首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spike-timing-dependent plasticity (STDP), a form of Hebbian plasticity, is inherently stabilizing. Whether and how GABAergic inhibition influences STDP is not well understood. Using a model neuron driven by converging inputs modifiable by STDP, we determined that a sufficient level of inhibition was critical to ensure that temporal coherence (correlation among presynaptic spike times) of synaptic inputs, rather than initial strength or number of inputs within a pathway, controlled postsynaptic spike timing. Inhibition exerted this effect by preferentially reducing synaptic efficacy, the ability of inputs to evoke postsynaptic action potentials, of the less coherent inputs. In visual cortical slices, inhibition potently reduced synaptic efficacy at ages during but not before the critical period of ocular dominance (OD) plasticity. Whole-cell recordings revealed that the amplitude of unitary IPSCs from parvalbumin positive (Pv+) interneurons to pyramidal neurons increased during the critical period, while the synaptic decay time-constant decreased. In addition, intrinsic properties of Pv+ interneurons matured, resulting in an increase in instantaneous firing rate. Our results suggest that maturation of inhibition in visual cortex ensures that the temporally coherent inputs (e.g. those from the open eye during monocular deprivation) control postsynaptic spike times of binocular neurons, a prerequisite for Hebbian mechanisms to induce OD plasticity.  相似文献   

2.
The developmental profile of the firing patterns and construction of synapse connection were studied in LTS interneurons of prefrontal cortex (PFC) in rats with age (from P7 to P30). We used whole cell patch-clamp recordings to characterize electrophysiological properties of LTS interneurons in PFC at different age stages, including the action potentials (APs), short-term plasticity (STP), evoked excitatory postsynaptic currents (eEPSCs), spontaneous excitatory postsynaptic currents (sEPSC), and spontaneous inhibitory postsynaptic current (sIPSC). The developmental profile of LTS interneurons in our research showed two phases changes. The early phase from P7–P11 to P16–P19 during which the development of individual LTS interneuron dominated and just some simple synaptic connections formed, the synaptic inputs from pyramidal cells play a promoting role for the maturation of LTS interneurons to some extent. This was based on the changes of APs, eEPSCs, and STP such as the curtailment of time course of APs, the increasing facilitation of STP before P16–P19 group. The late phase from P20–P23 to P > 27 during which the function of inhibitory cortex network enhanced and the characters of this inhibitory cortex network continually changed although in the oldest age group (P > 27) in our research. The frequency and amplitude of sIPSC showed continually changes, and at the same age group, the frequency ratios and amplitude ratios of sIPSC was higher than that of sEPSC. Our study showed a foundation to clarify mechanisms underlying the evolution in time of intrinsic neuronal membrane properties and their important roles in balancing the cortex network, providing an academic foundation for the pathological researching on some psychiatric and neurological disorders.  相似文献   

3.
Networks of specific inhibitory interneurons regulate principal cell firing in several forms of neocortical activity. Fast-spiking (FS) interneurons are potently self-inhibited by GABAergic autaptic transmission, allowing them to precisely control their own firing dynamics and timing. Here we show that in FS interneurons, high-frequency trains of action potentials can generate a delayed and prolonged GABAergic self-inhibition due to sustained asynchronous release at FS-cell autapses. Asynchronous release of GABA is simultaneously recorded in connected pyramidal (P) neurons. Asynchronous and synchronous autaptic release show differential presynaptic Ca2+ sensitivity, suggesting that they rely on different Ca2+ sensors and/or involve distinct pools of vesicles. In addition, asynchronous release is modulated by the endogenous Ca2+ buffer parvalbumin. Functionally, asynchronous release decreases FS-cell spike reliability and reduces the ability of P neurons to integrate incoming stimuli into precise firing. Since each FS cell contacts many P neurons, asynchronous release from a single interneuron may desynchronize a large portion of the local network and disrupt cortical information processing.  相似文献   

