首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purified preparations of herpes simplex virus type 2 DNA polymerase made by many different laboratories always contain at least two polypeptides. The major one, of about 150,000 molecular weight, has been associated with the polymerase activity. The second protein, of about 54,000 molecular weight, which we previously designated ICSP 34, 35, has now been purified. The purified protein has been used to prepare antisera (both polyclonal rabbit serum and monoclonal antibodies). These reagents have been used to characterize the protein, to demonstrate its quite distinct map location from that of the DNA polymerase on the herpes simplex virus genome, and to demonstrate the close association between the two polypeptides.  相似文献   

2.
A high molecular weight DNA polymerase has been purified from the cytosol of a fast growing hepatoma: LF hepatoma. This enzyme sediments at 11.3 S under polymerization reaction conditions (6 mM KCl) and at 8.3 S in higher salt concentrations (200 mM KCl). In either case, no activity is seen in the 3 to 4 S region where low molecular weight DNA polymerase is found. The purified enzyme has a neutral pH optimum and requires a divalent cation, all four deoxyribonucleoside triphosphates and an initiated DNA template for maximal activity. The synthetic template specificity of LF DNA polymerase has been studied. Although this enzyme cannot copy a polyribonucleotide template, the ribostrand of a synthetic hybrid can be used with low efficiency as an initiator for the synthesis of the complementary deoxyribonucleotide strand. The activity of the purified enzyme is strongly inhibited by thiol-blocking agents. The general properties of LF DNA polymerase are similar to those of high molecular weight mammalian DNA polymerases. In our experimental conditions, the error frequency of this tumoral DNA polymerase was no greater than that made by the purified high molecular weight DNA polymerase of regenerating rat liver.  相似文献   

3.
Thermus aquaticus DNA polymerase was shown to contain an associated 5' to 3' exonuclease activity. Both polymerase and exonuclease activities cosedimented with a molecular weight of 72,000 during sucrose gradient centrifugation. Using a novel in situ activity gel procedure to simultaneously detect these two activities, we observed both DNA polymerase and exonuclease in a single band following either nondenaturing or denaturing polyacrylamide gel electrophoresis: therefore, DNA polymerase and exonuclease activities reside in the same polypeptide. As determined by SDS-polyacrylamide gel electrophoresis this enzyme has an apparent molecular weight of 92,000. The exonuclease requires a divalent cation (MgCl2 or MnCl2), has a pH optimum of 9.0 and excises primarily deoxyribonucleoside 5'-monophosphate from double-stranded DNA. Neither heat denatured DNA nor the free oligonucleotide (24-mer) were efficient substrates for exonuclease activity. The rate of hydrolysis of a 5'-phosphorylated oligonucleotide (24-mer) annealed to M13mp2 DNA was about twofold faster than the same substrate containing a 5'-hydroxylated residue. Hydrolysis of a 5'-terminal residue from a nick was preferred threefold over the same 5'-end of duplex DNA. The 5' to 3' exonuclease activity appeared to function coordinately with the DNA polymerase to facilitate a nick translational DNA synthesis reaction.  相似文献   

4.
RNA-dependent DNA polymerase and gs-antigen were purified simultaneously from Rauscher leukemia virus by sequential column chromatography on phosphocellulose. The partially purified RNA-dependent DNA polymerase has a molecular weight of 70,000 and is free of cellular DNA polymerase, deoxynucleotidyl terminal transferase, RNase and DNase. The partially purified RNA-dependent DNA polymerase can efficiently copy oligo dT·poly rA and oligo dG·poly rC. The purified gs-antigen shows a single band on SDS-polyacrylamide gel with a molecular weight of 30,000. It is active immunologically and possesses both group and interspecies activity.  相似文献   

