首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GH dependence of somatomedin-C/insulin-like growth factor I (Sm-C/IGF-I) and insulin like growth factor II (IGF-II) mRNAs was investigated by Northern blot hybridizations of polyadenylated RNAs from liver, pancreas, and brain of normal rats, untreated hypophysectomized rats, and hypophysectomized rats 4 h or 8 h after an ip injection of human GH (hGH). Using a 32P-labeled human Sm-C/IGF-I cDNA as probe, four Sm-C/IGF-I mRNAs of 7.5, 4.7, 1.7, and 1.2 kilobases (kb) were detected in rat liver and pancreas but were not detectable in brain. In both liver and pancreas, the abundance of these Sm-C/IGF-I mRNAs was 8- to 10-fold lower in hypophysectomized rats than in normal rats. Within 4 h after injection of hGH into hypophysectomized animals, the abundance of liver and pancreatic Sm-C/IGF-I mRNAs was restored to normal. A human IGF-II cDNA was used as a probe for rat IGF-II mRNAs which were found to be very low in abundance in rat liver and showed no evidence of regulation by GH status. In pancreas, IGF-II mRNA abundance was below the detection limit of the hybridization procedures. The brain contained two IGF-II mRNAs of 4.7 and 3.9 kb that were 5-fold lower in abundance in hypophysectomized rats than in normal rats. These brain IGF-II mRNAs were not, however, restored to normal abundance at 4 or 8 h after ip hGH injection into hypophysectomized animals. To investigate further, the effect of GH status on abundance of Sm-C/IGF-I and IGF-II mRNAs in rat brain, a second experiment was performed that differed from the first in that hypophysectomized rats were given an injection of hGH into the lateral ventricle (intracerebroventricular injection) and a rat Sm-C/IGF-I genomic probe was used to analyze Sm-C/IGF-I mRNAs. In this experiment, a 7.5 kb Sm-C/IGF-I mRNA was detected in brain polyadenylated RNAs. The abundance of the 7.5 kb mRNA was 4-fold lower in hypophysectomized rats than in normal rats and was increased to 80% of normal within 4 h after icv administration of hGH to hypophysectomized animals. As in the first experiment, the abundance of the 4.7 and 3.9 kb brain IGF-II mRNAs was lower than normal in hypophysectomized rats. Brain IGF-II mRNAs were increased to 50% of normal in hypophysectomized rats given an icv injection of hGH but within 8 h after the injection rather than at 4 h as with Sm-C/IGF-I mRNAs.  相似文献   

2.
Somatomedin-C or insulin-like growth factor I (Sm-C/IGF-I) and insulin-like growth factor II (IGF-II) have been implicated in the regulation of fetal growth and development. In the present study 32P-labeled complementary DNA probes encoding human and mouse Sm-C/IGF-I and human IGF-II were used in Northern blot hybridizations to analyse rat Sm-C/IGF-I and IGF-II mRNAs in poly(A+) RNAs from intestine, liver, lung, and brain of adult rats and fetal rats between day 14 and 17 of gestation. In fetal rats, all four tissues contained a major mRNA of 1.7 kilobases (kb) that hybridized with the human Sm-C/IGF-I cDNA and mRNAs of 7.5, 4.7, 1.7, and 1.2 kb that hybridized with the mouse Sm-C/IGF-I cDNA. Adult rat intestine, liver, and lung also contained these mRNAs but Sm-C/IGF-I mRNAs were not detected in adult rat brain. These findings provide direct support for prior observations that multiple tissues in the fetus synthesize immunoreactive Sm-C/IGF-I and imply a role for Sm-C/IGF-I in fetal development as well as postnatally. The abundance of a 7.5-kb Sm-C/IGF-I mRNA in poly(A+) RNAs from adult rat liver was 10-50-fold higher than in other adult rat tissues which provides further evidence that in the adult rat the liver is a major site of Sm-C/IGF-I synthesis and source of circulating Sm-C/IGF-I. Multiple IGF-II mRNAs of estimated sizes 4.7, 3.9, 2.2, 1.75, and 1.2 kb were observed in fetal rat intestine, liver, lung, and brain. The 4.7- and 3.9-kb mRNAs were the major hybridizing IGF-II mRNAs in all fetal tissues. Higher abundance of IGF-II mRNAs in rat fetal tissues compared with adult tissues supports prior hypotheses, based on serum IGF-II concentrations, that IGF-II is predominantly a fetal somatomedin. IGF-II mRNAs are present, however, in some poly(A+) RNAs from adult rat tissues. The brain was the only tissue in the adult rat where the 4.7- and 3.9-kb IGF-II mRNAs were consistently detected. Some samples of adult rat intestine contained the 4.7- and 3.9-kb IGF-II mRNAs and some samples of adult liver and lung contained the 4.7-kb mRNA. These findings suggest that a role for IGF-II in the adult rat, particularly in the central nervous system, cannot be excluded.  相似文献   

