首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscular tension and sensory activity in the flexor apodeme sensory nerve were recorded during stimulation of single motor afferents innervating the M‐C flexor. Muscular tension and unitary sensory activity both varied, depending upon the motor fiber stimulated. Differences in the abililty of individual motor fibers to elicit sensory activity were only partially accounted for by differences in tension development. Some tension afferent units were more readily excited by a muscular contraction elicited by one motor axon than they were by another, even when the tension elicited by the more effective motor fiber was less than that evoked by the less effective efferent.  相似文献   

2.
Localization and distribution of cerebral neurones sending axons into the three pairs of Helix pomatia lip nerves were investigated by the method of retrograde axonal NiCl2 transport. Using electrophysiological technics (extracellular recordings) the dependence of lip nerve's activity on inputs of other lip nerves was studied after application of various types of stimuli to the lip of semi-intact preparations. All lip nerves have neuronal representation in each lobe of the cerebral ganglia but in different proportions. Labelled neurones were located mainly on the ventral surface of the cerebral ganglia, most of them projecting to the medial, the least to the inner lip nerve. Lip nerves differ from each other according to the proportions of neurones of various size. They share in the axons of large (55-70 microns) and medium sized (30-40 microns) neurones in the order inner greater than outer greater than medial and medial greater than outer greater than inner lip nerve, respectively. Most neurones projecting to different nerves are located in discrete groups. According to the electrophysiological results the medial lip nerve has the most prominent afferent, while the inner one has the strongest efferent activity. Both the afferent and efferent activities of the outer lip nerve proved to be the least significant compared to the other lip nerves. Contralateral cerebral connections play an important role in the sensory information processing. The sensory input of a given nerve usually activates the contralateral member of another pair of lip nerves. Mechano- and chemo-afferent pathways have almost the same properties but there are some differences in latencies and other parameters.  相似文献   

3.
Efferent lymph collected from the caudal mediastinal lymph node (CMN) in the sheep lung lymph fistula model has been reported to represent free pulmonary interstitial fluid. Studies that utilize this model assume that nodal transit does not alter the composition of lymph. We collected afferent lymph from the tracheobronchial node (TBN) while simultaneously collecting CMN efferent lymph in acutely prepared sheep. We compared afferent and efferent lymph protein concentrations (CA and CE) and changes in flow rates (QLA and QLE) during base line and periods of elevated left atrial pressure (Pla). As a result of elevated Pla, QLA and QLE increased and the afferent lymph-to-plasma protein concentration ratio (CA/Cp) and the efferent lymph-to-plasma protein concentration ratio (CE/Cp) fell. The CA/Cp was significantly lower than the CE/Cp during base line (0.67 vs. 0.80) and periods of elevated Pla (0.41 vs. 0.61). Although we cannot exclude regional permeability differences, the difference between CA/Cp and CE/Cp is most likely due to the concentration of lymph within the CMN. Our data suggest nodal modification of CA is correlated with the afferent lymph-to-plasma colloid osmotic pressure ratio (pi A/pi p) and further suggest that nodal alteration of lymph during elevated Pla is due to the influence of decreased pi A/pi p at the blood-to-lymph barrier. We conclude that afferent lymph is a more accurate representation of lung free interstitial fluid because collection of pulmonary afferent lymph obviates the complications introduced by the CMN. Studies utilizing efferent lymph may have overestimated lung microvascular permeability in the acute sheep preparation.  相似文献   

4.
The arrangement of muscle spindles in m. ext. long. dig. IV has been examined by microdissection. It is confirmed that spindle systems generally appear to consist of individual receptors. Stimulation effects of fast motor fibres (conduction velocities greater than 12 m/sec) on the spindles of the same muscle were studied. Receptors were isolated with their nerves and the appropriate spinal roots, the latter ones were used for stimulating efferent fibres and recording sensory discharges. Single shocks to the ventral root filaments caused afferent responses ranging from a single action potential to a train of impulses. During repetitive stimulation (train of stimuli at frequency of 10 to 150/sec) a marked increase in afferent activity was found. Afferent activity could be driven by the frequency of stimuli ("driving") and the stimulus/action potentials ratio varied from 1:1 to 1:3 or more. The rate of sensory discharge depended on the frequency of stimuli: the maximum effect, was attained at 30 to 50 stimuli/sec and, in the most responsive receptors, up to 80 stimuli/sec. Slight increases of the initial lengths of the receptors caused facilitation of sensory responses to motor stimulation. Moreover, impairing effects, which appear during sustained or high-frequency stimulation, possibly related to fatigue in intrafusal neuromuscular transmission, could be relieved by increasing the initial length. The repetitive stimulation of fast fusimotor fibres increased both dynamic and static responses and also raised the afferent activity after a period of stretching, when usually a depression occurs; these effects varied according to the preparation, its initial tension and the frequency of stimulation. The main feature of the examined motor fibres, when stimulated, is the constant excitatory action on muscle spindle static response. Results are discussed. It is suggested that the different characteristics of intrafusal muscle fibres, the receptor initial tension and the frequency of motor units discharges, may together affect muscle spindles static or dynamic performance.  相似文献   