5.
Four DNA polymerases from the marine diatom Cylindrotheca fusiformis, polymerases A, B, C and D, were further differentiated by their subcellular localization, presence of deoxyribonuclease activity, apparent heterogeneity and molecular weights. Polymerases A, B and D occur in significant amounts in the soluble fraction, suggesting that they were originally localized in the nuclei, whereas polymerase C predominates in the chloroplasts. A mitochondrial DNA polymerase was also isolated and characterized by ion-exchange chromatography. Polymerase D has an associated nuclease activity which prefers denatured DNA and Mg2+, and has a pH optimum higher than that for polymerase activity. Co-elution from a DEAE-Sephadex column and co-sedimentation in glycerol density gradients of deoxyribonuclease and polymerase D activity suggest a molecular association. Polymerases A, B and C are devoid of nuclease activity. Glycerol-gradient-sedimentation analysis showed that all DNA polymerase fractions are heterogeneous at low ionic strengths, with the appearance of a single homogeneous activity of 0.5M-KCl. Estimated molecular weights of 100000, 82000 and 120000 for polymerases A, B and C respectively were obtained from sedimentation analysis and gel filtration. Polymerase D was estimated to have a molecular weight of about 100000 as determined by sedimentation analysis alone.  相似文献   

6.
Further studies on partially purified calf thymus DNA polymerase a.   总被引:3,自引:3,他引:0       下载免费PDF全文
Attempts to prevent the urea conversion of a 200-230,000 molecular weight DNA polymerase alpha to a 150-170,000 molecular weight form by the inclusion of protease inhibitors have not been successful. No other method has been found capable of dissociating a 50-70,000 fragment or subunit from the DNA polymerase subunit. Addition of this 50-70,000 subunit to the polymerase subunit does not aid the binding of the enzyme to DNA, but does have an effect on the utilisation of synthetic template-initiator complexes by the polymerase subunit.  相似文献   

7.
In vitro and in vivo studies of Trypanosoma cruzi DNA polymerase   总被引:1,自引:0,他引:1  
One major DNA polymerase has been purified and characterized from Trypanosoma cruzi. The enzyme has a sedimentation coefficient of 6.8 S corresponding to an approximate molecular weight of 180,000 assuming a globular shape. The enzyme recognizes activated DNA very efficiently, as well as synthetic polydeoxynucleotides, whereas poly rA-dT12 is very poorly utilized. Trypanosoma cruzi DNA polymerase is not inhibited at all by aphidicolin, while araCTP inhibits the enzyme very slightly. The purified enzyme is strongly inhibited by N-ethyl maleimide, dideoxyTTP, ethidium bromide and berenil. All our attempts to find a DNA polymerase sensitive to aphidicolin in vitro have failed, nor have we been able to find a low molecular weight DNA polymerase in this organism. However, when DNA synthesis was studied in whole trypanosomes, aphidicolin was shown to inhibit DNA synthesis more efficiently than ethidium bromide and berenil.  相似文献   

8.
Studies on Vaccinia Virus-Directed Deoxyribonucleic Acid Polymerase   总被引:1,自引:9,他引:1       下载免费PDF全文
A vaccinia-directed deoxyribonucleic acid (DNA) polymerase has been partially purified from the cytoplasmic fractions of virus-infected HeLa cells. The utilization of natural and synthetic templates by this enzyme resembles that of the host cell DNA-dependent DNA polymerases. The vaccinia DNA polymerase cannot copy ribopolymers or ribonucleic acid but is very effective with an "activated" DNA as template. An exonuclease preferring single-stranded DNA as substrate is found in the most highly purified preparations of the enzyme. The molecular weight of the vaccinia DNA polymerase seems to be about 110,000. The viral DNA polymerase is also found to be associated with purified, infected cell nuclei, and this association may be due, at least in part, to nonspecific adsorption of the vaccinia DNA polymerase by nuclei.  相似文献   

