首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactococcus lactis possesses an ATP-binding cassette transporter, LmrA, which is a homolog of the mammalian multidrug resistance (MDR) P-glycoprotein, and is able to transport a broad range of structurally unrelated amphiphilic drugs. A histidine tag was introduced at the N-terminus of LmrA to facilitate purification by nickel affinity chromatography. The histidine-tagged protein was overexpressed in L. lactis using a novel protein expression system for cytotoxic proteins based on the tightly regulated, nisin-inducible nisA promoter. This system allowed us to get functional overexpression of LmrA up to a level of 30% of total membrane protein. For reconstitution, LmrA was solubilized with dodecylmaltoside, purified by nickel-chelate affinity chromatography, and reconstituted in dodecylmaltoside-destabilized, preformed liposomes prepared from L. lactis phospholipids. The detergent was removed by adsorption onto polystyrene beads. The LmrA protein was reconstituted in a functional form, and mediated the ATP-dependent transport of the fluorescent substrate Hoechst-33342 into the proteoliposomes. Interestingly, reconstituted LmrA also catalyzed the ATP-dependent transport of fluorescent phosphatidylethanolamine, but not of fluorescent phosphatidylcholine. These data demonstrate that LmrA activity is independent of accessory proteins and support the notion that LmrA may be involved in the transport of specific lipids or lipid-linked precursors in L. lactis.  相似文献   

2.
3.
Structure-function analysis of multidrug transporters in Lactococcus lactis   总被引:2,自引:0,他引:2  
The active extrusion of cytotoxic compounds from the cell by multidrug transporters is one of the major causes of failure of chemotherapeutic treatment of tumor cells and of infections by pathogenic microorganisms. A multidrug transporter in Lactococcus lactis, LmrA, is a member of the ATP-binding cassette (ABC) superfamily and a bacterial homolog of the human multidrug resistance P-glycoprotein. Another multidrug transporter in L. lactis, LmrP, belongs to the major facilitator superfamily, and is one example of a rapidly expanding group of secondary multidrug transporters in microorganisms. Thus, LmrA and LmrP are transport proteins with very different protein structures, which use different mechanisms of energy coupling to transport drugs out of the cell. Surprisingly, both proteins have overlapping specificities for drugs, are inhibited by the same set of modulators, and transport drugs via a similar transport mechanism. The structure-function relationships that dictate drug recognition and transport by LmrP and LmrA represent an intriguing area of research.  相似文献   

4.
The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC mutant strain which proved to be hypersensitive to cadmium. Both the human and bacterial MDR genes conferred cadmium resistance to E. coli up to 0.4 mM concentration. Protection was abolished by 100 microM verapamil. Quantification of intracellular cadmium concentration by atomic absorption spectrometry showed a reduced cadmium accumulation in cells expressing the MDR genes. Inside-out membrane vesicles of L. lactis overexpressing lmrA displayed an ATP-dependent (109)Cd(2+) uptake that was stimulated by glutathione. An evolutionary model is discussed in which MDR proteins have evolved independently from an ancestor protein displaying both organic xenobiotic- and divalent metal-extrusion abilities.  相似文献   

5.
Lactobacillus brevis is a major contaminant of spoiled beer. The organism can grow in beer in spite of the presence of antibacterial hop compounds that give the beer a bitter taste. The hop resistance in L. brevis is, at least in part, dependent on the expression of the horA gene. The deduced amino acid sequence of HorA is 53% identical to that of LmrA, an ATP-binding cassette multidrug transporter in Lactococcus lactis. To study the role of HorA in hop resistance, HorA was functionally expressed in L. lactis as a hexa-histidine-tagged protein using the nisin-controlled gene expression system. HorA expression increased the resistance of L. lactis to hop compounds and cytotoxic drugs. Drug transport studies with L. lactis cells and membrane vesicles and with proteoliposomes containing purified HorA protein identified HorA as a new member of the ABC family of multidrug transporters.  相似文献   