4.
We recently showed that intermittent theta‐burst stimulation (iTBS) using transcranial magnetic stimulation strongly reduces the number of rat neocortical interneurons expressing glutamic acid decarboxylase 67 kDa (GAD67) and parvalbumin (PV), indicating changed activity of fast‐spiking (FS) interneurons. In advance of in vitro studies intended to characterize changes in electrical properties of FS interneurons under these conditions, we tested whether the iTBS effect is age‐dependent. Conscious Sprague‐Dawley rats aged between 28 and 90 days received three blocks of iTBS at 15 min intervals. We found that iTBS‐related reduction in PV+ cells was absent up to an age of 32 days, then gradually increased, and approached a maximum of about 40% reduction at an age of about 40 days. The relative number of cells expressing PV (PV+, 8–9%) did not change with age in sham‐controls and also the increase in cortical c‐Fos expression induced by iTBS was not principally age‐dependent. However, a prominent growth of the perineuronal nets, typically surrounding the PV+ cells, exactly paralleled the increase in the iTBS effect. Based on these findings, we conclude that the functional development of the inhibitory network of PV+ interneurons with regard to intracortical synaptic connectivity is not sufficiently matured in rats younger than 35d to enable activity‐dependent modifications during iTBS. Outgrowth of the perineuronal nets and associated maturation of excitatory cortical inputs, as is characteristic for the critical cortical period, may take place before PV+ interneurons can be sufficiently activated via repetitive transcranial magnetic stimulation, allowing plastic changes of molecular phenotype and likely also synaptic plasticity. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 1–11, 2015  相似文献   

5.
Zhong P  Yan Z 《PloS one》2011,6(2):e16970
Serotonin exerts a powerful influence on neuronal excitability. In this study, we investigated the effects of serotonin on different neuronal populations in prefrontal cortex (PFC), a major area controlling emotion and cognition. Using whole-cell recordings in PFC slices, we found that bath application of 5-HT dose-dependently increased the firing of FS (fast spiking) interneurons, and decreased the firing of pyramidal neurons. The enhancing effect of 5-HT in FS interneurons was mediated by 5-HT2 receptors, while the reducing effect of 5-HT in pyramidal neurons was mediated by 5-HT1 receptors. Fluoxetine, the selective serotonin reuptake inhibitor, also induced a concentration-dependent increase in the excitability of FS interneurons, but had little effect on pyramidal neurons. In rats with chronic fluoxetine treatment, the excitability of FS interneurons was significantly increased, while pyramidal neurons remained unchanged. Fluoxetine injection largely occluded the enhancing effect of 5-HT in FS interneurons, but did not alter the reducing effect of 5-HT in pyramidal neurons. These data suggest that the excitability of PFC interneurons and pyramidal neurons is regulated by exogenous 5-HT in an opposing manner, and FS interneurons are the major target of Fluoxetine. It provides a framework for understanding the action of 5-HT and antidepressants in altering PFC network activity.  相似文献   

6.
EPSP amplification and the precision of spike timing in hippocampal neurons   总被引:13,自引:0,他引:13  
Fricker D  Miles R 《Neuron》2000,28(2):559-569
The temporal precision with which EPSPs initiate action potentials in postsynaptic cells determines how activity spreads in neuronal networks. We found that small EPSPs evoked from just subthreshold potentials initiated firing with short latencies in most CA1 hippocampal inhibitory cells, while action potential timing in pyramidal cells was more variable due to plateau potentials that amplified and prolonged EPSPs. Action potential timing apparently depends on the balance of subthreshold intrinsic currents. In interneurons, outward currents dominate responses to somatically injected EPSP waveforms, while inward currents are larger than outward currents close to threshold in pyramidal cells. Suppressing outward potassium currents increases the variability in latency of synaptically induced firing in interneurons. These differences in precision of EPSP-spike coupling in inhibitory and pyramidal cells will enhance inhibitory control of the spread of excitation in the hippocampus.  相似文献   