9.
DNA polymerase has been purified about 25,000-fold from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. On SDS-PAGE the enzyme was observed to have a molecular weight of 100 kDa and to be about 90% pure. The native molecular weight was 108 kDa indicating that the enzyme is composed of a single polypeptide. Activity gel analysis showed an active polypeptide of about 100 kDa. Under conditions promoting proteolysis this polypeptide was degraded to a slightly smaller form of 98 kDa. The enzyme has been characterized in respect to optimal assay conditions, template specificity, sensitivity to inhibitors and associated nuclease activities. The high temperature optimum of 65 degrees C should be emphasized. No substantial similarities have been found with other prokaryotic and eukaryotic DNA polymerases, although the enzyme bears certain resemblances to prokaryotic non-replicative polymerases.  相似文献   

10.
An RNA-dependent DNA polymerase was isolated from purified virions of endogenous oncornaviruses released by the MOPC-315 murine myeloma cell line. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified enzyme was found to consist of two major polypeptides with molecular weights of about 28,000 and 26,500. The active enzyme had a molecular weight of approximately 56,000, as calculated from its sedimentation on glycerol density gradients, indicating that it is probably a dimer of the two subunit polypeptides. The isolated MOPC-315 virus polymerase exhibited all three activities known to be found in the DNA polymerase from oncornaviruses, namely, an RNA-dependent DNA polymerase, a DNA-dependent DNA polymerase, and an RNase H. The RNA-dependent polymerase activity showed a prounced preference for Mn2+ over Mg2+, whereas the DNA-dependent and RNase H reactions were catalyzed by these two cations to an almost equal extent. The purified polymerase was found to be immunologically related to the polymerase of Rauscher murine leukemia virus.  相似文献   

11.
Two high molecular weight DNA polymerases, which we have designated delta I and delta II, have been purified from calf thymus tissue. Using Bio Rex-70, DEAE-Sephadex A-25, and DNA affinity resin chromatography followed by sucrose gradient sedimentation, we purified DNA polymerase delta I 1400-fold to a specific activity of 10 000 nmol of nucleotide incorporated h-1 mg-1, and DNA polymerase delta II was purified 4100-fold to a final specific activity of 30 000 nmol of nucleotide incorporated h-1 mg-1. The native molecular weights of DNA polymerase delta I and DNA polymerase delta II are 240 000 and 290 000, respectively. Both enzymes have similarities to other purified delta-polymerases previously reported in their ability to degrade single-stranded DNA in a 3' to 5' direction, affinity for an AMP-hexane-agarose matrix, high activity on poly(dA) X oligo(dT) template, and relative resistance to the polymerase alpha inhibitors N2-(p-n-butylphenyl)dATP and N2-(p-n-butylphenyl)dGTP. These two forms of DNA polymerase delta also share several common features with alpha-type DNA polymerases. Both calf DNA polymerase delta I and DNA polymerase delta II are similar to calf DNA polymerase alpha in molecular weight, are inhibited by the alpha-polymerase inhibitors N-ethylmaleimide and aphidicolin, contain an active DNA-dependent RNA polymerase or primase activity, display a similar extent of processive DNA synthesis, and are stimulated by millimolar concentrations of ATP. We propose that calf DNA polymerase delta I, which also has a template specificity essentially identical with that of calf DNA polymerase alpha, could be an exonuclease-containing form of a DNA replicative enzyme.  相似文献   

12.
An RNAase-sensitive DNA polymerase from rat cells transformed by avian sarcoma virus has been characterized. The enzyme requires RNA for its activity, as shown by its sensitivity to RNAase with endogenous as well as exogenous DNA templates. This sensitivity is maintained after its purification by sucrose gradients and ion exchange columns. A molecular weight of about 100 000 has been estimated. This DNA polymerase requires high salt concentration for its activity, is resistant to high concentrations of phosphonoacetic acid (400 micrograms/ml), is partially inhibited by 5 mM N-ethylmaleimide, and is completely inhibited by 0.3 mM parahydroxymercuribenzoate.  相似文献   