5.
In the past, it has been proposed that the rat vibrissae play an important role in other hand, postural abnormalities, muscle tone decreases and hypomotility after sensory organ destructions were proposed as evidence supporting the "level setting" or "tonic" hypothesis. This hypothesis postulates that afferent activity, besides its well know transductive functions, sets the excitability state of the central nervous system. We thought the vibrissal system to be a good model to dissect these two postulated roles because vibrissae trimming would annul the transductive function without affecting the integrity of nerve activity. Thus we compare the effects of trimming the whiskers with blocking the vibrissal afferent nerves on two types of motor behavior: activity in an open field and walking over a rope connecting two elevated platforms. We found that only vibrissal afferent blockage (both nerve section and local anaesthesia) produced severe failures in the motor performances studied. These effects could not be fully explained by the abolition of the vibrissae as a sensory modality because cutting the whiskers did not significantly affect the motor performance. These data are discussed in reference to a tonic or general excitatory function of sensory inputs upon the central nervous system.  相似文献   

6.
This paper reports observations on the innervation of gill filaments of the lamprey, Lampetra japonica. Nerve fibers run on each side of the afferent filament artery (AFA nerve) and in the connective tissue compartment along the efferent filament artery (EFA nerve). The AFA nerve supplies vasomotor fibers to the afferent filament artery and arteriovenous anastomoses and special visceral motor fibers to branchial muscle fibers (musculus compressor branchialis circularis). Nerve endings of the vasomotor fibers contain large, cored vesicles (60–180 nm in diameter) with a variable number of small, clear vesicles (30–70 μm in diameter), whereas those of the visceral motor fibers have many small, clear vesicles with few large, cored vesicles. The EFA nerve supplies vasomotor fibers to the efferent filament artery. Their endings, containing mixtures of predominantly large, cored vesicles and small, clear vesicles make close synaptic contacts with reticular cells. The latter in turn are connected with each other or with smooth muscle cells in the wall of the efferent filament artery by nexuses. No nerves are found in the axial plate between the afferent and efferent filament arteries nor in the secondary lamellae of individual gill filaments. No afferent nerve supply to the gill filament has been found.  相似文献   

7.
Although Schmalz described the innervation of the ovotestis in pulmonate snails as early as 1914, no functions have been attributed to it. In H. aspersa, the intestinal nerve branches profusely within the ovotestis and terminates in the walls of the acini and in the sheath surrounding the early portion of the hermaphroditic duct. We found both sensory and motor functions for this innervation. Significantly, there is a tonic sensory discharge generated by the mechanical pressure of growing oocytes, and the level of tonic afferent activity is strongly correlated with the number of ripe oocytes; this is probably a permissive signal that gates ovulation. Tactile stimulation of the ovotestis causes a phasic sensory discharge and a pronounced cardio activation. Also, an efferent discharge is elicited in the ovotestis branch of the intestinal nerve. To study the motor consequences of efferent activity, the ovotestis branch was electrically stimulated. We found that such stimulation evokes peristaltic contractions of the initial portion of the hermaphroditic duct and increases beat frequencies of the cilia that line the interior of the duct. These effects could facilitate the transport of oocytes down the duct. Still other functions of afferent activity are implied by changes in the spontaneous activity of mesocerebral cells following nerve stimulation. Putative sensory neurons and putative motoneurons have been identified in the visceral and right parietal ganglia.  相似文献   

8.
Degeneration of afferent nerve fibres was induced in rats in order to observe its effects on the properties of the extra-junctional membrane of soleus muscle fibres. In one approach, removal of dorsal root ganglia L4 and L5 was accomplished in preparations with intact or impulse-blocked (with tetrodotoxin containing cuffs around the sciatic nerve) efferent innervation. Spike resistance to tetrodotoxin developed in the inactive deafferented preparations earlier and to a greater extent than in control, that is only impulse-blocked, preparations. In another series of experiments, efferent denervation alone proved to be less effective than the association of efferent and afferent denervation. On the other hand, section of the afferent fibres central to the dorsal root ganglia was without effect. These results are consistent with the interpretation that products of nerve degeneration contribute together with inactivity to the development of the extrajunctional membrane changes observed in skeletal muscle after denervation.  相似文献   

