinct clusters. Average polymorphism information content (PIC) for ISSR, DAMD and SCoT markers was 0.216, 0.232 and 0.232, respectively, and this revealed that SCoT markers were more informative, followed by ISSRs marker, than other markers for the assessment of diversity amongst genotypes. Cluster analysis for three different molecular types revealed that genotypes taken for the analysis can be divided in three and four distinct clusters. Accessions from same geographical regions mostly showed more genetic similarities than those from origins far isolated apart. These results suggest that efficiency of SCOT, DAMD and ISSR markers was relatively the same in fingerprinting of genotypes but SCOT and DAMD analysis are more effective in fingerprinting of chickpea genotypes. To our knowledge, this is the first detailed report of a comparison of performance among two targeted DNA region molecular markers (SCoT and DAMD) and the ISSR technique on a set of samples of chickpea. Overall, our results indicate that SCOT, ISSR and DAMD fingerprinting could be used to detect polymorphism for genotypes of chickpea.  相似文献   

5.
Assefa K  Merker A  Tefera H 《Hereditas》2003,139(3):174-183
The DNA polymorphism among 92 selected tef genotypes belonging to eight origin groups was assessed using eight inter simple sequence repeat (ISSR) primers. The objectives were to examine the possibility of using ISSR markers for unravelling genetic diversity in tef, and to assess the extent and pattern of genetic diversity in the test germplasm with respect to origin groups. The eight primers were able to separate or distinguish all of the 92 tef genotypes based on a total of 110 polymorphic bands among the test lines. The Jaccard similarity coefficient among the test genotypes ranged from 0.26 to 0.86, and at about 60 % similarity level the clustering of this matrix using the unweighted pair-group method based on arithmetic average (UPGMA) resulted in the formation of six major clusters of 2 to 37 lines with further eight lines remaining ungrouped. The standardized Nei genetic distance among the eight groups of origin ranged between 0.03 and 0.32. The UPGMA clustering using the standardized genetic distance matrix resulted in the identification of three clusters of the eight groups of origin with bootstrap values ranging from 56 to 97. The overall mean Shannon Weaver diversity index of the test lines was 0.73, indicating better resolution of genetic diversity in tef with ISSR markers than with phenotypic (morphological) traits used in previous studies. This can be attributed mainly to the larger number of loci generated for evaluation with ISSR analysis as compared to the few number of phenotypic traits amenable for assessment and which are further greatly affected by environment and genotype x environment interaction. Analysis of variance of mean Shannon Weaver diversity indices revealed substantial (P < or = 0.05) variation in the level of diversity among the eight groups of origin. In conclusion, our results indicate that ISSR can be useful as DNA-based molecular markers for studying genetic diversity and phylogenetic relationships, DNA fingerprinting for the identification of varieties or cultivars, and also for genome mapping in tef.  相似文献   

6.
豌豆种质资源形态标记遗传多样性分析   总被引:5,自引:1,他引:4  
通过对国内外不同地理来源624份豌豆资源20个形态性状的评价,初步了解其遗传多样性特点,为解决种质创新与品种改良遗传基础狭窄问题提供思路.对性状表现平均值、变异系数、遗传多样性指数研究结果表明,国内外不同地理来源豌豆资源群闻的遗传变异大;三维主成分分析探测到参试资源由国内和国外两大基因库构成;资源群体间遗传距离的UPG-MA聚类分析结果也表明,国内外豌豆资源聚成两大不同类群,印证了三维主成分分析得到的豌豆资源两大基因库构成的结论.本研究证明基于形态性状评价的遗传多样性分析结果同样可靠.  相似文献   

7.
Safflower (Carthamus tinctorious L.) is valued as a source of high quality vegetable oil. 20 ISSR primers were used to assess the genetic diversity of 18 accessions of safflower collected from different geographical regions of Iran. The ISSR primers combinations revealed 57.6 % polymorphism, among 338 genetic loci amplified from the accessions. The sum of effective number of alleles and observed number of alleles were 29.76 and 36.77, respectively. To understand genetic relationships among these cultivars, Jacquards’ similarity coefficient and UPGMA clustering algorithm were applied to the ISSR marker data set. ISSR markers grouped accessions into two main clusters and four sub clusters. Also, the principal coordinate analysis (PCoA) supported the cluster analysis results. The results showed these genotypes have high genetic diversity, and can be used for alternative safflower breeding program.  相似文献   