7.
Locomotion rhythms are thought to be generated by neurons in the central-pattern-generator (CPG) circuit in the spinal cord. Synaptic connections in the CPG and pacemaker properties in certain CPG neurons, both may contribute to generation of the rhythms. In the half-center model proposed by Graham Brown a century ago, reciprocal inhibition plays a critical role. However, in all vertebrate preparations examined, rhythmic motor bursts can be induced when inhibition is blocked in the spinal cord. Without inhibition, neuronal pacemaker properties may become more important in generation of the rhythms. Pacemaker properties have been found in motoneurons and some premotor interneurons in different vertebrates and they can be dependent on N-Methyl-d-aspartate (NMDA) receptors (NMDAR) or rely on other ionic currents like persistent inward currents. In the swimming circuit of the hatchling Xenopus tadpole, there is substantial evidence that emergent network properties can give rise to swimming rhythms. During fictive swimming, excitatory interneurons (dINs) in the caudal hindbrain fire earliest on each swimming cycle and their spikes drive the firing of other CPG neurons. Regenerative dIN firing itself relies on reciprocal inhibition and background excitation. We now find that the activation of NMDARs can change dINs from firing singly at rest to current injection to firing repetitively at swimming frequencies. When action potentials are blocked, some intrinsic membrane potential oscillations at about 10 Hz are revealed, which may underlie repetitive dIN firing during NMDAR activation. In confirmation of this, dIN repetitive firing persists in NMDA when synaptic transmission is blocked by Cd(2+). When inhibition is blocked, only dINs and motoneurons are functional in the spinal circuit. We propose that the conditional intrinsic NMDAR-dependent pacemaker firing of dINs can drive the production of swimming-like rhythms without the participation of inhibitory neurotransmission.  相似文献   

8.
The cortex contains multiple cell types, but studies of attention have not distinguished between them, limiting understanding of the local circuits that transform attentional feedback into improved visual processing. Parvalbumin-expressing inhibitory interneurons can be distinguished from pyramidal neurons based on their briefer action potential durations. We recorded neurons in area V4 as monkeys performed an attention-demanding task. We find that the distribution of action potential durations is strongly bimodal. Neurons with narrow action potentials have higher firing rates and larger attention-dependent increases in absolute firing rate than neurons with broad action potentials. The percentage increase in response is similar across the two classes. We also find evidence that attention increases the reliability of the neuronal response. This modulation is more than two-fold stronger among putative interneurons. These findings lead to the surprising conclusion that the strongest attentional modulation occurs among local interneurons that do not transmit signals between areas.  相似文献   

9.
10.
The goals of this research are to (1) determine the changes in the composition of NMDA receptor (NMDAR) subunits in GABAergic interneurons during critical period (CP); and (2) test the effect of chronic blockage of specific NR2 subunits on the maturation of specific GABAergic interneurons. Our data demonstrate that: (1) The amplitude of NMDAR mediated EPSCs (EPSCs(NMDAR) ) was significantly larger in the postCP group. (2) The coefficient of variation (CV), τ(decay) and half-width of EPSCs(NMDAR) were significantly larger in the preCP group. (3) A leftward shift in the half-activation voltages in the postCP vs. preCP group. (4) Using subunit-specific antagonists, we found a postnatal shift in NR2 composition towards more NR2A mediated EPSCs(NMDAR) . These changes occurred within a two-day narrow window of CP and were similar between fast-spiking (FS) and regular spiking (RSNP) interneurons. (5) Chronic blockage of NR2A, but not NR2B, decreased the expression of parvalbumin (PV), but not other calcium binding proteins in layer 2/3 and 4 of barrel cortex. (6) Chronic blockage of NR2A selectively affected the maturation of IPSCs mediated by FS cells. In summary, we have reported, for the first time, developmental changes in the molecular composition of NMDA NR2 subunits in interneurons during CP, and the effects of chronic blockage of NR2A but not NR2B on PV expression and inhibitory synaptic transmission from FS cells. These results support an important role of NR2A subunits in developmental plasticity of fast-spiking GABAergic circuits during CP.  相似文献   

