首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chaperonins cpn60/cpn10 (GroEL/GroES in Escherichia coli) assist folding of nonnative polypeptides. Folding of the chaperonins themselves is distinct in that it entails assembly of a sevenfold symmetrical structure. We have characterized denaturation and renaturation of the recombinant human chaperonin 10 (cpn10), which forms a heptamer. Denaturation induced by chemical denaturants urea and guanidine hydrochloride (GuHCl) as well as by heat was monitored by tyrosine fluorescence, far-ultraviolet circular dichroism, and cross-linking; all denaturation reactions were reversible. GuHCl-induced denaturation was found to be cpn10 concentration dependent, in accord with a native heptamer to denatured monomer transition. In contrast, urea-induced denaturation was not cpn10 concentration dependent, suggesting that under these conditions cpn10 heptamers denature without dissociation. There were no indications of equilibrium intermediates, such as folded monomers, in either denaturant. The different cpn10 denatured states observed in high [GuHCl] and high [urea] were supported by cross-linking experiments. Thermal denaturation revealed that monomer and heptamer reactions display the same enthalpy change (per monomer), whereas the entropy-increase is significantly larger for the heptamer. A thermodynamic cycle for oligomeric cpn10, combining chemical denaturation with the dissociation constant in absence of denaturant, shows that dissociated monomers are only marginally stable (3 kJ/mol). The thermodynamics for co-chaperonin stability appears conserved; therefore, instability of the monomer could be necessary to specify the native heptameric structure.  相似文献   

2.
Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis.  相似文献   

3.
Chaperonins cpn60 and cpn10 are essential proteins involved in cellular protein folding. Plant chloroplasts contain a unique version of the cpn10 co-chaperonin, cpn20, which consists of two homologous cpn10-like domains (N-cpn20 and C-cpn20) that are connected by a short linker region. Although cpn20 seems to function like other single domain cpn10 oligomers, the structure and specific functions of the domains are not understood. We mutated amino acids in the "mobile loop" regions of N-cpn20, C-cpn20 or both: a highly conserved glycine, which was shown to be important for flexibility of the mobile loop, and a leucine residue shown to be involved in binding of co-chaperonin to chaperonin. The mutant proteins were purified and their oligomeric structure validated by gel filtration, native gel electrophoresis, and circular dichroism. Functional assays of protein refolding and inhibition of GroEL ATPase both showed (i) mutation of the conserved glycine reduced the activity of cpn20, whether in N-cpn20 (G32A) or C-cpn20 (G130A). The same mutation in the bacterial cpn10 (GroES G24A) had no effect on activity. (ii) Mutations in the highly conserved leucine of N-cpn20 (L35A) and in the corresponding L27A of GroES resulted in inactive protein. (iii) In contrast, mutant L133A, in which the conserved leucine of C-cpn20 was altered, retained 55% activity. We conclude that the structure of cpn20 is much more sensitive to alterations in the mobile loop than is the structure of GroES. Moreover, only N-cpn20 is necessary for activity of cpn20. However, full and efficient functioning requires both domains.  相似文献   

4.
Chaperonin 10 (cpn10) is a well-conserved subgroup of the molecular chaperone family. GroES, the cpn10 from Escherichia coli, is composed of seven 10kDa subunits, which form a dome-like oligomeric ring structure. From our previous studies, it was found that GroES unfolded completely through a three-state unfolding mechanism involving a partly folded monomer and that this reaction was reversible. In order to study whether these unfolding-refolding characteristics were conserved in other cpn10 proteins, we have examined the structural stabilities of cpn10s from rat mitochondria (RatES) and from hyperthermophilic eubacteria Thermotoga maritima (TmaES), and compared the values to those of GroES. From size-exclusion chromatography experiments in the presence of various concentrations of Gdn-HCl at 25 degrees C, both cpn10s showed unfolding-refolding characteristics similar to those of GroES, i.e. two-stage unfolding reactions that include formation of a partially folded monomer. Although the partially folded monomer of TmaES was considerably more stable compared to GroES and RatES, it was found that the overall stabilities of all three cpn10s were achieved significantly by inter-subunit interactions. We studied this contribution of inter-subunit interactions to overall stability in the GroES heptamer by introducing a mutation that perturbed subunit association, specifically the interaction between the two anti-parallel beta-strands at the N and C termini of this protein. From analyses of the mutants' stabilities, it was revealed that the anti-parallel beta-strands at the subunit interface are crucial for subunit association and stabilization of the heptameric GroES protein.  相似文献   

