共查询到20条相似文献,搜索用时 15 毫秒
1.
The total free amino acid pools in radicles of watermelon seeds, investigated during imbibition of water at 25°C, were higher under the most (darkness) than under the least (continuous broad spectrum far-red light) favourable light regime for germination. When seeds were imbibed in an appropriate osmotic solution of PEG-6000 (fully suppressing germination), in darkness or under continuous red or far-red light, the biochemical analyses of the radicles after 1,2,3 and 4 days from the onset of imbibition show that while the total soluble sugar content remains rather constant in all treatments, significant changes are observed in the total free amino acid pools. After the first day, a considerable increase characterizes the "darkness" pool in contrast to a moderate one under red, while the "far-red" pool remains constant. Ultimately, at 4 days, the three pools are 190,142 and 123% of the 0 day radicle one. The qualitative free amino acid determination of the 4 day darkness and far-red pools shows a considerably increased percentage contribution of glutamic acid, arginine and citrulline in the "darkness" pool. The free amino acid increase in non-illuminated radicles may be correlated to germinability; moreover, it is evidently a phytochrome-mediated, pre-germinatory event, probably due to the hydrolysis of proteins (known to be rich in glutamic acid and arginine), stored in the radicle. 相似文献
2.
Shinichi Takami Sayeed Ahmad Neil C. Turner Tohru Kobata John C. O'Toole 《Physiologia plantarum》1987,69(4):586-590
The diurnal and seasonal changes in plant water relations of two Japonica rice ( Oryza sativa L.) cultivars, Nipponbare and Tachiminori, were studied under flooded conditions at Kyoto University. The dryland cv. Tachiminori maintained higher predawn and midday leaf osmotic potentials relative to the wetland cv. Nipponbare during the vegetative stage, but the ranking was reversed after flowering. The relationship between leaf water potential and leaf osmotic potential showed that prior to panicle emergence Nipponbare was able to adjust osmotically to maintain turgor, whereas after heading there was little turgor maintenance. Tachiminori showed little difference in osmotic adjustment before and after panicle emergence. Fertilizer treatment during panicle development also helped to maintain the degree of osmotic adjustment in both cultivars. 相似文献
3.
Growth stimulation by gibberellic acid (GA) of the Alaska pea ( Pisum sativum L.) subhook was observed within 6 h after its application; the stimulation being larger in cuttings with cotyledons than in decotylized ones. The osmotic potential in the subhook increased as it grew, the rate of its increase being faster in cuttings without than in cuttings with cotyledons. GA had no effect on the change in the osmotic potential until 8 h after GA application, but afterwards it suppressed the increase in cuttings with cotyledons. This GA effect was not observed in decotylized cuttings. Changes in the osmotic potential were well correlated with changes in the concentration of soluble sugars, but not with changes in amino acids and K+ , Soluble sugars accumulated in the subhook of cuttings with and without cotyledons in proportion to growth, irrespective of the presence or absence of GA. Cotyledon excision suppressed sugar accumulation, and GA promoted it in cuttings with cotyledons but not in decotylized ones. These results suggest that GA stimulates the translocation of sugars from the cotyledons to the subhook and, thereby, maintains the osmotic potential low, resulting in enhanced growth. 相似文献
4.
Ashok Tholakalabavi Janusz J. Zwiazek Trevor A. Thorpe 《In vitro cellular & developmental biology. Plant》1994,30(3):164-170
Summary A cell suspension culture of poplar (Populus deltoides (Marsh.) Bartr. var.occidentalis Rydb.), accumulating the anthocyanin pigment, cyanidin 3-glucoside, in the lag phase of culture growth, was subjected to osmotic stress with glucose and mannitol. Osmotic stress treatments resulted in growth suppression and higher anthocyanin accumulation compared with unstressed cells. Both an increase in the proportion of pigmented cells and an increase in the concentration of anthocyanin in the pigmented cells were responsible for high anthocyanin content of cultured cells subjected to osmotic stress. The osmotic stress induced by glucose suppressed growth more than that by mannitol and produced higher anthocyanin levels. Only small amounts of [U-14C]mannitol were taken up and metabolized by the cells. Stressed cells accumulated sugars and free amino acids to a different extent resulting in altered cell sugar-to-amino acid ratios. The accumulation of osmotically active solutes and cell growth suppression may both be responsible for the accumulation of anthocyanin in stressed cells. 相似文献
5.