11.
Goldberg EM  Clark BD  Zagha E  Nahmani M  Erisir A  Rudy B 《Neuron》2008,58(3):387-400
Fast-spiking cells (FS cells) are a prominent subtype of neocortical GABAergic interneurons with important functional roles. Multiple FS cell properties are coordinated for rapid response. Here, we describe an FS cell feature that serves to gate the powerful inhibition produced by FS cell activity. We show that FS cells in layer 2/3 barrel cortex possess a dampening mechanism mediated by Kv1.1-containing potassium channels localized to the axon initial segment. These channels powerfully regulate action potential threshold and allow FS cells to respond preferentially to large inputs that are fast enough to "outrun" Kv1 activation. In addition, Kv1.1 channel blockade converts the delay-type discharge pattern of FS cells to one of continuous fast spiking without influencing the high-frequency firing that defines FS cells. Thus, Kv1 channels provide a key counterbalance to the established rapid-response characteristics of FS cells, regulating excitability through a unique combination of electrophysiological properties and discrete subcellular localization.  相似文献   

12.
By simultaneously recording the activity of individual neurons and field potentials in freely behaving mice, we found two types of interneurons firing at high frequency in the hippocampal CA1 region, which had high correlations with characteristic sharp wave-associated ripple oscillations (100–250 Hz) during slow-wave sleep. The firing of these two types of interneurons highly synchronized with ripple oscillations during slow-wave sleep, with strongly increased firing rates corresponding to individual ripple episodes. Interneuron type I had at most one spike in each sub-ripple cycle of ripple episodes and the peak firing rate was 310±33.17 Hz. Interneuron type II had one or two spikes in each sub-ripple cycle and the peak firing rate was 410±47.61 Hz. During active exploration, their firing was phase locked to theta oscillations with the highest probability at the trough of theta wave. Both two types of interneurons increased transiently their firing rates responding to the startling shake stimuli. The results showed that these two types of high-frequency interneurons in the hippocampal CA1 region were involved in the modulation of the hippocampal neural network during different states.  相似文献   

13.
Temporal precision in spike timing is important in cortical function, interactions, and plasticity. We found that, during periods of recurrent network activity (UP states), cortical pyramidal cells in vivo and in vitro receive strong barrages of both excitatory and inhibitory postsynaptic potentials, with the inhibitory potentials showing much higher power at all frequencies above approximately 10 Hz and more synchrony between nearby neurons. Fast-spiking inhibitory interneurons discharged strongly in relation to higher-frequency oscillations in the field potential in vivo and possess membrane, synaptic, and action potential properties that are advantageous for transmission of higher-frequency activity. Intracellular injection of synaptic conductances having the characteristics of the recorded EPSPs and IPSPs reveal that IPSPs are important in controlling the timing and probability of action potential generation in pyramidal cells. Our results support the hypothesis that inhibitory networks are largely responsible for the dissemination of higher-frequency activity in cortex.  相似文献   

14.
By simultaneously recording the activity of individual neurons and field potentials in freely behaving mice, we found two types of interneurons firing at high frequency in the hippocampal CA1 region, which had high correlations with characteristic sharp wave-associated ripple oscillations (100―250 Hz) during slow-wave sleep. The firing of these two types of interneurons highly synchronized with ripple oscillations during slow-wave sleep, with strongly increased firing rates corresponding to individual ripple episodes. Interneuron type I had at most one spike in each sub-ripple cycle of ripple episodes and the peak firing rate was 310±33.17 Hz. Interneuron type II had one or two spikes in each sub-ripple cycle and the peak firing rate was 410±47.61 Hz. During active exploration, their firing was phase locked to theta oscillations with the highest probability at the trough of theta wave. Both two types of interneurons increased transiently their firing rates responding to the startling shake stimuli. The results showed that these two types of high-frequency interneurons in the hippocampal CA1 region were involved in the modulation of the hippocampal neural network during different states.  相似文献   