13.
Mitochondrial DNA polymerase (DNA polymerase mt) exists in two active forms. DNA polymerase present in crude extract (M-I) and ammonium sulfate precipitate (M-II) stages of purification sediments at 12.1S. The enzyme at the M-II stage of purification has a molecular weight of approximately 250,000 as determined by Sephadex G-200 chromatography in buffers of low ionic strength. In buffers containing 0.15 m NaCl, the enzyme sediments at 9.4S and has a molecular weight of approximately 190,000. When the enzyme is further purified on diethylaminoethyl cellulose (M-III stage of purification), the 9.4S activity predominates. Addition of a polymerase-free fraction from the M-III stage of purification changes the sedimentation coefficient of the enzyme from 9.4 to 12.1S.  相似文献   

14.
Herpes simplex virus-induced DNA polymerase purified by published methods was found to be contaminated with many others proteins, including virus structural proteins. Thus, DEAE-cellulose and phosphocellulose chromatography were used in combination with affinity chromatography to purify DNA polymerase from herpes simplex virus type 1- and type 2-infected cells. The purified enzyme retained unique features of the herpesvirus-induced DNA polymerase, including a requirement for high salt concentrations for maximal activity, a sensitivity to low phosphonoacetate concentrations, and the capacity to be neutralized by rabbit antiserum to herpesvirus-infected cells. By polyacrylamide gel electrophoresis, the purified DNA polymerase was associated with a virus-induced polypeptide of about 150,000 molecular weight.  相似文献   

15.
Conversion of DNA polymerase extracted from rat ascites hepatoma cells   总被引:2,自引:0,他引:2  
DNA polymerase extracted fresh from rat ascites hepatoma cells possesses high molecular weight, maximal activity at neutral pH, and high sensitivity to N-ethylmaleimide (NEM). After physical and chemical treatment of the enzyme fraction, the appearance of low molecular weight DNA polymerase was detected by means of Sephadex gel filtration or sucrose density gradient centrifugation. This low molecular weight DNA polymerase possesses alkaline pH optimum, preference of native DNA as template/primer, and relative resistance to NEM.  相似文献   

16.
D Revie  M E Dahmus 《Biochemistry》1979,18(9):1813-1820
A heat-stable protein (HSF) that stimulates the activity of lamb thymus RNA polymerase II has been purified 2500-fold and partially characterized. This factor stimulates the activity of RNA polymerase II up to 13 times and retains complete activity when heated at 90 degrees C for 5 min. Stimulation is observed only in the presence of RNA polymerase II and requires native DNA as template. The stimulatory factor has a sedimentation coefficient of 2.7 S, a diffusion coefficient of 9.55 x 10(-7) cm2/s, and an isoelectric point of 8.0. Calculated from the sedimentation and diffusion data, the factor has a molecular weight of about 24,000. Electrophoresis of the purified factor on polyacrylamide gels in the presence of sodium dodecyl sulfate results in a single band corresponding to a molecular weight of 25,000. The number-average length of the RNA synthesized by RNA polymerase II is increased in the presence of the factor. Sedimentation velocity and exclusion chromatography experiments suggest that the stimulatory factor interacts with RNA polymerase II. These results suggest that the factor stimulates RNA synthesis through a direct interaction with RNA polymerase II. The stoichiometry of the HSF-RNA polymerase binding appears to be about 1:1. HSF is located in the nucleus, as determined by cell fractionation studies.  相似文献   

17.
Modification of the purification procedures for rabbit bone marrow DNA polymerase [Byrnes, J.J., & Black, V.L. (1978) Biochemistry 17, 4226-4231] has increased the yield and stability of the enzyme thus allowing further purification. In particular, the higher molecular weight form, alpha 1, has been more abundant. Additional purification has been obtained upon phosphocellulose and chromatofocusing column chromatography. SDS slab gel electrophoretic analyses of the eluates demonstrate a 135,000 molecular weight polypeptide in nearly pure form which correlates with DNA polymerase activity. Approximately 200,000 nmol of thymidine monophosphate is incorporated into DNA (mg of protein) -1h -1 at 37 degrees C. Similar to DNA polymerase alpha from other sources this enzyme is an acidic protein, is very sensitive to aphidicolin, and has no detectable 3' to 5' nuculease activity.  相似文献   