为了探究长期干旱胁迫下连翘不同器官的非结构性碳水化合物(NSC)含量与水力特性的协调及响应机制。以连续3年不同水分条件处理后的连翘幼苗为研究对象,设置3个水分处理(适宜供水、中度干旱胁迫和重度干旱胁迫),研究长期干旱胁迫后连翘幼苗的光合特性、生物量的分配、NSC各组分含量、水力特性的变化及其碳水两者之间的相关关系。结果表明:(1)适宜供水、中度干旱、重度干旱胁迫下,枝条的栓塞程度分别为30.7%、41.8%和42.3%,枝条导水率分别为0.95、0.71、0.65 kg m-1 s-1 MPa-1。(2)重度干旱胁迫显著降低了净光合速率、蒸腾速率、气孔导度、水分利用效率。(3)重度干旱胁迫导致地上和粗根生物量显著降低,细根生物量和根冠比显著增加。此外,各器官的NSC含量显著降低,其根系NSC消耗量最高,根系的可溶性总糖和淀粉含量显著降低,枝条的可溶性总糖、葡萄糖和蔗糖含量增加了12.9%、31.1%和45.7%,而淀粉含量降低了40.7%。(4)枝条栓塞程度和导水率与可溶性总糖、淀粉、蔗糖和葡萄糖含量显著相关,其栓塞程度与可溶性总糖、葡萄糖和蔗糖呈正相关,而与淀粉呈负相关(P<0.01)。综上所述,干旱导致连翘枝条木质部的栓塞程度增加,导水率、光合作用和水分运输效率均显著降低,但连翘通过提高枝条内可溶性总糖、葡萄糖、蔗糖含量和降低淀粉、NSC含量以提高植物在干旱条件下的存活机率及旱后水分恢复能力,研究为半干旱区连翘培育和经营提供理论依据。 相似文献
6.
Relationships between growth parameters and root respiration under various conditions of salinity were investigated in seedlings of the grey mangrove Avicennia marina (Forsk.) Vierh. Growth, root/shoot ratios, leaf succulence and osmotic potential of leaves were measured for seedlings grown for 6–8 weeks in 100, 50, 25 and 0% seawater. Oxygen uptake of root segments, from distal to proximal ends of roots, was measured for all treatments. Total growth was maximal in 25% seawater, highest leaf succulence was obtained in 50% seawater, and highest leaf osmotic potential in 100% seawater. Oxygen uptake in distal root segments, as measured both by Clark oxygen electrode and Warburg manometry, showed a stimulation in the presence of salt that closely paralleled growth stimulation. The rates of respiration were highest in 25% seawater. The oxygen uptake was not stimulated by salt per se, since concentrations higher than 25% were associated with a decline in rate of oxygen uptake from the maximum. Values for the respiratory quotient approximated to one in all treatments. Avicennia marina has been reported to exclude from its roots about 90% of the salt in the surrounding medium. It might have been expected that increased concentrations of salt in the growth medium would be associated with a standard salt respiration response in the roots; however, this was not obtained. 相似文献
7.
玉米叶片生长部位渗透调节和生长的生物物理参数变化 总被引:6,自引:0,他引:6
玉米叶片生长部位随着水分胁迫加剧ψ_w降低、LER减慢。LER从最大到零,快速干旱处理的ψw从-0.55降至-0.85 MPa;缓慢干旱处理ψ_w从-0.88降至-1.13 MPa。在任何一种LER下,缓慢干旱处理的ψ_s比快速干旱处理更低,生长停止时,前者为-1.57 MPa,而后者为-1.30MPa。缓慢干旱叶片尽管在更低ψ_w下,仍能维持一定膨压,保持一定的生长速率。经历长时间水分胁迫会改变细胞延伸生长的生物物理参数,增大临界膨压(0.08~0.09 MPa)。这是水分胁迫植株,在一定ψ_p下生长速率减慢的原因。 相似文献
8.