6.
7.
Lactic acid bacteria, such as Lactococcus lactis, are attractive hosts for the production of plant-bioactive compounds because of their food grade status, efficient expression, and metabolic engineering tools. Two genes from strawberry (Fragaria x ananassa), encoding an alcohol acyltransferase (SAAT) and a linalool/nerolidol synthase (FaNES), were cloned in L. lactis and actively expressed using the nisin-induced expression system. The specific activity of SAAT could be improved threefold (up to 564 pmol octyl acetate h-1 mg protein-1) by increasing the concentration of tRNA1Arg, which is a rare tRNA molecule in L. lactis. Fermentation tests with GM17 medium and milk with recombinant L. lactis strains expressing SAAT or FaNES resulted in the production of octyl acetate (1.9 microM) and linalool (85 nM) to levels above their odor thresholds in water. The results illustrate the potential of the application of L. lactis as a food grade expression platform for the recombinant production of proteins and bioactive compounds from plants.  相似文献   

8.
Multidrug resistance (MDR) is defined as resistance of tumor cells to the cytotoxic action of multiple structurally dissimilar and functionally divergent drugs commonly used in chemotherapy. 1,4-Dihydropyridines (DHP(s)) are one of the major classes of Ca2+ channel blockers, and it has been shown that these agents are a new class of drug resistance reversers in cancer treatment. Analysis of various investigations on MDR reversing effects of DHPs shows that they can be a potential class for designing compounds simultaneously effective on both typical and atypical MDR. Also, it is possible to include some considerations on essential structural features for MDR reversing and further decreasing of Ca2+ channel blocking activity as an adverse effect.  相似文献   

9.
Multidrug resistance (MDR) is a major obstacle to the successful chemotherapy of cancer. MDR is often the result of overexpression of ATP-binding cassette transporters following chemotherapy. A common ATP-binding cassette transporter that is overexpressed in MDR cancer cells is P-glycoprotein, which actively effluxes drugs against a concentration gradient, producing an MDR phenotype. Collateral sensitivity (CS), a phenomenon of drug hypersensitivity, is defined as the ability of certain compounds to selectively target MDR cells, but not the drug-sensitive parent cells from which they were derived. The drug tiopronin has been previously shown to elicit CS. However, unlike other CS agents, the mechanism of action was not dependent on the expression of P-glycoprotein in MDR cells. We have determined that the CS activity of tiopronin is mediated by the generation of reactive oxygen species (ROS) and that CS can be reversed by a variety of ROS-scavenging compounds. Specifically, selective toxicity of tiopronin toward MDR cells is achieved by inhibition of glutathione peroxidase (GPx), and the mode of inhibition of GPx1 by tiopronin is shown in this report. Why MDR cells are particularly sensitive to ROS is discussed, as is the difficulty in exploiting this hypersensitivity to tiopronin in the clinic.  相似文献   

10.
Human MDR1, a multi-drug transporter gene, was isolated as the first of the eukaryote ATP Binding Cassette (ABC) proteins from a multidrug-resistant carcinoma cell line in 1986. To date, over 25 years, many ABC proteins have been found to play important physiological roles by transporting hydrophobic compounds. Defects in their functions cause various diseases, indicating that endogenous hydrophobic compounds, as well as water-soluble compounds, are properly transported by transmembrane proteins. MDR1 transports a large number of structurally unrelated drugs and is involved in their pharmacokinetics, and thus is a key factor in drug interaction. ABCA1, an ABC protein, eliminates excess cholesterol in peripheral cells by generating HDL. Because ABCA1 is a key molecule in cholesterol homeostasis, its function and expression are highly regulated. Eukaryote ABC proteins function on the body surface facing the outside and in organ pathways to adapt to the extracellular environment and protect the body to maintain optimal health.  相似文献   

11.
Holdsworth SR  Law CJ 《Biochimie》2012,94(6):1334-1346
Multidrug resistance (MDR) occurs when bacteria simultaneously acquire resistance to a broad spectrum of structurally dissimilar compounds to which they have not previously been exposed. MDR is principally a consequence of the active transport of drugs out of the cell by proteins that are integral membrane transporters. We characterised and purified the putative Escherichia coli MDR transporter, MdtM, a 410 amino acid residue protein that belongs to the large and ubiquitous major facilitator superfamily. Functional characterisation of MdtM using growth inhibition and whole cell transport assays revealed its role in intrinsic resistance of E. coli cells to the antimicrobials ethidium bromide and chloramphenicol. Site-directed mutagenesis studies implied that the MdtM aspartate 22 residue and the highly conserved arginine at position 108 play a role in proton recognition. MdtM was homologously overexpressed and purified to homogeneity in dodecyl-β-D-maltopyranoside detergent solution and the oligomeric state and stability of the protein in a variety of detergent solutions was investigated using size-exclusion HPLC. Purified MdtM is monomeric and stable in dodecyl-β-D-maltopyranoside solution and binds chloramphenicol with nanomolar affinity in the same detergent. This work provides a firm foundation for structural studies on this class of multidrug transporter protein.  相似文献   