9.
Two pairs of wire electrodes were used to record single afferent action potentials from ventral roots and single efferent action potentials from dorsal roots of dogs and humans. A human lower sacral ventral root contained about 20 to 30% afferents among fibres with a diameter larger than 5 microns; a comparable ventral root of a dog contained about 1% afferents. Human S3, S4 and S5 dorsal roots contained 3, 18, and 20 to 30% efferent fibres respectively; a comparable dorsal root of the dog contained less than 1% efferent fibres. Primary and secondary muscle spindle afferents, Golgi tendon organ afferents, and afferents from the mechanoreceptors of the urinary bladder and anal canal mucosa were activated in a dog ventral root by pulling bladder and anal catheters. Their peak group conduction velocities were 82, 57, 71 and 18 m/s at 34 degrees C respectively. The dog afferents conducted more than 30% faster than did comparable human nerve fibres. By strongly pulling the bladder catheter, the static human dorsal root gamma 21-motoneurons increased their activity for about 7 s which in turn strongly increased the dorsal root spindle afferent activity for more than 10 min; the human static intrafusal gamma-motoneurons seemed to show cumulative properties.  相似文献   

10.
11.
Whether nerve activity and active contraction of myotubes are essential for the assembly and initial differentiation of muscle spindles was investigated by paralyzing fetal rats with tetrodotoxin (TTX) from embryonic day 16 (E16) to E21, prior to and during the period when spindles typically form. TTX-treated soleus muscles were examined by light and electron microscopy for the presence of spindles and expression of myosin heavy chain (MHC) isoforms by the intrafusal fibers. Treatment with TTX did not inhibit the formation of a spindle capsule or the expression of a slow-tonic MHC isoform characteristic of intrafusal fibers, but did retard development of spindles. Spindles of TTX-treated E21 muscles usually consisted of one intrafusal fiber (bag2) only rather than two fibers (bag1 and bag2) typically present in untreated (control) E21 spindles. Intrafusal fibers of TTX-treated spindles also had only one sensory region supplied by multiple afferents, and were devoid of motor innervation. These features are characteristic of spindles in normal E18-E19 muscles. Thus, nerve and/or muscle activity is not essential for the assembly of muscle spindles, formation of a spindle capsule, and transformation of undifferentiated myotubes into the intrafusal fibers containing spindle-specific myosin isoforms. However, activity may promote the maturation of intrafusal bundles, as well as the maturation of afferent and efferent nerve supplies to intrafusal fibers.  相似文献   

12.
The mode of action of acetylcholine (ACh) and succinylcholine (SCh) on the isolated frog's muscle spindle has been studied. Receptor afferent nervous supply was maintained; the appropriate spinal roots were dissected for stimulating motor axons and recording from sensory fibres. Excitatory effects on the afferent activity, when the receptor was held still and during stretching, were found with ACh or SCh concentrations of 10(-8) to 10(-3); 10(-6) g/ml being usually effective. These effects are similar to those obtained by stimulating fusimotor nerve fibres. The contractile activity of intrafusal muscle fibres which occurred during these effects was observed. Seldom, and only for high concentrations of ACh and SCh, a decrease in afferent activity following the excitatory effects was found. Tubocurarine chloride (10(-5)-10(04) g/ml) in the bath prevented both motor fibres and drugs effects. Sometimes slight transient excitation occurred at very high concentrations of the two tested substances; however, this effect was prevented by stronger curarization. The observed blocking effects were always reversed by removing tubocurarine from the bath. No more excitatory effects by motor fibres stimulation and by ACh and SCh action could be found after destruction of intrafusal muscle fibres, by pinching them as close as possible to the ends of the spindle. It is suggested that ACh and SCh act indirectly by causing mechanical changes in intrafusal muscle fibres, and that a direct action on sensory nerve endings, if any, cannot, by itself, increase the afferent activity of the receptor.  相似文献   

13.
Cobalt axonal iontophoresis and intracellular recordings were used to identify a cluster of several motor neurons innervating the penis-retractor muscle of Aplysia. Intracellularly recorded motor neuron action potentials elicited direct, one-for-one, constant latency excitatory junctional potentials (ejps) in individual muscle fibers. The axons of motor neurons could be recorded extracellularly in the penis-retractor nerve and stimulation of the nerve backfired the motor neurons. Perfusion of the ganglion, the muscle, or both with solutions of either increased Mg++/decreased Ca++ or increased Ca++ sea water indicated that the presumed motor neuron impaled was not a sensory cell and that interneurons were not intercalated in the pathway. Innervation of muscle fibers was found to be functionally polyneuronal and diffuse. The ejps were found to undergo marked facilitation with repetitive motor-neuron stimulation. The motor neurons were isolated in a distinct cluster in the right pedal ganglion. Their electrical activity was characterized by spontaneous irregular action potentials and a moderate input of postsynaptic potentials.  相似文献   