Developmental changes in tomato fruit composition in response to water deficit and salinity 总被引:6,自引:0,他引:6
Processing tomato ( Lycopersicon esculentum Mill. cv. UC82B) plants were subjected to moderate levels of water deficit and salinity (Na2 SO4 /CaCl2 ) in sand culture. Fruit water content and the relative contributions of organic and inorganic constituents to fruit solute potential (Ψ ) and soluble solids content were determined throughout development. Fruit Ψ averaged –0.63, –0.86 and –0.77 MPa in the control, salinity and water deficit plants, respectively. Reduced net water import and maintenance of solute accumulation, irrespective of water import, accounted for the reductions in Ψ of stressed fruits. Mineral ions (Na+ , K+ , Ca2+ , Mg2+ , Cl− and SO2- 4 ) contributed –0.31 MPa to Ψ in salinized fruit, compared with –0.19 MPa in control and water deficit treatments. Changes in net carbon accumulation were not observed among treatments, despite considerable differences in fruit K+ status. Starch accumulation in immature fruit was increased and hexose accumulation was decreased by both salinity and water deficit. Maximum starch levels were negatively correlated with total fruit Ψ , but were independent of fruit K+ . Organic acid levels were generally higher throughout development in salinized plants, relative to control plants, and correlated with increased inorganic cation rather than anion accumulation in these fruits. 相似文献
9.
高粱抗旱品种3197B比不抗旱品种三尺三在水分胁迫条件下ψ_S下降低。在相同ψ_S时,3197B相对含水量高于三尺三。水分胁迫期间,3197B能始终维持比三尺三较高的ψ_P。在中度和严重水分胁迫时,3197B几种渗透物质积累均高于三尺三,其中可溶性糖和K~ 对渗透调节贡献最大。水分胁迫下,3197B正展开叶渗透调节能力较强,ψ_P维持较高,临界膨压低,叶片扩张性能小、故生长速率随ψ_W下降较慢。 相似文献
10.
The water content-water potential relation in stressed and unstressed cassava ( Man-ihot species) was examined to ascertain (i) the magnitude of osmotic adjustment in response to water stress and (ii) the mechanisms of such adjustments.
Water stress resulted in a displacement of the water content-potential relation such that at any leaf water potential the water content was higher in the stressed plants. The osmotic potentials of turgid leaves (100% relative water content) were -0.97 and -1.00 MPa in the unstressed cultivars CMC 9 and MCOL 113 respectively. In the stressed plants, the values were-1.13 MPa (CMC 9) and-1.14 MPa (MCOL 113). The 0.14 to 0.16 MPa osmotic potential difference between the stressed and unstressed plants suggests that a stress-induced osmotic adjustment occurred in both cultivars. The biiSk volumetric elastic moduli at turgor pressures above 0.10 MPa were 9.84 MPa (CMC 9) and 13.58 MPa (MCOL 113) in the unstressed plants. Tbe higher values found in the stressed plants, 14.56 MPa in CMC 9 and 16.91 MPa in MCOL 113, suggest a stress-induced decrease in cell wall elasticity. Hence, the observed shift in the wafer content-potential relations in the cassava involved both an osmotic adjustment and a decrease in cell wall elasticity. Increasing the number of stress cycles per plant did not cause a further displacement of the water content-potential curves. 相似文献
Water stress resulted in a displacement of the water content-potential relation such that at any leaf water potential the water content was higher in the stressed plants. The osmotic potentials of turgid leaves (100% relative water content) were -0.97 and -1.00 MPa in the unstressed cultivars CMC 9 and MCOL 113 respectively. In the stressed plants, the values were-1.13 MPa (CMC 9) and-1.14 MPa (MCOL 113). The 0.14 to 0.16 MPa osmotic potential difference between the stressed and unstressed plants suggests that a stress-induced osmotic adjustment occurred in both cultivars. The biiSk volumetric elastic moduli at turgor pressures above 0.10 MPa were 9.84 MPa (CMC 9) and 13.58 MPa (MCOL 113) in the unstressed plants. Tbe higher values found in the stressed plants, 14.56 MPa in CMC 9 and 16.91 MPa in MCOL 113, suggest a stress-induced decrease in cell wall elasticity. Hence, the observed shift in the wafer content-potential relations in the cassava involved both an osmotic adjustment and a decrease in cell wall elasticity. Increasing the number of stress cycles per plant did not cause a further displacement of the water content-potential curves. 相似文献
11.
Studies were conducted to compare N mineralization rates in salt-amended nonsaline soils to naturally-occurring saline soils.
