首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Changes in outward potassium current occurring in response to changes in the concentration of potassium ions in the extracellular medium were investigated in unidentified neurons isolated fromHelix pomatia using an intracellular perfusion technique. It was found that introducing potassium ions (5–10 mM) into the extracellular solution produces a reversible increase in the component of outward potassium current which is dependent on extracellular calcium ions. Increased amplitude of this component occurs as a result of attenuated inactivation of the current under the action of extracellular potassium.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 351–356, May–June, 1987.  相似文献   

2.
The effects of the calmodulin antagonists, calmidazolium (R 24571) and chlorpromazine on delayed outward potassium current at the somatic membrane were investigated in non-identified intracellularly perfused neurons isolated fromHelix pomatia. Voltage was clamped at the membrane. Extracellular application of these substances produced effective depression of the outward current. This effect even occurred at test substance concentrations of 10–9–10–8 M. Block-ade of delayed outward current was produced mainly as a result of suppressing the potassium current component dependent on intracellular potassium ions (Ik(Ca/in)). The possibility that the receptor for intracellular calcium responsible for modulating this current may be of a calmodulin-like nature is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 356–361, May–June, 1987.  相似文献   

3.
Techniques of intracellular dialysis and neuronal perfusion in the visceral ganglion ofLymnaea stagnalis used during voltage-clamping at the neuronal membrane helped to ascertain that a concentration of 1×10–16–1×10–6 M neuroactive peptides (vasopressin, oxytocin, and vasotocin) alter the amplitude of electrically-operated transmembrane ionic currents considerably without affecting the kinetics of current activation and inactivation and surface potential at the membrane. The experimental conditions applying made it possible to record incoming sodium and calcium currents separated from each other as well as outward delayed and transient potassium currents. It was found that electrically-operated cerebral currents could either increase or decline in amplitude under the effects of peptides applied at different concentrations to the membrane of the same unit. Receptors of the peptides investigated in this study are thought to be located within the structure of electrically-operated channels at the neuronal membrane.A. I. Gertsen Teaching Institute, Leningrad. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 526–533, July–August, 1990.  相似文献   

4.
Peak amplitude of transient and delayed outward current declined in identified nerurons of the olderLymnaea stagnalis specimens. This could be due to age-dependent alteration not in the total neuronal surface area but in the phospholipid content of the membrane. Age-dependent dynamics of potassium channel function could underlie the alteration observed in neuronal function during ageing.Institute of Gerontology, Academy of Medical Sciences of the USSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 3–7, January–February, 1989.  相似文献   

5.
Investigation of isolated neurons ofHelix pomatia during intracellular dialysis revealed differences in the sensitivity of the channels for the outward potassium and inward calcium currents to changes in pH of the external medium. As a result of this difference, considerable separation of the regions of activation of the currents was obtained along the potential axis in solutions with low pH and the characteristics of the inward and outward currents could be studied during their minimal application. Channels for the outward current were shown to have some permeability for tris ions (PTris:PK=0.05), which is the reason why it is impossible to block this current completely by replacing the intracellular potassium by Tris. Channels for the inward calcium current are characterized by slow inactivation, with a first-order kinetics; their momentary voltage-current characteristic curve reveals significant Goldman's rectification. The selectivity of the calcium channels for other bivalent cations is: Ba:Sr:Ca:Mg=2.8:2.6:1.0:0.2.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 645–653, November–December, 1978.  相似文献   

6.
Potassium currents through the somatic membrane of giant neurons ofHelix pomatia in normal (10 mM Ca) Ringer's solution and low-calcium (1 mM Ca) solution were studied by the voltage clamp method. With a decrease in the Ca concentration to 1 mM peak potassium conductance versus membrane, potential curves and inactivation curves were shifted along the voltage axis in the negative direction by about 10 mV. Inactivation of the delayed potassium current was slowed in low Ca solution. The effect of a decrease in external calcium concentration on volt-ampere and inactivation characteristics increased with a rise in external pH. These effects of a low Ca concentration on potassium mechanisms of the giant neuron somatic membrane can be attributed to changes in the negative surface potential in the region of the potassium channels.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Institute of Biology, Hungarian Academy of Sciences, Tihany. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 400–409, July–August, 1976.  相似文献   