15.
We have measured parameters of identified excitatory postsynaptic potentials from flight interneurons in immature and mature adult locusts (Locusta migratoria) to determine whether parameters change during imaginal maturation. The presynaptic cell was the forewing stretch receptor. The postsynaptic cells were flight interneurons that were filled with Lucifer Yellow and identified by their morphology. Excitatory postsynaptic potentials from different postsynaptic cells had characteristic amplitudes. The amplitude, time to peak, duration at half amplitude and the area above the baseline of excitatory postsynaptic potentials did not change with maturation. The latency from action potentials in the forewing stretch receptor to onset of excitatory postsynaptic potentials decreased significantly with maturation. We suggest this was due to an increase in conduction velocity of the forewing stretch receptor. We also measured morphological parameters of the postsynaptic cells and found that they increased in size with maturation. Growth of the postsynaptic cell should cause excitatory postsynaptic potential amplitude to decrease as a result of a decrease in input resistance, however, this was not the case. Excitatory postsynaptic potentials in immature locusts depress more than in mature locusts at high frequencies of presynaptic action potentials. This difference in frequency sensitivity of the immature excitatory postsynaptic potentials may account in part for maturation of the locust flight rhythm generator.Abbreviations EPSP excitatory postsynaptic potential - fSR forewing stretch receptor - IPSP inhibitory postsynaptic potential - SR stretch receptor  相似文献   

16.
The effects of amphetamine on potential changes in both vertebrate and invertebrate central neurons and factors affecting the potential changes were tested. The animals studied included mice, newborn rat and African snail. Seizure was elicited after lethal doses of d-amphetamine (75 mg/kg, i.p.) administration in mice. Repetitive firing of the action potentials were elicited after d-amphetamine (1-30 microM) administration in thin thalamic brain slices of newborn rat. Bursting firing of action potentials in the giant African central RP4 neuron were also elicited after d-amphetamine or l-amphetamine (0.27 mM) administration. The amphetamine elicited bursting firing of action potentials was not blocked even after high concentrations of d-tubocurarine, atropine, haloperidol, hexamethonium administration. Therefore, the amphetamine elicited potential changes may not be directly related to the activation of the receptors of the neuron. The bursting firing of action potentials elicited by amphetamine occurred 20-30 min after amphetamine administration extracellularly, even after high concentrations of d-amphetamine administration (0.27, 1 mM). However, the bursting firing of potentials occurred immediately if amphetamine was administrated intracellularly at lower concentration. Extracellular application of ruthenium red, the calcium antagonist, abolished the amphetamine elicited bursting firing of action potentials. If intracellular injection of EGTA, a calcium ion chelator, or injection with high concentrations of magnesium, the bursting firing of potentials were immediately abolished. These results suggested that the active site of amphetamine may be inside of the neuron and the calcium ion in the neuron played an important role on the bursting of potentials. In two-electrode voltage clamped RP4 neuron, amphetamine, at 0.27 mM, decreased the total inward and steady outward currents of the RP4 neuron. d-Amphetamine also decreased the calcium, Ia and the steady-state outward currents of the RP4 neuron. Besides, amphetamine elicited a negative slope resistance (NSR) if membrane potential was in the range of -50 to -10 mV. The NSR was decreased in cobalt substituted calcium free and sodium free solution. The effects of secondary messengers on the amphetamine elicited potential changes were tested. The bursting firing of action potentials elicited by amphetamine in central snail neurons decreased following extracellular application of H8 (N-(2-methyl-amino) ethyl-3-isoquinoline sulphonamide dihydrochloride), a specific protein kinase A inhibitor and anisomycin, a protein synthesis inhibitor. However, the bursting firing of action potentials were not affected after extracellular application of H7 (1,(5-isoquinolinesulphonyl)-2-methylpiperasine dihydrochloride), a specific protein kinase C (PKC) inhibitor, or intracellular application of GDPbetaS, a G protein inhibitor. The oscillation of membrane potential of the bursting activity was blocked after intracellular injection of 3'-deoxyadenosine, an adenylyl-cyclase inhibitor. These results suggested that the bursting firing of action potentials elicited by d-amphetamine in snail neuron may be associated with the cyclic AMP second messenger system; on the other hand, it may not be associated with the G protein and protein kinase C activity. It is concluded that amphetamine elicited potential changes in both vertebrate and invertebrate central neurons. The changes are closely related to the ionic currents and second messengers of the neurons.  相似文献   