NaCl, CaCl2, and Na2SO4 were added to nonsaline soils at rates that produced electrical conductivities of the saturation extracts (ECe) of 5, 10, 15, and 20 dS m−1. Saline soils with similar properties were leached to the same ECc levels. N mineralization in the Chino soil was inhibited by salt addition, particularly with sodium and calcium chlorides.
In the Domino soil there was some inhibition of N mineralization with the chloride salts, but enhancement with Na2SO4 was observed. Nitrification in both soils was more sensitive to salt addition than ammonification.
N mineralization occurred more slowly in both leached saline soils compared to the salt-amended soils. Leached saline soils
often accumulated greater amounts of inorganic N compared to their native saline counterparts, particularly with the 5 dS
m−1 Chino soil (native, 44 dS m−1) and with the 5, 10, 15 and 20 dS m−1 Domino soils (native, 32 dS m−1). Kinetic parameters were estimated by the linear least squares (LLS) and the nonlinear least squares (NLLS) methods. Generally,
the LLS transformation estimated greater values of potentially mineralizable N (No) and lower rate constants (k). With the NLLS equation, No values for the leached saline soils were usually lower, and k values usually higher than in the salt-amended soils. The nonsaline
controls generally had the highest No and lowest k estimates. Average LLS rate constants for the salt-amended and leached saline soils were 0.055 and 0.083 for
the Chino, and 0.104 and 0.137 week−1, respectively, for the Domino soils. With the NLLS equation, average k values for the salt-amended and leached saline soils
were 0.087 and 0.089 for the Chino, and 0.181 and 0.387 week−1, respectively, for the Domino soils. These results suggest that N mineralization rates obtained in salt-amended nonsaline
soils may not be representative of those in naturally-occurring saline soils. 相似文献
12.
Leaf age and salinity influence water relations of pepper leaves 总被引:2,自引:0,他引:2
Plant growth is reduced under saline conditions even when turgor in mature leaves is maintained by osmotic adjustment. The objective of this study was to determine if young leaves from salt-affected plants were also osmotically adjusted. Pepper plants (Capsicum annuum L. cv. California Wonder) were grown in several levels of solution osmotic potential and various components of the plants' water relations were measured to determine if young, rapidly growing leaves could accumulate solutes rapidly enough to maintain turgor for normal cell enlargement. Psychrometric measurements indicated that osmotic adjustment is similar for both young and mature leaves although osmotic potential is slightly lower for young leaves. Total water potential is also lower for young leaves, particularly at dawn for the saline treatments. The result is reduced turgor under saline conditions at dawn for young but not mature leaves. This reduced turgor at dawn, and presumably low night value, is possibly a cause of reduced growth under saline conditions. No differences in leaf turgor occur at midday. Porometer measurements indicated that young leaves at a given salinity level have a higher stomatal conductance than mature leaves, regardless of the time of day. The result of stomatal closure is a linear reduction of transpiration. 相似文献
13.
ABSTRACT. Carbohydrates were extracted from dormant, stimulated and germinated spores of Nosema algerae . Concentrations of total sugars were measured by the Anthrone test. Non-reducing sugars were quantified by NaOH hydrolysis followed by the Anthrone reaction, and reducing sugars by the Nelson's test. Glucose was measured by the o -toluidine test and a glucose oxidase assay. The concentrations of trehalose in the cytoplasm of the dormant, ungerminated spore was estimated to be in excess of 1.0 M. Trehalose decreased by 70% during the five-minute course of germination. All of the lost trehalose was converted to reducing sugar of which 70–78% was glucose. The osmotic potential increase caused by catabolism of trehalose appears to be sufficient for germination. 相似文献
14.