12.
Multidrug resistance (MDR) of cancer cells poses a serious obstacle to successful chemotherapy. The overexpression of multispecific ATP-binding cassette transporters appears to be the main mechanism of MDR. A search for MDR-reversing agents able to sensitize resistant cells to chemotherapy is ongoing in the hope of their possible clinical use. Studies of MDR modulators, although they have not produced clinically beneficial effects yet, may greatly enrich our knowledge about MDR transporters, their specificity and mechanism of action, especially substrate and/or inhibitor recognition. In the present review, interactions of three groups of modulators: phenothiazines, flavonoids and stilbenes with both P-glycoprotein and MRP1 are discussed. Each group of compounds is likely to interact with the MDR transporters by a different mechanism. Phenothiazines probably interact with drug binding sites, but they also could indirectly affect the transporter's activity by perturbing lipid bilayers. Flavonoids mainly interact with ABC proteins within their nucleotide-binding domains, though the more hydrophobic flavonoids may bind to regions within transmembrane domains. The possible mechanism of MDR reversal by stilbenes may result from their direct interaction with the transporter (possibly within substrate recognition sites) but some indirect effects such as stilbene-induced changes in gene expression pattern and in apoptotic pathways should also be considered. Literature data as well as some of our recent results are discussed. Special emphasis is put on cases when the interactions of a given compound with both P-glycoprotein and MRP1 have been studied simultaneously.  相似文献   

13.
14.
Due to their ability to extrude structurally dissimilar cytotoxic drugs out of the cell, multidrug transporters are able to reduce the cytoplasmic drug concentration, and, hence, are able to confer drug resistance on human cancer cells and pathogenic microorganisms. This review will focus on the molecular properties of two bacterial multidrug transporters, the ATP-binding cassette transporter LmrA and the proton motive force-dependent major facilitator superfamily transporter LmrP, which each represent a major class of multidrug transport proteins encountered in pro- and eukaryotic cells. In spite of the structural differences between LmrA and LmrP, the molecular bases of their drug transport activity may turn out to be more similar than might currently appear.  相似文献   

15.
The cholate-resistant Lactococcus lactis strain C41-2, derived from wild-type L. lactis MG1363 through selection for growth on cholate-containing medium, displayed a reduced accumulation of cholate due to an enhanced active efflux. However, L. lactis C41-2 was not cross resistant to deoxycholate or cationic drugs, such as ethidium and rhodamine 6G, which are typical substrates of the multidrug transporters LmrP and LmrA in L. lactis MG1363. The cholate efflux activity in L. lactis C41-2 was not affected by the presence of valinomycin plus nigericin, which dissipated the proton motive force. In contrast, cholate efflux in L. lactis C41-2 was inhibited by ortho-vanadate, an inhibitor of P-type ATPases and ATP-binding cassette transporters. Besides ATP-dependent drug extrusion by LmrA, two other ATP-dependent efflux activities have previously been detected in L. lactis, one for the artificial pH probe 2',7'-bis-(2-carboxyethyl)-5(and 6)-carboxyfluorescein (BCECF) and the other for the artificial pH probe N-(fluorescein thio-ureanyl)-glutamate (FTUG). Surprisingly, the efflux rate of BCECF, but not that of FTUG, was significantly enhanced in L. lactis C41-2. Further experiments with L. lactis C41-2 cells and inside out membrane vesicles revealed that cholate and BCECF inhibit the transport of each other. These data demonstrate the role of an ATP-dependent multispecific organic anion transporter in cholate resistance in L. lactis.  相似文献   