8.
鹰嘴豆种质资源农艺性状遗传多样性分析   总被引:12,自引:2,他引:10  
以100份鹰嘴豆种质资源为材料,应用聚类分析和主成分分析方法,对15个主要农艺性状的遗传多样性进行分析。结果表明,参试材料存在广泛的遗传多样性。其中,多样性指数最高的是株高,其次是百粒重;性状变异系数最大的是单株荚数,其次是单株粒重;基于各种质间形态标记的遗传差异,将100份鹰嘴豆种质聚类并划分为4大类群。第Ⅰ类群可作为选育丰产中粒型和株高适中的品种,第Ⅱ类群可作为选育矮秆耐密及特异粒色(型)品种,第Ⅲ类群丰产性较差可作为选育子粒球型、光滑的品种,第Ⅳ类群可作为选育大粒型、适宜机械化收获的品种。9个数量性状的主成分分析结果表明,前4个主成分累计贡献率达73.91%,各主成分性状载荷值反映了主要数量性状的育种选择潜力。综合分析种质资源农艺性状,为鹰嘴豆的有效利用提供一定的科学依据。  相似文献   

9.
Genetic diversity and genome size variability were studied in 16 geographical populations of Linum austriacum (Lineaceae). Genetic diversity parameters were determined in each population based on ISSR molecular markers. AMOVA test, Gst value and Hickory test revealed significant molecular difference among the studied populations. Mantel test showed correlation between genetic distance and geographical distance in these populations. NJ tree and NeighborNet network grouped the studied plant specimens in 3 major clusters. STRUCTURE analysis identified 12 allelic combinations in agreement with K-Means clustering result. These analyses revealed the presence of genetic variability both among and within studied population. The plant specimens of these geographical populations also differed significantly in their genome size.  相似文献   

10.
The determination of genetic differences among crop genotypes has become the primary need to grant patent and the protection of Plant Breeder Rights (PBR). In the present study RAPD and ISSR markers were employed for the characterization of 16 sesame genotypes. Twenty six RAPD and 17 ISSR primers that generated clear and reproducible banding patterns amplified 194 and 163 bands, respectively among 16 sesame genotypes. Both RAPD and ISSR primers showed maximum discrimination power, and produced putative variety specific bands, which could be used for the identification of all the sesame genotypes, individually. However, only AG and CA based ISSR primers were found effective in the discrimination of genotypes. A poor correlation was observed between the matrices produced by RAPD and ISSR primers, which might be due to the array of different sites of the genome. Though, there was greater similarity among sesame genotypes (0.78 for RAPD and 0.71 for ISSR), the observed genetic diversity (0.22 for RAPD and 0.29 for ISSR), was found effective for the characterization of sesame genotypes. It is suggested that putative variety specific RAPD and ISSR markers could be converted to Codominant sequence characterized amplified region/sequence tagged site (SCAR /STS) markers to develop robust variety specific markers.  相似文献   

11.
A set of morphological traits and SSR markers were used to determine the genetic relationship among 12 elite thermosensitive genic male sterile (TGMS) lines developed at three different research institutions of India. Agro-morphological data recorded on 20 morphological traits revealed a wide base of genetic variation and a set of four morphological traits could distinguish most of the TGMS lines. Analysis with 30 SSR markers (20 EST-SSRs and 10 genomic SSRs) revealed 27 markers to be polymorphic, amplifying a total of 83 alleles. Each SSR marker amplified 2-6 alleles with an average of 2.76 alleles per marker and a PIC value varying from 0.54 to 0.96. Cluster analysis based on SSR and morphological data clearly differentiated the lines according to their source of origin. Correlation analysis between morphological and molecular data revealed a very poor association (r = 0.06), which could be attributed to selection pressure, genetic drift, sampling error and unknown relationship among related lines. The SSR markers discriminated the genotypes distinctly and quantified the genetic diversity precisely among the TGMS lines. Data on the yield per plant indicated that the genotypes grouping under a similar cluster showed same heterotic behaviour as compared to the genotypes from different clusters when crossed to similar pollinators.  相似文献   