17.
Inhibitory interneurons shape the spiking characteristics and computational properties of cortical networks. Interneuron subtypes can precisely regulate cortical function but the roles of interneuron subtypes for promoting different regimes of cortical activity remains unclear. Therefore, we investigated the impact of fast spiking and non-fast spiking interneuron subtypes on cortical activity using a network model with connectivity and synaptic properties constrained by experimental data. We found that network properties were more sensitive to modulation of the fast spiking population, with reductions of fast spiking excitability generating strong spike correlations and network oscillations. Paradoxically, reduced fast spiking excitability produced a reduction of global excitation-inhibition balance and features of an inhibition stabilised network, in which firing rates were driven by the activity of excitatory neurons within the network. Further analysis revealed that the synaptic interactions and biophysical features associated with fast spiking interneurons, in particular their rapid intrinsic response properties and short synaptic latency, enabled this state transition by enhancing gain within the excitatory population. Therefore, fast spiking interneurons may be uniquely positioned to control the strength of recurrent excitatory connectivity and the transition to an inhibition stabilised regime. Overall, our results suggest that interneuron subtypes can exert selective control over excitatory gain allowing for differential modulation of global network state.  相似文献   

18.
 Several formulations of correlation-based Hebbian learning are reviewed. On the presynaptic side, activity is described either by a firing rate or by presynaptic spike arrival. The state of the postsynaptic neuron can be described by its membrane potential, its firing rate, or the timing of backpropagating action potentials (BPAPs). It is shown that all of the above formulations can be derived from the point of view of an expansion. In the absence of BPAPs, it is natural to correlate presynaptic spikes with the postsynaptic membrane potential. Time windows of spike-time-dependent plasticity arise naturally if the timing of postsynaptic spikes is available at the site of the synapse, as is the case in the presence of BPAPs. With an appropriate choice of parameters, Hebbian synaptic plasticity has intrinsic normalization properties that stabilizes postsynaptic firing rates and leads to subtractive weight normalization. Received: 1 February 2002 / Accepted: 28 March 2002 Correspondence to: W. Gerstner (e-mail: wulfram.gerstner@epfl.ch, Tel.: +41-21-6936713, Fax: +41-21-6935263)  相似文献   

19.
Paired-pulse inhibition (PPI) of the population spike observed in extracellular field recordings is widely used as a read-out of hippocampal network inhibition. PPI reflects GABAA receptor-mediated inhibition of principal neurons through local interneurons. However, because of its polysynaptic nature, it is difficult to assign PPI changes to precise synaptic mechanisms. Here we used a detailed network model of the dentate gyrus to simulate PPI of granule cell action potentials and analyze its network properties. Our computational analysis indicates that PPI results mainly from a combination of perisomatic feed-forward and feedback inhibition of granule cells by basket cells. Feed-forward inhibition mediated by basket cells appeared to be the most significant source of PPI. Our simulations suggest that PPI depends more on somatic than on dendritic inhibition of granule cells. Furthermore, PPI was modulated by changes in GABAA reversal potential (EGABA) and by alterations in intrinsic excitability of granule cells. In summary, computer modeling provides a useful tool for determining the role of synaptic and intrinsic cellular mechanisms in paired-pulse field potential responses.  相似文献   

20.
Arhem P  Blomberg C 《Bio Systems》2007,89(1-3):117-125
Modifying the density and distribution of ion channels in a neuron (by natural up- and down-regulation, by pharmacological intervention or by spontaneous mutations) changes its activity pattern. In the present investigation, we analyze how the impulse patterns are regulated by the density of voltage-gated channels in a model neuron, based on voltage clamp measurements of hippocampal interneurons. At least three distinct oscillatory patterns, associated with three distinct regions in the Na-K channel density plane, were found. A stability analysis showed that the different regions are characterized by saddle-node, double-orbit, and Hopf bifurcation threshold dynamics, respectively. Single strongly graded action potentials occur in an area outside the oscillatory regions, but less graded action potentials occur together with repetitive firing over a considerable range of channel densities. The presently found relationship between channel densities and oscillatory behavior may be relevance for understanding principal spiking patterns of cortical neurons (regular firing and fast spiking). It may also be of relevance for understanding the action of pharmacological compounds on brain oscillatory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号