7.
The time course of weakening of inward calcium currents (inactivation) during prolonged (of the order of 1 sec) depolarizing shifts of membrane potential was studied in isolated dialyzed neurons of snailHelix pomatia. This decay of the current recorded in this way can be approximated by two exponential functions with time constants of 20–70 and 250–350 msec, respectively. With an increase in pH of the intracellular solution to 8.5 the fast component of the decay disappeared completely; the kinetics of the slow component in this case was very slightly retarded. It is concluded that the fast component of decay of the recorded current does not reflect a change in the calcium current but is due to parallel activation of the nonspecific outward current; the slow component, however, is true in activation of the calcium current. The rate of inactivation of this current was shown to be determined by its maximal value and not by the level of the depolarizing potential shift and it depends on the conditions of accumulation of calcium ions near the inner surface of the membrane.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 525–531, September–October, 1982.  相似文献   

8.
Two new types of calcium channels were discovered during research in ionic currents in the somatic membrane ofHelix pomatia neurons, using an intracellular perfusion technique. Apart from the principal calcium current described in the literature with a holding potential of about –110 mV, an additional calcium current was observed activated at depolarizations of –40 to –80 mV and was not reduced when the cell was perfused with solutions containing fluoride anions. The kinetics of this current were well described in the context of the Hodgkin and Huxley model with a time constant of activation of 6–8 msec and of inactivation of 300–600 msec. It increased in amplitude as the Ca++ rose in the cellular environment but was reduced by extracellular addition of the Ca++ antagonists Co++, Ni++, and Cd++, and the organic blockers nifedipine and verapamil. The association constants of these substances with corresponding channels determined from the maximum of the current-voltage relationship were 2 (Ca++), 3 (Co++), 0.06 (nifedipine), and 0.2 mM (verapamil). The properties detected in this component of calcium conductance are compared with those of calcium channels in other excitatory formations and its possible functional role is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 627–633, September–October, 1985.  相似文献   

9.
By intracellular dialysis of isolated neurons of the mollusksHelix pomatia andLimnaea stagnalis and by a voltage clamp technique the characteristics of transmembrane ionic currents were studied during controlled changes in the ionic composition of the extracellular and intracellular medium. By replacing the intracellular potassium ions by Tris ions, functional blocking of the outward potassium currents was achieved and the inward current distinguished in a pure form. Replacement of Ringer's solution in the extracellular medium with sodium-free or calcium-free solution enabled the inward current to be separated into two additive components, one carried by sodium ions, the other by calcium ions. Sodium and calcium inward currents were found to have different kinetics and different potential-dependence: mNa=1±0.5 msec, mCa=3±1 msec, hNa=8±2 msec, hCa=115±10 msec (Vm=0), GNa=0.5 (Vm=–21±2 mV), GCa=0.5 (Vm=–8±2 mV). Both currents remained unchanged by tetrodotoxin, but the calcium current was specifically blocked by cadmium ions (2·10–3 M), verapamil, and D=600, and also by fluorine ions if injected intracellularly. All these results are regarded as evidence that the soma membrane of the neurons tested possesses separate systems of sodium and calcium ion-conducting channels. Quantitative differences are observed in the relative importance of the systems of sodium and calcium channels in different species of mollusks.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 2, pp. 183–191, March–April, 1976.  相似文献   

10.
The action potential (AP) of the giant neuron of the molluskPlanorbis corneus exhibits an increased sensitivity of the spike overshoot to external sodium concentration in solutions containing a significantly lowered concentration of calcium. These results suggest that during the AP both sodium and calcium ions may act as carriers of the inward-directed current. During repeated responses the role of calcium ions in AP generation increases while that of sodium decreases. A delay in repolarization can occasionally be observed at the beginning of the falling phase of the AP. This delay is considered to be a result of a decrease in efficiency of the repolarizing action of the outward potassium current due to competition from a current entering the cell at the time of the falling phase. Results suggest that the carrier of this inward current is calcium.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 109–117, July–August, 1969.  相似文献   

11.
A dual-microelectrode voltage clamp technique was used for recording voltage-dependent calcium current (Ica) in unidentified neurons isolated fromHelix pomatia. Neither intracellular injection of cyclic adenosine monophosphate (cAMP; 10 nA, 5 min) nor intracellular application of dibutyril-cAMP (dcAMP; 1 mM, 10–20 min) induced a change in normal Ica or produce a reversible 10–20% reduction in amplitude. Adding S-100 protein fraction antibodies to the external medium led to the onset of calcium-dependent inactivation of Ica, bringing amplitude of Ica down to 15±12% of its initial level. Either cAMP or dcAMP then restored inhibited Ica to 50±11% of its original level. It was found that the effects of cAMP on Ica of intact neurons depend on level of cytoplasmic Ca2+.Institute for Brain Research, All-Union Center for Mental Health Research, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 247–252, March–April, 1989.  相似文献   