12.
Analysis of genetic diversity in germplasm collections is an important component of crop improvement programs. This study was conducted to analyze genetic variation and to classify tall fescue genotypes based on phenotypic evaluation and EST-SSR molecular markers. Twenty-five genotypes were assessed based on phenotypic and 42 EST-SSR molecular markers according to a completely randomized block design with three replications during eight years (2007–2014). Results indicated that the effect of year, genotype and their interaction were significant for all of the measured traits. Both morphological and molecular assessments showed considerable genetic variation among genotypes. The estimates of broad-sense heritability (h2b) were moderate to high (h2b = 42.1–78.4) for the traits studied. Based on EST-SRR analysis, a total number of 229 alleles were detected with an average of 4.58 alleles per marker. Average PIC value was 0.49 with a range of 0.014 for NFA140 to 0.95 for NFA047. Phenotypic evaluations and EST-SSR molecular marker classified genotypes into 3 and 7 clusters, respectively which mainly supported geographical origins. The general correspondence was observed between morphological and molecular classification. Therefore, combining the molecular markers with morphological responses could be more beneficial to describe genetic variation and distinguish superior genotypes for future breeding programs.  相似文献   

13.
云南苦荞种质资源主要性状的遗传多样性分析   总被引:1,自引:0,他引:1  
为了从云南苦荞种质资源中挖掘优异种质资源,拓宽苦荞遗传基础,以48份苦荞种质资源为材料研究了6个主要农艺性状和5个品质性状的遗传多样性。结果表明,云南的苦荞资源存在着丰富的遗传多样性,6个农艺性状中株粒重的变异系数为34.4%最大,品质性状中总黄酮含量的变异系数为51.72%最大。聚类结果表明,将48份材料聚为3大类,可区分为低产型、矮秆高产型和中秆高产型。6个主要农艺性状和5个品质性状的主成分分析结果表明,前3个累计贡献率分别达84.105%和80.332%,各主成分性状载荷值反映了主要数量性状的育种选择潜力。综合分析种质资源的主要农艺性状,可为云南苦荞种质资源的利用提供有效的科学依据。  相似文献   

14.
The availability of favorable genetic diversity is a thriving vitality for the success of a breeding program. It provides a firm basis of selecting superior breeding lines for the development of high yielding crop genotypes. In this context, present investigation aimed to generate information on genetic divergence and character association in a diversity panel of 123 local and exotic soybean genotypes. Analysis of variance revealed significant response of the evaluated genotypes based on studied attributes. It depicted the probability of selecting desirable soybean genotypes by focusing on character association studies and genetic diversity analysis. Correlation analysis revealed that seed yield per plant showed high positive correlation with 100-seed weight followed by pods per plant and plant height. Furthermore, path coefficient analysis exposed that pods per plant had maximum direct contribution in seed yield per plant followed by 100-seed weight, days to flowering and SPAD measurement. Genotype named “G-10” showed maximum yield per plant followed by 24607, G-52, 24593, Arisoy, 24566, 17426, A-3127, 24570 and 24567. Genetic diversity analysis grouped the evaluated germplasm into 17 clusters. All clusters showed zero intra-cluster variability; while inter-cluster divergence ranged from 9.00 to 91.11. Cluster V showed maximum inter-cluster distance with cluster XII followed by that of between V and VIII. Moreover, cluster IV with superior genotypes (G-10, 24607, 24593 and 24566), VI (17426 and 24567), XIII (24570) and X (Arisoy and G-52) showed above mean values for most of the studied characters. Overall, the results of hybridization between the superior genotypes of these cluster pairs might be useful for soybean breeding with improving agronomic traits and adaptability.  相似文献   

15.
16.
Linseed is one of the most important oil seed crop in the central highlands of Ethiopia for which yield enhancement is the major breeding purposes and genotypic variability is important for selection in any breeding programs. However, shortage of improved varieties’ that provides optimum seed yield is one of the major constraints of the crop. Therefore, this study was carried out to assess the genetic variability and association among quantitative traits of 36 linseed genotypes. The experiment was conducted in 2018 main cropping season by using simple lattice design. The analysis of variances reveled highly significant difference among the genotype for most of traits considered in present study. High phenotypic and genotypic coefficient of variation was recorded for tiller per plant, harvest index, oil yield (kg ha−1), and seed yield (ton ha-1) number of capsules per plant. High heritability along with genetic advance was observed for seed yield (tones ha-1), oil yield (kg ha-1) harvest index which indicates selection of these traits at early generation would be effective. Oil yield (kg ha−1) harvest index and number of capsules plant −1 showed highly significant positive with seed yield (ton ha−1). Cluster analysis revealed that 36 linseed genotypes were grouped into two clusters and four genotypes remain ungrouped. The maximum inter clusters distance was observed between clusters II and the local check. The data set was reduced into four significant principal components (PCs) that comprise (80%) of the variance. The first PC accounted for 34% of the variances that implies greater proportion of variable information explained by PC1. The traits, which contributed more to PC1, were seed yield per plant, primary branches per plant, secondary branches per plant and plant height showed positive association and had positive direct effect on seed yield. This indicates that any improvement of oil yield and harvest index would result in substantial increase on seed.  相似文献   