Matos M.C. Rebelo E. Lauriano J. Semedo J. Marques N. Campos P.S. Matos A. Vieira-Da-Silva J. 《Photosynthetica》2004,42(3):473-476
Gas exchanges and leaf water potential (w) of six-years-old trees of fourteen Prunus amygdalus cultivars, grafted on GF-677, were studied in May, when fruits were in active growing period, and in October, after harvesting. The trees were grown in the field under rain fed conditions. Predawn w showed lower water availability in October compared with May. The lowest w values at midday in May increased gradually afterwards, while in October they decreased progressively until night, suggesting a higher difficulty to compensate the water lost by transpiration. However, relative water content (RWC) measured in the morning was similar in both periods, most likely due to some rainfall that occurred in September and first days of October that could be enough to re-hydrate canopy without significantly increasing soil water availability. The highest net photosynthetic rate (P
N) was found in both periods early in the morning (08:00–11:00). Reductions in P
N from May to October occurred in most cultivars except in José Dias and Ferrastar. In all cultivars a decrease in stomatal conductance (g
s) was observed. Photosynthetic capacity (P
max) did not significantly change from spring to autumn in nine cultivars, revealing a high resistance of photosynthetic machinery of this species to environmental stresses, namely high temperature and drought. Osmotic adjustment was observed in some cultivars, which showed reductions of ca. 23 % (Duro d' Estrada, José Dias) and 15 % (Tuono) in leaf osmotic potential (). Such decreases were accompanied by soluble sugars accumulation. The Portuguese cultivar José Dias had a higher photosynthetic performance than the remaining genotypes. 相似文献
15.
Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants 总被引:1,自引:0,他引:1
Susceptibility of alfalfa ( Medicago saliva L. cv. Aragón) nodules and leaves to water stress has been investigated. Nodule acetylene reduction activity (ARA), leaf CO2 exchange rate (CER) as well as soluble protein, proline and total soluble sugar (TSS) contents were determined during drought. Water status was estimated as water potential (Ψw ) and Relative water content (RWC) of the respective tissues. Maximum rates of ARA required higher Ψw than CER. Nodules had lower RWC for a given Ψw than leaves. Water stress reduced soluble protein content in both tissues; however, the decline in soluble protein content was detected at greater Ψw in nodules than in leaves. Proline and TSS increased in leaves and nodules, and again the threshold Ψw triggering such accumulation was higher in nodule tissues. Oior results suggest that alfalfa nodules are more susceptible to water shortage than leaves. Effects of accumulated TSS and proline upon leaf and nodule physiology are discussed in relation to protein stability (proline), pH control (proline) and osmotic adjustment (proiine and TSS). The TSS accumulation induced by water stress suggests that substrate shortage would not be the primary effect of drought on nodule activity. 相似文献
16.
以冬小麦品种济麦20和泰山22为材料,设置全生育期不灌水(W0)、灌冬水+拔节水(W1)、灌冬水+拔节水+开花水(W2)、灌冬水+拔节水+开花水+灌浆水(W3)4个处理,研究不同灌水处理对小麦倒二茎节间和叶鞘中水溶性碳水化合物含量和籽粒产量的影响.结果表明:两品种W0处理灌浆初期倒二茎节间和叶鞘的可溶性总糖、聚合度(DP) ≥4和DP=3的果聚糖含量最高,灌浆后期的果糖含量最高,这有利于倒二茎节间和叶鞘水溶性碳水化合物的积累与降解,从而提高千粒重,灌水处理间比较,济麦20的W1处理在灌浆初期倒二茎节间和叶鞘的DP≥4、DP=3果聚糖含量和灌浆中后期的可溶性总糖、果糖含量最高,其籽粒产量也最高;泰山22的W2处理在灌浆初期倒二茎节间和叶鞘的DP≥4、DP=3果聚糖含量最高,灌浆后期的果糖含量高于W1处理,其籽粒产量也最高,品种间比较,泰山22灌浆阶段的倒二茎节间和叶鞘的可溶性总糖、DP≥4果聚糖含量和灌浆后期的果糖含量高于济麦20.两品种的籽粒产量对水分处理的响应不同,济麦20的籽粒产量在W0和W1条件下高于泰山22,在W2和W3条件下低于泰山22.本试验中,济麦20的W1处理和泰山22的W2处理有利于倒二茎节间和叶鞘中水溶性碳水化合物的积累与降解,其籽粒产量显著高于其他处理,分别是两品种的最优水分处理. 相似文献
17.