12.
The effects of 10–10–10–5 M parathyroid hormone (PTH) on voltage-dependent potassium channels at theHelix pomatia neuronal membrane were investigated in voltage-clamped experiments using intracellular perfusion techniques. The hormone was found to produce a 2-stage effect on calcium current (ICa). The initial, brief stage of PTH action consisted of a minor (7–10%) increase in ICa and was partially reversible. This was followed by the second (slow) stage, developing for 60–70 min, whereupon level of ICa doubled. This hormonal action was not easily reversed and did not occur unless the intracellular solution contained ATP or the hormone was applied after perfusing the cell. Introducing 10 mM EDTA into the perfusate induced a considerable decline in PTH effects. Adding concentrations of 100 and 60 µM of exogenous cAMP and cGMP, respectively, did not imitate the action of this hormone. The first-mentioned effect is thought to be produced by indirect PTH action on channel protein or structures closely associated with the channel and the second by metabolic processes, possibly the phosphoinositide pathway of signal transmission.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Medical Institute, Erevan. Translated from Neirofiziologiya, Vol. 22, No. 3, pp. 373–380, May–June, 1990.  相似文献   

13.
The effects of quinine on the peak amplitude and the decay of calcium currents (ICa) were investigated in nonidentified neurons isolated fromHelix pomatia. A concentration of 1×10–5–5×10–4 M quinine was found to produce a reversible dose-dependent deceleration in the decline of ICa ("lead" effect) and a reversible, slowly evolving dose-dependent reduction in ICa amplitude ("lag" effect). A reduction in amplitude down to half control level is observed at a quinine concentration of 6 ×10–5 M, while the current-voltage relationship of ICa shifts by 5–10 mV towards negative potentials. Results show that quinine successfully blocks calcium channels inHelix pomatia neurons.Institute of Brain Research, All-Union Mental Health Research Center, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 413–417, May–June, 1987.  相似文献   

14.
Steady-state current-voltage characteristics of the membrane and ionic currents arising during changes in membrane potential in bursting neurons ofHelix pomatia were studied by the voltage clamp method. The steady-state current-voltage characteristics of the membrane were shown to have a nonlinear region. Replacement of sodium ions by Tris-HC1 ions in the external solution completely abolishes this nonlinearity. Hyperpolarization of the membrane under voltage clamp conditions leads to the development of an outward current which reaches a maximum and then is inactivated. This current has a reversal potential in the region of the potassium equilibrium potential. Depolarization of the membrane to the threshold value for excitation of uncontrollable regions of the axon hillock causes the appearance of a slow inward current. After reaching a maximum, the inward current falls to zero. A model of generation of waves in a bursting neuron is suggested.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 193–202, March–April, 1978.  相似文献   

15.
Kononeko  N. I.  Osipenko  O. N. 《Neurophysiology》1988,20(5):477-483
Inward current produced by applying oxytocin (OT) to the neuronal soma (OTI) current) under conditions of voltage-clamping at the cell membrane was investigated inHelix pomatia. Replacing sodium with Tris ions in the external medium produced a considerable decline in OTI current. A reduction in the external concentration of chlorine ions by replacement with HEPES ions induced an increase in OTI current and a shift in its current-voltage relationship towards depolarization values. The presence of furosemide in the external solution reversibly inhibited OTI current. This current likewise declined reversibly following external application of imidazole and tolbutamide but was increased by theophylline action. It was inferred that OT receptors are present on the surface membrane of someHelix neurons which, when activated, lead to increased chlorine permeability — a process apparently mediated via the cyclic nucleotide system.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR. Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 652–659, September–October, 1988.  相似文献   

16.
Currents passing through individual potassium channels with anomalous (inward) rectification were recorded at the neuronal membrane ofPlanorbarius corneus using the patch clamp technique. These currents could be detected, whether in "right side out" or "inside out" configurations in the presence of 50 mM potassium ions or one of the potassium channel blockers: tetraethylammonium (TEA), barium, or cesium (2–20 mM) on the external side of the membrane. Inward currents were observed in individual channels at potentials more negative than level of potassium equilibrium potential (Ek); conductance of these measured 81±12 pS (n=11). At more positive potentials than Ek, conductance fell to zero. Potassium channels with anomalous (inward) rectification inPlanorbarius corneus resemble equivalent channels in other cells in their kinetics: time scale of the open state may be described by a single exponential function. This would imply that the ionic channel has a single open state. Time scale of the closed state was biexponential, thus indicating the possible existence of two kinetically different nonconducting states of the potassium channel with anomalous (inward) rectification at the neuronal membrane ofPlanorbarius corneus.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 31–38, January–February, 1989.  相似文献   