3.
4.
5.
The pattern of expression of receptors for insulin-like growth factors (IGF-I and IGF-II) and insulin was studied on monocyte-depleted human peripheral blood T cells activated via anti-CD3. Binding assays demonstrated the sequential appearance of receptors for IGF-I, IGF-II, and insulin on activated T cells. IGF-IR appeared early, their expression reaching maximum levels at or before the peak of cellular proliferation. IGF-IIR expression generally followed that of the IGF-IR and was more transient, with increases and decreases in expression paralleling the rise and decline of cellular proliferation. Insulin receptor expression remained low throughout the activation time course. The identity of the IGFR on anti-CD3-activated T cells was confirmed in affinity cross-linking experiments. These data demonstrated a 135,000 Mr peptide that specifically binds radiolabeled IGF-I and corresponds to the alpha subunit of the type I IGF-IR, and a 260,000 Mr peptide that specifically binds radiolabeled IGF-II and corresponds to the type II IGFR. We have additionally found that IGF-I and IGF-II (in nanomolar concentrations) produce as much as a threefold enhancement of T cell proliferation early in the activation process, correlating with the early appearance of IGF-IR. The effect of both IGF appeared to be mediated through the type I receptor, since an antibody (alpha IR3), which blocks binding to the alpha subunit of this receptor, inhibited enhancement by up to 83%. Furthermore, we have found expression of IGF-IR on T cells after activation to be associated with both CD4+ and CD8+ T cell subpopulations. These observations provide a foundation for investigating the contribution of IGF in regulating T cell proliferation, differentiation, and effector function.  相似文献   

6.
7.
8.
9.
10.
To investigate the potential role(s) of the insulin-like growth factors (IGFs) in embryogenesis, we have used in situ hybridization histochemistry to localize mRNAs for IGF-I, IGF-II, and the type I IGF receptor during an early period in rat embryonic development (embryonic days 14 and 15). IGF-I and IGF-II mRNAs were found in distinctly different patterns of cellular distribution. IGF-I mRNA was particularly abundant in undifferentiated mesenchymal tissue in the vicinity of sprouting nerves and spinal ganglia, and in circumscribed regions of the developing face that corresponded to the target zones of the trigeminal nerve. IGF-I mRNA was also found in aggregations of mesenchyme surrounding, but not in developing muscle and cartilage. IGF-I mRNA was selectively concentrated in areas of active tissue remodeling, such as the cardiac outflow tract, and was undetectable in liver, pituitary, and nervous system at this early stage of organogenesis. IGF-II mRNA was abundant in developing muscle, cartilage, and vascular tissue, and in the embryonic liver and pituitary. IGF-II mRNA was also conspicuous in areas of vascular interface with the brain, such as the choroid plexus and the organum vasculosum of the lamina terminalis. Messenger RNA for the type I IGF receptor was widely distributed in embryonic tissues, but the highest level were seen in the ventral floorplate of the hindbrain, where specialized neuroepithelial cells act as guides for axonal targeting. In conclusion, the different cellular patterns of expression of genes for IGF-I and IGF-II indicate that these two IGFs are differently regulated and, thus, may have significantly different roles in the process of embryonic development. Furthermore, the early and widespread expression of the type-I IGF receptor gene, in contrast to the relatively limited and localized pattern of IGF-I gene expression, is consistent with the view that this receptor may mediate the effects of IGF-II as well as IGF-I during embryogenesis.  相似文献   

11.
The insulin-like growth factors (IGFs) may be important autocrine and paracrine mediators of organ growth. We used solution-hybridization/ribonuclease protection assays to examine IGF-I and IGF-II mRNA abundance during hypertrophy or the rat adrenal gland induced by unilateral adrenalectomy or by adrenocorticotropic hormone (ACTH) infusion. Adrenal IGF-I mRNA did not change during the period of rapid organ growth at 18 or 66 h after unilateral adrenalectomy. ACTH infusion induced a time- and dose-dependent decrease in adrenal IGF-I mRNA despite significant increases in gland size. IGF-II mRNA also remained unchanged after unilateral adrenalectomy and decreased after ACTH infusion, to a greater extent than IGF-I mRNA. Liver IGF-I mRNA did not change with ACTH exposure, indicating an effect specific to the adrenal. We also measured adrenal P450scc mRNA as a marker of steroidogenic capacity. P450scc mRNA was unchanged after unilateral adrenalectomy and increased with ACTH infusion. Thus IGF-I and IGF-II mRNAs respond in parallel, but in different fashions with different stimuli for adrenal growth. The decrease in IGF mRNA after exposure to ACTH may be a factor in the ACTH-induced inhibition of compensatory hypertrophy after unilateral adrenalectomy.  相似文献   