16.
The active extrusion of cytotoxic compounds from the cell by multidrug transporters is one of the major causes of failure of chemotherapeutic treatment of tumor cells and of infections by pathogenic microorganisms. The secondary multidrug transporter LmrP and the ATP-binding cassette (ABC) type multidrug transporter LmrA in Lactococcus lactis are representatives of the two major classes of multidrug transporters found in pro- and eukaryotic organisms. Therefore, knowledge of the molecular properties of LmrP and LmrA will have a wide significance for multidrug transporters in all living cells, and may enable the development of specific inhibitors and of new drugs which circumvent the action of multidrug transporters. Interestingly, LmrP and LmrA are transport proteins with very different protein structures, which use different mechanisms of energy coupling to transport drugs out of the cell. Surprisingly, both proteins have overlapping specificities for drugs, are inhibited by t he same set of modulators, and transport drugs via a similar transport mechanism. The structure-function relationships that dictate drug recognition and transport by LmrP and LmrA will represent an intriguing new area of research.  相似文献   

17.
The multidrug resistance-associated protein 2 (MRP2) is an ATP-binding cassette transporter involved in biliary, renal, and intestinal secretion of numerous organic anions, including endogenous compounds such as bilirubin and exogenous compounds such as drugs and toxic chemicals. Its expression can be modulated in various physiopathological situations, notably being markedly decreased during liver cholestasis and upregulated in some cancerous tissues. In addition, MRP2 levels are altered in hepatocytes in response to hormones such as glucocorticoids and to structurally unrelated drugs such as rifampicin, phenobarbital, ritonavir, and cisplatin. The chemical carcinogen 2-acetylaminofluorene and chemopreventive agents such as oltipraz and sulforaphane also markedly increased MRP2 expression in liver parenchymal cells. Interestingly, most of the chemical inducers of MRP2 act on drug-metabolizing enzymes, indicating a coordinated regulation of these detoxifying proteins; cellular mechanisms involved are, at least partly, common and may be related to nuclear hormone receptors such as the pregnane X receptor. Owing to the major role played by MRP2 in elimination of drugs and endogenous compounds, modulation of its expression may lead to adverse effects or to changes in drug pharmacokinetics. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Lactococcus lactis possesses an ATP-dependent drug extrusion system which shares functional properties with the mammalian multidrug resistance (MDR) transporter P-glycoprotein. One of the intriguing aspects of both transporters is their ability to interact with a broad range of structurally unrelated amphiphilic compounds. It has been suggested that P-glycoprotein removes drugs directly from the membrane. Evidence is presented that this model is correct for the lactococcal multidrug transporter through studies of the extrusion mechanism of BCECF-AM and cationic diphenylhexatriene (DPH) derivatives from the membrane. The non-fluorescent probe BCECF-AM can be converted intracellularly into its fluorescent derivative, BCECF, by non-specific esterase activities. The development of fluorescence was decreased upon energization of the cells. These and kinetic studies showed that BCECF-AM is actively extruded from the membrane before it can be hydrolysed intracellularly. The increase in fluorescence intensity due to the distribution of TMA-DPH into the phospholipid bilayer is a biphasic process. This behaviour reflects the fast entry of TMA-DPH into the outer leaflet followed by a slower transbilayer movement to the inner leaflet of the membrane. The initial rate of TMA-DPH extrusion correlates with the amount of probe associated with the inner leaflet. Taken together, these results demonstrate that the lactococcal MDR transporter functions as a 'hydrophobic vacuum cleaner', expelling drugs from the inner leaflet of the lipid bilayer. Thus, the ability of amphiphilic substrates to partition in the inner leaflet of the membrane is a prerequisite for recognition by multidrug transporters.  相似文献   

19.
20.
The cystic fibrosis gene product, CFTR, and the multidrug resistance P-glycoprotein (encoded by the MDR1 gene) are structurally related proteins and both are associated with epithelial chloride channel activities. We have compared their cell-specific expression in the rat by in situ hybridization. In all tissues examined the two genes were found to have complementary patterns of expression, demonstrating exquisite regulation in both cell-specific and temporal fashions. Additionally, a switch in expression from one gene to the other was observed in certain tissues. For example, expression in the intestine switches from CFTR to MDR1 as the cells migrate across the crypt-villus boundary. A switch from CFTR to MDR1 expression was also observed in the uterine epithelium upon pregnancy. These data suggest that CFTR and P-glycoprotein serve analogous roles in epithelial cells and provide additional evidence that P-glycoprotein has a physiological role in regulating epithelial cell volume. The patterns of expression suggest that the regulation of these two genes is coordinately controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号