17.
Early membrane currents of the isolated neuron soma of the mollusksHelix pomatia,Limnaea stagnalis, andPlanorbis corneus in normal and sodium-free solutions differing in their calcium ion concentration were investigated by the voltage clamp method. The early inward current was shown to continue when the sodium ions in the external solution were replaced by an equivalent number of calcium ions and to be increased with an increase in the concentration of those ions in all neurons of these mollusks investigated. A change in the calcium concentration in the external solution shifted the inactivation curves and also the curves of conductance for the inward current along the potential axis. It is concluded that a system of calcium channels exists in the somatic membrane of neurons in these species of mollusks.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 6, pp. 621–627, November–December, 1973.  相似文献   

18.
The action of purified toxin from the sea anemoneHomostichanthus duerdemi (HTX-1) on the inward sodium current was studied in experiments on isolated neurons from rat spinal ganglia and neuroblastoma cells of clone N-18F1, by an intracellular perfusion and voltage clamp method. HTX-1 was found to delay inactivation of the tetrodotoxin-(TTX-)sensitive inward sodium current and to make it incomplete, but virtually without affecting its activation. The relationship between the fraction of sodium channels modified by the toxin and the HTX-1 concentration is described by a Langmuir isotherm with association constant of (1.1 ± 0.1)·10–7 M (holding potential –100 mV). Under the influence of the toxin the peak inward sodium current was increased by about 80%. Binding of HTX-1 with TTX-sensitive sodium channels is distinguished by strong potential-dependence: at a holding membrane potential of 0 mV the binding constant was an order of magnitude less than at a potential of –100 mV. In the case of brief action of HTX-1 on the nerve cell membrane (under 5 min) the effect of the toxin was completely reversible, but if the time of action of HTX-1 exceeded 30 min, subsequent washing with normal solution for 90 min did not abolish the effect completely.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Pacific Institute of Bioorganic Chemistry, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 402–409, July–August, 1982.  相似文献   

19.
The action of a raised intracellular pH (pHi) on transmembrane ionic currents was investigated on isolated unidentified neurons ofHelix pomatia under intracellular dialysis and membrane voltage clamping conditions. With a rise in pHi from 7.3 to 9.0 and in the simultaneous presence of an inward calcium current, the outward potassium current was considerably reduced and the current-voltage characteristic curve was shifted toward more positive membrane potential values. The inward calcium current was practically unchanged in this case. If, however, the calcium current was inhibited by the action of cadmium ions, no decrease in the outward current was observed, only a shift of the IK(V) curve toward more positive values of membrane potential. It is suggested that an increase in pHi selectively blocks the Ca-dependent component of the outward potassium current.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 426–430, July–August, 1982.  相似文献   

20.
Experiments by the voltage clamp method showed that external application of quinidine (5 × 10–5 M) to the Ranvier node membrane of the frog nerve fiber inhibitis both sodium and potassium currents. Blocking of the sodium current is considerably intensified by repetitive depolarization of the membrane (1–10 Hz); the rate of development of the block increases with an increase in stimulation frequency. After the end of stimulation the sodium current gradually returns to its initial level (with a time constant of the order of 30 sec at 12°C). Unlike repetitive depolarization with short (5 msec) stimuli, a prolonged shift (1 sec) of potential toward depolarization has no significant effect on quinidine blocking of the sodium current. Analysis of the current-voltage characteristic curves showed that quinidine blocks outward sodium current more strongly than inward. Batrachotoxin protects sodium channels against the blocking action of quinidine in a concentration of 10–5 M. Inhibition of the outward potassium currents by quinidine is distinctly time-dependent in character: Initially the potassium current rises to a maximum, then falls steadily to a new stationary level. The results agree with the view that quinidine, applied externally, penetrates through the membrane in the basic form and blocks open sodium and potassium channels from within in the charged (protonated) form. The similarity in principle between the action of quinidine and local anesthetics on the sodium suggests that these compounds bind with the same receptor, located in the inner mouth of the sodium channel.A. V. Vishnevskii Institute of Surgery, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 324–330, May–June, 1982.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号