12.
125I-labeled insulin-like growth factor II (IGF-II) was infused directly into the pudic artery supplying one gland of lactating goats (n = 4). Maximum specific activity for [125I]IGF-II transferred into milk from the infused gland was reached 60 min after that in plasma and was 2.5 fold greater than in milk from the non-infused gland. Inclusion of either 67.5 nmoles unlabeled IGF-II or IGF-I had no influence on the amount or pattern of secretion of [125I]IGF-II into milk from either gland. While the temporal pattern of secretion of [125I]IGF-II into milk was consistent with a transcellular mechanism of transfer, the lack of competition by unlabeled IGF-II or IGF-I suggests a non-specific mechanism is operable, which contrasts to secretion of IGF-I.  相似文献   

13.
Muscle is an important target tissue for insulin-like growth factor (IGF) action. We have previously reported that muscle cell differentiation is associated with down-regulation of the IGF-I receptor at the level of gene expression that is concomitant with an increase in the expression and secretion of IGF-II. Furthermore, treatment of myoblasts with IGF-II resulted in a similar decrease in IGF-I receptor mRNA abundance, suggesting an autocrine role of IGF-II in IGF-I receptor regulation. To explore further the role of IGF-II in IGF-I receptor regulation, BC3H-1 mouse muscle cells were exposed to differentiation medium in the presence of basic fibroblast growth factor (FGF), a known inhibitor of myogenic differentiation. FGF treatment of cells resulted in a 50% inhibition of IGF-II gene expression compared to that in control myoblasts and markedly inhibited IGF-II secretion. Concomitantly, FGF resulted in a 60-70% increase in IGF-I binding compared to that in control myoblasts. Scatchard analyses and studies of gene expression demonstrated that the increased IGF-I binding induced by FGF reflected parallel increases in IGF-I receptor content and mRNA abundance. These studies indicate that FGF may up-regulate IGF-I receptor expression in muscle cells through inhibition of IGF-II peptide expression and further support the concept of an autocrine role of IGF-II in IGF-I receptor regulation. In addition, these studies suggest that one mechanism by which FGF inhibits muscle cell differentiation is through inhibition of IGF-II expression.  相似文献   

14.
We have previously shown that insulin-like growth factor II (IGF-II) is produced by bone cells and that IGF-II stimulates cell proliferation and collagen synthesis in bone cells. We now extend these in vitro findings by demonstrating specific IGF-II binding to bone cells derived from newborn mouse calvaria and embryonic chick calvaria. The kinetics of [125I] IGF-II binding in embryonic chick calvaria cells showed time and temperature dependence. Scatchard analysis of [125I]IGF-II binding to chick calvaria cells showed an apparent Kd of 1.4 x 10(-10) M, with a calculated receptor site concentration of 40,000/cell. The specificity characteristics showed that IGF-II was significantly more potent than IGF-I or insulin in displacing IGF-II tracer. Competition for binding of [125I]IGF-II by unlabeled IGF-II showed a dose-dependent displacement between 0.5 and 25 ng/ml. Fifty percent displacement of [125I]IGF-II binding to chick and mouse calvarial cells was achieved at 1-2 ng/ml; 90% of specific binding of [125I]IGF-II was displaceable in the presence of 125 ng/ml of unlabeled IGF-II. IGF-I showed less than 5% cross reactivity for displacement of [125I]IGF-II binding to chick and mouse bone cells. Type II receptor inhibitory antibodies, R-II-PAB1 inhibited the binding of [125I]IGF-II to mouse bone cells and H-35 rat hepatoma cells (which contain type II but not type I receptors) in a dose-dependent manner. R-II-PAB1 also inhibited basal cell proliferation as well as IGF-II-, IGF-I-, and fibroblast growth factor (FGF)-induced cell proliferation in mouse bone cells. In chick calvaria bone cells and TE89 human osteosarcoma cells, R-II-PABI inhibited neither binding of [125I]IGF-II nor IGF-II-induced cell proliferation. These results together with our findings that IGF-II increased chick bone cell proliferation in the presence of maximal doses of IGF-I suggest that at least part of the mitogenic action of IGF-II is mediated through type II rather than type I receptors in bone cells.  相似文献   