5.
K C Terlesky  F R Tabita 《Biochemistry》1991,30(33):8181-8186
Two heat-shock proteins that show high identity with the Escherichia coli chaperonin 60 (groEL) and chaperonin 10 (groES) chaperonin proteins were purified and characterized from photolithoautotrophically grown Rhodobacter sphaeroides. The proteins were purified by using sucrose density gradient centrifugation and Mono-Q anion-exchange chromatography. In the presence of 1 mM ATP, the chaperonin 10 and chaperonin 60 proteins bound to each other and comigrated as a large complex during sucrose density gradient centrifugation. The native molecular weights of each protein as determined by gel filtration chromatography were 889,200 for chaperonin 60 and 60,000 for chaperonin 10. Chaperonin 60 is comprised of monomers with a molecular weight of 61,000 and chaperonin 10 is comprised of monomers with a molecular weight of 12,700 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Chaperonin 60 was 9.3% of the total soluble cell protein during photolithoautotrophic growth which increased to 28.5% following heat-shock treatment. When cells were grown photoheterotrophically or chemoheterotrophically, chaperonin 60 was reduced to 6.7% and 3.5%, respectively, of the total soluble protein. The N-terminal amino acid sequence of each protein was determined; chaperonin 60 of R. sphaeroides showed 72% identity to E. coli chaperonin 60 protein, and R. sphaeroides chaperonin 10 showed 45% identity with E. coli chaperonin 10. R. sphaeroides chaperonin 60 catalyzed ATP hydrolysis with a specific activity of 134 nmol min-1 mg-1 (kcat = 0.13 s-1) and was inhibited by R. sphaeroides chaperonin 10, but not E. coli chaperonin 10. The E. coli chaperonin 60 ATPase activity was inhibited by chaperonin 10 from both R. sphaeroides and E. coli.  相似文献   

6.
The malaria parasite exports numerous proteins into its host red blood cell (RBC). The trafficking of these exported effectors is complex. Proteins are first routed through the secretory system, into the parasitophorous vacuole (PV), a membranous compartment enclosing the parasite. Proteins are then translocated across the PV membrane in a process requiring ATP and unfolding. Once in the RBC compartment the exported proteins are then refolded and further trafficked to their final localizations. Chaperones are important in the unfolding and refolding processes. Recently, it was suggested that the parasite TRiC chaperonin complex is exported, and that it is involved in trafficking of exported effectors. Using a parasite‐specific antibody and epitope‐tagged transgenic parasites we could observe no export of Plasmodium TRiC into the RBC. We tested the importance of the parasite TRiC by creating a regulatable knockdown line of the TRiC‐θ subunit. Loss of the parasite TRiC‐θ led to a severe growth defect in asexual development, but did not alter protein export into the RBC. These observations indicate that the TRiC proteins play a critical role in parasite biology, though their function, within the parasite, appears unrelated to protein trafficking in the RBC compartment.  相似文献   

7.
The chloroplast cpn20 protein is a functional homolog of the cpn10 co-chaperonin, but its gene consists of two cpn10-like units joined head-to-tail by a short chain of amino acids. This double protein is unique to plastids and was shown to exist in plants as well plastid-containing parasites. In vitro assays showed that this cpn20 co-chaperonin is a functional homolog of cpn10. In terms of structure, existing data indicate that the oligomer is tetrameric, yet it interacts with a heptameric cpn60 partner. Thus, the functional oligomeric structure remains a mystery. In this review, we summarize what is known about this distinctive chaperonin and use a bioinformatics approach to examine the expression of cpn20 in Arabidopsis thaliana relative to other chaperonin genes in this species. In addition, we examine the primary structure of the two homologous domains for similarities and differences, in comparison with cpn10 from other species. Lastly, we hypothesize as to the oligomeric structure and raison d’être of this unusual co-chaperonin homolog. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
We have isolated a cDNA encoding chaperonin 10 (cpn10) from the zebrafish. Using northern, western, and in situ hybridization analysis, we observed that the cpn10 gene is expressed uniformly and ubiquitously throughout embryonic development of the zebrafish. Upregulation of cpn10 expression was observed following exposure of zebrafish embryos to a heat shock of 1 hour at 37 degrees C compared to control embryos raised at 27 degrees C. The extracellular form of Cpn10 called early pregnancy factor (EPF), found in the serum of pregnant mammals, was not detected in the serum of either male or female zebrafish. These expression studies suggest that Cpn10 plays a general role in zebrafish development as well as being consistent with the hypothesis that EPF is involved in the embryo implantation process in mammals.  相似文献   