14.
In rats, stimulation of renal mechanoreceptors by increasing ureteral pressure results in a contralateral inhibitory renorenal reflex response consisting of increases in ipsilateral afferent renal nerve activity, decreases in contralateral efferent renal nerve activity, and increases in contralateral urine flow rate and urinary sodium excretion. Mean arterial pressure is unchanged. To study possible functional central interaction among the afferent renal nerves and the aortic and carotid sinus nerves, the responses to renal mechanoreceptor stimulation were compared in sinoaortic denervated rats and sham-denervated rats before and after vagotomy. In contrast to sham-denervated rats, there was an increase in mean arterial pressure in response to renal mechanoreceptor stimulation in sinoaortic-denervated rats. However, there were no differences in the renorenal reflex responses among the groups. Thus, our data failed to support a functional central interaction among the renal, carotid sinus, and aortic afferent nerves in the renorenal reflex response to renal mechanoreceptor stimulation. Studies to examine peripheral interaction between efferent and afferent renal nerves showed that marked reduction in efferent renal nerve activity produced by spinal cord section at T6, ganglionic blockade, volume expansion, or stretch of the junction of superior vena cava and right atrium abolished the responses in afferent renal nerve activity and contralateral renal function to renal mechanoreceptor stimulation. Conversely, increases in efferent renal nerve activity caused by thermal cutaneous stimulation increased basal afferent renal nerve activity and its responses to renal mechanoreceptor stimulation. These data suggest a facilitatory role of efferent renal nerves on renal sensory receptors.  相似文献   

15.
Descending serotonergic, noradrenergic, and dopaminergic systems project diffusely to sensory, motor and autonomic spinal cord regions. Using neonatal mice, this study examined monoaminergic modulation of visceral sensory input and sympathetic preganglionic output. Whole-cell recordings from sympathetic preganglionic neurons (SPNs) in spinal cord slice demonstrated that serotonin, noradrenaline, and dopamine modulated SPN excitability. Serotonin depolarized all, while noradrenaline and dopamine depolarized most SPNs. Serotonin and noradrenaline also increased SPN current-evoked firing frequency, while both increases and decreases were seen with dopamine. In an in vitro thoracolumbar spinal cord/sympathetic chain preparation, stimulation of splanchnic nerve visceral afferents evoked reflexes and subthreshold population synaptic potentials in thoracic ventral roots that were dose-dependently depressed by the monoamines. Visceral afferent stimulation also evoked bicuculline-sensitive dorsal root potentials thought to reflect presynaptic inhibition via primary afferent depolarization. These dorsal root potentials were likewise dose-dependently depressed by the monoamines. Concomitant monoaminergic depression of population afferent synaptic transmission recorded as dorsal horn field potentials was also seen. Collectively, serotonin, norepinephrine and dopamine were shown to exert broad and comparable modulatory regulation of viscero-sympathetic function. The general facilitation of SPN efferent excitability with simultaneous depression of visceral afferent-evoked motor output suggests that descending monoaminergic systems reconfigure spinal cord autonomic function away from visceral sensory influence. Coincident monoaminergic reductions in dorsal horn responses support a multifaceted modulatory shift in the encoding of spinal visceral afferent activity. Similar monoamine-induced changes have been observed for somatic sensorimotor function, suggesting an integrative modulatory response on spinal autonomic and somatic function.  相似文献   

16.
Hill DN  Curtis JC  Moore JD  Kleinfeld D 《Neuron》2011,72(2):344-356
Exploratory whisking in rat is an example of self-generated movement on multiple timescales, from slow variations in the envelope of whisking to the rapid sequence of muscle contractions during?a single whisk cycle. We find that, as a population, spike trains of single units in primary vibrissa motor cortex report the absolute angle of vibrissa position. This representation persists after sensory nerve transection, indicating an efferent source. About two-thirds of the units are modulated by slow variations in the envelope of whisking, while relatively few units report rapid changes in position within the whisk cycle. The combined results from this study and past measurements, which show that primary sensory cortex codes the whisking envelope as?a motor copy signal, imply that signals present in both sensory and motor cortices are necessary to compute angular coordinates based on vibrissa touch.  相似文献   