15.
16.
Somatomedins/insulin-like growth factors (Sm/IGFs) are considered to have important roles in regulating fetal growth; however, because of limited quantities of tissue, few studies have been performed on their effects on embryonic growth. To assess a potential role for these factors, we evaluated mouse embryonic tissues for the presence of Sm/IGF and insulin receptors and Sm/IGF-binding proteins by chemical affinity labelling. In addition, we measured extractable Sm-C/IGF-I radioimmunoactivity in mouse embryonic tissues. Finally, we compared these data with those from the embryonal carcinoma cell line, PC13. All embryos from day 9 (3-4 somites) to day 12 (45 somites) possessed both Sm-C/IGF-I and IGF-II receptors in apparent greater abundance than insulin receptors. The visceral yolk sac appeared to have proportionally more insulin receptors than the corresponding embryonic tissue. Extracts from the embryos contained immunoreactive Sm-C/IGF-I and binding proteins of 30-45 X 10(3) Mr. PC13 cells possessed all three receptors and the apparent abundance of the insulin and IGF-II receptors was reduced after differentiation was induced with retinoic acid. PC13 cells released both immunoreactive Sm-C/IGF-I- and Sm-C/IGF-I-binding proteins into their medium. When differentiated, the binding proteins resembled the native ones extracted from the intact embryos. The presence of Sm/IGF activity, receptors and binding proteins in early embryogenesis suggests a role for these factors in embryonic growth. The PC13 cell line appears to only partially reflect normal development.  相似文献   

17.
Insulin-like growth factor II (IGF-II) is a peptide growth factor that is homologous to both insulin-like growth factor I (IGF-I) and insulin and plays an important role in embryonic development and carcinogenesis. IGF-II is believed to mediate its cellular signaling via the transmembrane tyrosine kinase type 1 insulin-like growth factor receptor (IGF-I-R), which is also the receptor for IGF-I. Earlier studies with both cultured cells and transgenic mice, however, have suggested that in the embryo the insulin receptor (IR) may also be a receptor for IGF-II. In most cells and tissues, IR binds IGF-II with relatively low affinity. The IR is expressed in two isoforms (IR-A and IR-B) differing by 12 amino acids due to the alternative splicing of exon 11. In the present study we found that IR-A but not IR-B bound IGF-II with an affinity close to that of insulin. Moreover, IGF-II bound to IR-A with an affinity equal to that of IGF-II binding to the IGF-I-R. Activation of IR-A by insulin led primarily to metabolic effects, whereas activation of IR-A by IGF-II led primarily to mitogenic effects. These differences in the biological effects of IR-A when activated by either IGF-II or insulin were associated with differential recruitment and activation of intracellular substrates. IR-A was preferentially expressed in fetal cells such as fetal fibroblasts, muscle, liver and kidney and had a relatively increased proportion of isoform A. IR-A expression was also increased in several tumors including those of the breast and colon. These data indicate, therefore, that there are two receptors for IGF-II, both IGF-I-R and IR-A. Further, they suggest that interaction of IGF-II with IR-A may play a role both in fetal growth and cancer biology.  相似文献   

18.
19.
The insulin-like growth factors (IGF) constitute a family of proteins with insulin-like and growth-stimulating properties. The best characterized members of this family are IGF-I, a protein of 70 amino acids which plays an important role in post-natal growth, and IGF-II, a 67 amino acid protein which is most likely involved in fetal development.The gene structure of IGF-II has been elucidated for the human and the rat and shows extensive interspecies homologies. The gene structure of IGF-I has only partially been established. A striking feature of the IGF genes is that they are controlled by multiple promoters which are expressed in a tissue-specific and development-dependent way.  相似文献   

20.
Insulin and the insulin-like growth factors, IGF-I and IGF-II, have been reported to exert a mitogenic effect on the preimplantation mammalian embryo. Furthermore, it has been proposed that loss of imprinting of the insulin-like growth factor II receptor gene and the consequent over-production of IGF-II may be involved in the aetiology of the Enlarged Offspring Syndrome, which occurs as an artefact of in vitro embryo production. We have previously shown that apoptosis occurs in the preimplantation bovine embryo and is influenced by in vitro culture conditions. We have therefore sought to establish the effects of insulin, IGF-I and IGF-II on apoptosis and cell proliferation in bovine blastocysts in vitro. Zygotes, obtained by in vitro maturation and fertilization of follicular oocytes, were cultured to blastocysts, with or without exogenous growth factors. Embryos were stained with propidium iodide to label all nuclei and by TUNEL to label apoptotic nuclei and analyzed by epifluorescent and confocal microscopy. IGF-I and IGF-II, but not insulin, were found to increase the proportion of embryos which formed blastocysts. Insulin decreased the incidence of apoptosis without affecting blastocyst cell number. IGF-I acted to decrease apoptosis and increase total cell number and IGF-II increased cell number alone. These data suggest roles for insulin and the IGFs as mitogens and/or apoptotic survival factors during early bovine development. Perturbation of IGF-II regulated growth may be involved in fetal oversize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号