17.
18.
Mungbean germplasm characterization, evaluation and improvement are fundamentally based on morpho-agronomic traits. The lack of break-through in mungbean production has been due to non-availability of genetic variability for high yield potential. Forty-four genotypes of mungbean [Vigna radiata (L.)Wilczek] were subjected to random amplified polymorphic DNA (RAPD) analysis to assess the genetic diversity and relationships among the genotypes. Multilocus genotyping by twelve RAPD primers generated 166 markers and detected an average of intraspecific variation amounting to 82% polymorphism in banding patterns. Dendrogram obtained from cluster analysis delineated all the 44 genotypes into six clusters. Higher values of Nei’s gene diversity (h) and Shannon information index (i) and genetic distance analysis validate existence of wide genetic diversity among mungbean genotypes tested. Besides internal transcribed spacer (ITS) length variations, single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELS) were detected at number of sites in nuclear rDNA region and the sequences of representatives of each sub-cluster and all distinct genotypes have been submitted to NCBI database and assigned Gen accession numbers HQ 148136-148147. Multiple sequence alignment revealed further lineages of distinct genotypes with main RAPD clusters. The measures of relative genetic distances among the genotypes of mungbean did not completely correlate the geographical places of their development. The homogeneous phenotypic markers proved insufficient in exhibiting genetic divergence among mungbean genotypes studied. RMG-62, RMG-976, and NDM-56 have been identified as potential source of parents for crop improvement. RAPD primers, OPA-9 and OPA-2 as polymorphic genetic markers and number of pods/plant and number of seeds/plant as dependable phenotypic markers have been identified for improving yield potentials. This genetic diversity will be of significance in developing intraspecific crosses in mungbean crop improvement programme.  相似文献   

19.
Coloured rice genotypes have greater nutritious value and consumer demand for these varieties is now greater than ever. The documentation of these genotypes is important for the improvement of the rice plant. In this study, 42 coloured rice genotypes were selected for determination of their genetic divergence using 25 simple sequence repeat (SSR) primers and 15 agro-morphological traits. Twenty-one out of the 25 SSR primers showed distinct, reproducible polymorphism. A dendrogram constructed using the SSR primers clustered the 42 coloured rice genotypes into 7 groups. Further, principle component analysis showed 75.28% of total variations were explained by the first—three components. All agro-morphological traits showed significant difference at the (p≤0.05) and (p≤0.01) levels. From the dendrogram constructed using the agro-morphological traits, all the genotypes were clustered into four distinct groups. Pearson’s correlation coefficient showed that among the 15 agro-morphological traits, the yield contributing factor had positive correlation with the number of tillers, number of panicles, and panicle length. The heritability of the 15 traits ranged from 17.68 to 99.69%. Yield per plant and harvest index showed the highest value for both heritability and genetic advance. The information on the molecular and agro-morphological traits can be used in rice breeding programmes to improve nutritional value and produce higher yields.  相似文献   

20.
As a popular flowering species with many cultivars, Cymbidium ensifolium (L.) is commercially important in horticulture. However, so far little has been known about genetic diversity and conservation genetics of this species. Understanding of the genetic variation and relationships in cultivars of C.?ensifolium is a prerequisite for development of future germplasm conservation and cultivar improvement. Here we report assessment of genetic variations in C.?ensifolium cultivars using the DNA fingerprinting technique of inter-simple sequence repeats (ISSR). A total of 239 ISSR loci were identified and used for evaluation of genetic variation with a selection of 19 ISSR primers. Among these ISSR loci, 99.16% were polymorphic with wide genetic variation as shown by Nei??s gene diversity (H?=?0.2431) among 85 tested cultivars. ISSR fingerprinting profiles showed that each cultivar had its characteristic DNA pattern, indicating unequivocal cultivar identification at molecular level. Eighteen cultivar-specific ISSR markers were identified in seven cultivars. The cultivar Sijiwenhan was confirmed as hybrid by four ISSR primers. Several cultivars with same name but different geographical origins were distinguished based on their ISSR profiles. A dendrogram generated with ISSR markers could group 73 of 85 cultivars into four major clusters. Further analysis of ISSR variation revealed that about 69% of total genetic variation in this species is due to genetic divergence inside geographical groups. Our results suggest that both germplasm collection and in?situ conservation are important for future planning of C.?ensifolium species conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号