18.
It has often been suggested that the high molecular weight DNA polymerase alpha of eukaryotes plays a role in de novo replication of DNA, while the low molecular weight polymerase beta is involved in repair replication. Previous studies have shown that when diethylnitrosamine is fed in the diet to rats it causes after a few weeks an increase in de novo replication of DNA, which then returns to normal values. In contrast, repair replication may be expected to continue throughout the feeding period. Study of DNA polymerase activity in livers of animals during carcinogenesis showed that an increase in polymerase alpha occurred at the time of increased de novo replication, while there was a gradual increase in polymerase beta during the time diethylnitrosamine was present in the diet. When diethylnitrosamine treatment was stopped, there was a rapid drop in polymerase beta activity. These results support the view that the polymerase alpha is involved in DNA replication, that the polymerase beta functions in repair replication, and that the beta enzyme can be induced by chronic damage to DNA.  相似文献   

19.
DNA polymerase delta: one polypeptide, two activities   总被引:17,自引:0,他引:17  
L P Goscin  J J Byrnes 《Biochemistry》1982,21(10):2513-2518
DNA polymerase delta from rabbit bone marrow has an associated 3'-5'-exonuclease. Previous studies demonstrated a Stokes radius of 45.5 A by gel filtration and a sedimentation coefficient of 6.5 S by zone sedimentation. Thus, a molecular weight of 122000 and a frictional coefficient of 1.39 were calculated [Byrnes, J. J., & Black, V. L. (1978) Biochemistry 17, 4226-4231]. Several problems obstructed further purification and definition of DNA polymerase delta. The small amount of protein obtained limited further purification as the nonspecific loss of enzyme in subsequent procedures was excessive. Furthermore, the amount of protein recovered was insufficient for conventional analysis. These difficulties have been overcome, and DNA polymerase delta has been purified to apparent homogeneity. Under conditions of nondenaturing microgel electrophoresis, DNA polymerase b aggregates to molecular weight species of 300000 and higher. In situ assays for DNA polymerase and exonuclease in these gels generate concordant activity profiles. Upon sodium dodecyl sulfate gel electrophoresis, delta is a single polypeptide of 122000 apparent molecular weight. The DNA polymerase incorporates between 250000 and 300000 nmol of thymidine deoxyribonucleoside monophosphate (dTMP) into poly(dA)/oligo(dT) (mg of protein)-1 h-2 at 37 degrees C; the exonuclease simultaneously hydrolyzes 13% of the newly synthesized DNA. Aphidicolin, considered to be a specific inhibitor of DNA polymerase alpha, inhibits both the DNA polymerase and 3'-5'-exonuclease activities of delta. DNA polymerase alpha from rabbit bone marrow does not share a common subunit with delta. Therefore, aphidicolin binding is not specific for alpha, and conclusions based upon the supposition that it is must be reconsidered.  相似文献   

20.
The major DNA polymerase activity of wild-type U. maydis has been extensively purified. It possesses a molecular weight of about 150,000 daltons and appears to require a DNA primer with a 3'-hydroxyl terminus as well as a template. The polymerase activity has also been purified from the pol 1-1 strain, which is temperature sensitive fro growth and DNA synthesis, and which at the restrictive temperature contains only 10-25% levels of the DNA polymerase activity obtained from wild-type strains. It was similar in all properties studied, except that the activity was thermolabile at 40 degrees C compared to that from the wild-type strain. Physiological studies on the mutant showed that it was only slightly sensitive to UV, ionising radiation and nitrosoguanidine at the permissive temperature, and was proficient in genetic recombination. The results suggest that the pol 1-1 gene product does not play an important role in repair and recombination processes within the cell, and that its primary function lies in replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号