探讨水分和腐植酸(HA)对燕麦不同器官非结构性碳水化合物(NSC)积累与分配的影响,进一步明确水分和HA对燕麦糖代谢和粒重形成的作用机制,可为旱作地区燕麦的推广种植提供理论指导和技术支撑。试验以‘蒙农大燕1号'和‘内燕5号'两个燕麦品种为材料,分别在旱作(无灌溉)和有限灌溉(拔节期和抽穗期每次灌水60 mm)两个水分条件下喷施HA与清水(CK),研究燕麦开花后不同时期NSC组分在茎、叶、穗中的动态变化以及叶片中碳代谢相关酶活性的变化。结果表明: 两个燕麦品种茎、叶、穗中的NSC组分含量均随开花后时间的延长先升高后降低,且两品种各器官中的NSC组分含量大致相同;与CK相比,在灌水条件下喷施HA后蒙农大燕1号穗部的果聚糖含量提升幅度明显大于旱作条件;喷施HA后蒙农大燕1号叶片中果聚糖外水解酶和转化酶活性分别显著提高了27.1%和30.6%,单穗粒重显著提高了55.9%,且与旱作条件下相比提高幅度更大;蒙农大燕1号籽粒千粒重和单穗粒重与叶片果聚糖含量呈显著正相关关系。综上,水分和腐植酸协同作用可以有效调节燕麦果聚糖的积累及主要代谢酶活性,从而提高千粒重和单穗粒重,促进产量形成。 相似文献
18.
Water relations of Capsicum genotypes under water stress 总被引:1,自引:0,他引:1
Pepper species and cultivars, Capsicum annuum cv. Bell Boy, C. annuum cv. Kulai and C. frutescens cv. Padi, differing in drought
tolerance were investigated for their water relations, stomatal responses and abscisic acid (ABA) content during water stress.
C. frutescens cv. Padi exhibited a greater osmotic adjustment than C. annuum cultivars. Stomatal conductance of cv. Bell Boy
was more sensitive to water stress than that of cvs. Kulai and Padi. In all pepper genotypes, stomatal closure was triggered
in the absence of a large decrease in leaf water status. ABA content in xylem sap and leaf was higher in C. annum cultivars
compared to C. frutescens cv. Padi.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
19.
The effect of water stress on plant water status and net photosynthetic gas exchange (PN) in six barley genotypes (Hordeum vulgare L.) differing in productivity and drought tolerance was studied in a controlled growth chamber. Osmotic adjustment (OA), PN, stomatal conductance (gs), and the ratio intercellular/ambient. CO2 concentration (Ci/Ca) were evaluated at four different levels of soil water availability, corresponding to 75, 35, 25 and 15 % of total available water. Variability in OA capacity was observed between genotypes: the drought tolerant genotypes Albacete and Alpha showed higher OA than drought susceptible genotypes Express and Mogador. The genotype Albacete exhibited also higher PN than the others at low water potential (Ψ). The ratios of PN/gs and Ci/Ca showed that differences in photosynthetic inhibition between genotypes at low Ψ were probably due to nonstomatal effects. In Tichedrett, a landrace genotype with a very extensive root development, OA was not observed, however, it exhibited a capacity to maintain its photosynthetic activity under water stress. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
20.
Hafiz Haider Ali Lynder Kebaso Sudheesh Manalil Bhagirath Singh Chauhan 《Plant Species Biology》2020,35(1):16-23
Sonchus oleraceus and Rapistrum rugosum are two rapidly emerging weeds of the northern grain region of Australia. To understand the ability of these weeds regarding their germination response to temperature and different soil moisture regimes, experiments were undertaken on the germination of these weeds at varying osmotic potential and temperature regimes. The experiment was conducted as a split-plot design with alternating day/night temperature regimes (15/5, 20/10, 25/15 and 30/20°C) as a main plot and osmotic potential regimes (0.0, −0.1, −0.2, −0.4, −0.6, −0.8 and −1 MPa) as a subplot. At different temperature regimes, there was 65–91% germination of S. oleraceus in water (0 MPa). There was 0–4% germination at −0.8 MPa and no germination at −1.0 MPa. Osmotic potential values that can cause 50% reduction in germination of S. oleraceus based on a sigmoid regression model ranged from −0.38 to −0.48 MPa. There was 33–81% germination of R. rugosum in distilled water (0 MPa), 1–3% germination at −0.8 MPa and no germination at −1.0 MPa. Osmotic potential values that can cause 50% reduction in germination of R. rugosum based on a sigmoid model ranged from −0.26 to −0.54 MPa. Results of the study were related to the emergence pattern of weeds during field survey and soil moisture profiles estimated by the Australian Landscape Water Balance Model and explain the emergence of these weeds outside the normal seasonal window of prevalence as a response to changes in weather. 相似文献