17.
为探讨冬眠刺猬皮肌的紧张性控制,本工作研究了支配皮肌的胸前神经(VTN)的传入活动的来源和皮层代表区的分布。VTN的传入冲动来自皮肌本体感受器,传入纤维径C_6—T_2背根入脊髓,与同部位的皮肤感觉相分离,后者经相应节段的皮神经传入。电刺激VTN引起的皮层诱发电位反应位于新皮层外侧面的中间部,相当于Woolsey的S-Ⅱ区内,与桡神经和坐骨神经的代表区有重叠,而在S-Ⅰ区没有记录到反应。  相似文献   

18.
Prior studies have demonstrated that inflammation can sensitize visceral afferent neurons, contributing to the development of hyperalgesia. We hypothesized that both afferent and efferent pathways are affected, resulting in changes in motor and sensory function. Kissing ulcers (KU) were induced in the distal stomach by injecting 60% acetic acid for 45 s into a clamped area of the stomach. In controls, saline was injected into the stomach. A balloon catheter was surgically placed into the stomach, and electromyographic responses to gastric distension were recorded from the acromiotrapezius muscle at various times after ulcer induction. The accommodation reflex was assessed by slowly infusing saline into the distally occluded stomach. Gastric pressure changes in response to vagal stimulation were measured in anesthetized rats. Contractile function of circular muscle strips was examined in vitro using force-displacement transducers. KU caused gastric hypersensitivity that persisted for at least 14 days. Fluid distension of the stomach led to a rapid pressure increase in KU but not in control animals, consistent with an impaired accommodation reflex. Gastric ulcers enhanced the contractile response to vagal stimulation, whereas the effect of cholinergic stimulation on smooth muscle in vitro was not changed. These data suggest that inflammation directly alters gastric sensory and motor function. Increased activation of afferents will trigger vagovagal reflexes, thereby further changing motility and indirectly activating sensory neurons. Thus afferent and efferent pathways both contribute to the development of dyspeptic symptoms.  相似文献   

19.
Summary Whether nerve activity and active contraction of myotubes are essential for the assembly and initial differentiation of muscle spindles was investigated by paralyzing fetal rats with tetrodotoxin (TTX) from embryonic day 16 (E16) to E21, prior to and during the period when spindles typically form. TTX-treated soleus muscles were examined by light and electron microscopy for the presence of spindles and expression of myosin heavy chain (MHC) isoforms by the intrafusal fibers. Treatment with TTX did not inhibit the formation of a spindle capsule or the expression of a slow-tonic MHC isoform characteristic of intrafusal fibers, but did retard development of spindles. Spindles of TTX-treated E21 muscles usually consisted of one intrafusal fiber (bag2) only rather than two fibers (bag1 and bag2) typically present in untreated (control) E21 spindles. Intrafusal fibers of TTX-treated spindles also had only one sensory region supplied by multiple afferents, and were devoid of motor innervation. These features are characteristic of spindles in normal E18–E19 muscles. Thus, nerve and/or muscle activity is not essential for the assembly of muscle spindles, formation of a spindle capsule, and transformation of undifferentiated myotubes into the intrafusal fibers containing spindle-specific myosin isoforms. However, activity may promote the maturation of intrafusal bundles, as well as the maturation of afferent and efferent nerve supplies to intrafusal fibers.  相似文献   

20.
Branchial innervation   总被引:4,自引:0,他引:4  
Inspection of the dorsal end of fish gills reveals an impressive set of nerve trunks, connecting the gills to the brain. These trunks are branches of cranial nerves VII (the facial) and especially IX (the glossopharyngeal) and X (the vagus). The nerve trunks carry a variety of nervous pathways to and from the gills. A substantial fraction of the nerves running in the branchial trunks carry afferent (sensory) information from receptors within the gills. There are also efferent (motor) pathways, which control muscles within the gills, blood flow patterns and possibly secretory functions. Undertaking a more careful survey of the gills, it becomes evident that the arrangement of the microanatomy (particularly the blood vessels) and its innervation are strikingly complex. The complexity not only reflects the many functions of the gills but also illustrates that the control of blood flow patterns in the gills is of crucial importance in modifying the efficiency of its chief functions: gas transfer and salt balance. The "respiratory-osmoregulatory compromise" is maintained by minimizing the blood/water exchange (functional surface area of the gills) to a level where excessive water loss (marine teleosts) or gain (freshwater teleosts) is kept low while ensuring sufficient gas exchange. This review describes the arrangement and mechanisms of known nervous pathways, both afferent and efferent, of fish (notably teleosts) gills. Emphasis is placed primarily on the autonomic nervous system and mechanisms of blood flow control, together with an outline of the afferent (sensory) pathways of the gill arches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号