9.
Panda M  Horowitz PM 《Biochemistry》2002,41(6):1869-1876
We investigated the dissociation of tetradecameric GroEL by high hydrostatic pressure in the range of 1-2.5 kbar. Kinetics of the dissociation of GroEL in the absence and presence of Mg(2+) and/or KCl were monitored using light scattering. All of the kinetics were biphasic in nature. At any given pressure, only monomers and 14mers were produced, and below 2.5 kbar, the 14mers only partially dissociated to monomers, which did not significantly reassemble on depressurization. Under identical reaction conditions, the observed dissociation rates decreased by only 2-fold when the concentration of GroEL was increased by 20-fold. At 2.5 kbar the observed rates decreased exponentially with the increase in [KCl] and reached a minimum at approximately 75mM. Similarly, the rates decreased with the increase in [Mg(2+)] and reached a minimum at approximately 3 mM Mg(2+). In the presence of saturating amounts of Mg(2+) (10 mM) and KCl (100 mM), the rates were much faster than with 10 mM Mg(2+) alone. The results could be rationalized in terms of the presence of GroEL heterogeneity, which could not be assessed easily by common techniques such as sedimentation velocity, HPLC, gel electrophoresis, and dissociation by chaotropes. This heterogeneity is evidence of subpopulations of GroEL that dissociate at different pressures. At low pressures, the oligomer without added Mg(2+) only partially dissociates to monomers, leading to an apparent plateau in the kinetics, whereas in the presence of Mg(2+) the species are converted to a tighter Mg(2+)-bound species, leading to a much slower dissociation process. The presence of KCl in the sample also leads to similar heterogeneity.  相似文献   

10.
Thermosomes are group II chaperonins responsible for protein refolding in an ATP-dependent manner. Little is known regarding the conformational changes of thermosomes during their functional cycle due to a lack of high-resolution structure in the open state. Here, we report the first complete crystal structure of thermosome (rATcpnβ) in the open state from Acidianus tengchongensis. There is a ~30° rotation of the apical and lid domains compared with the previous closed structure. Besides, the structure reveals a conspicuous hydrophobic patch in the lid domain, and residues locating in this patch are conserved across species. Both the closed and open forms of rATcpnβ were also reconstructed by electron microscopy (EM). Structural fitting revealed the detailed conformational change from the open to the closed state. Structural comparison as well as protease K digestion indicated only ATP binding without hydrolysis does not induce chamber closure of thermosome.  相似文献   

11.
The possibility of inhibition of chaperonin functional activity by amyloid proteins was studied. It was found that the ovine prion protein PrP as well as its oligomeric and fibrillar forms are capable of binding with the chaperonin GroEL. Besides, GroEL was shown to promote amyloid aggregation of the monomeric and oligomeric PrP as well as PrP fibrils. The monomeric PrP was shown to inhibit the GroEL-assisted reactivation of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The oligomers of PrP decelerate the GroEL-assisted reactivation of GAPDH, and PrP fibrils did not affect this process. The chaperonin GroEL is capable of interacting with GAPDH and different PrP forms simultaneously. A possible role of the inhibition of chaperonins by amyloid proteins in the misfolding of the enzymes involved in cell metabolism and in progression of neurodegenerative diseases of amyloid nature is discussed.  相似文献   

12.
Unlike the GroEL homologs of eubacteria and mitochondria, oligomer preparations of the higher plant chloroplast chaperonin 60 (cpn60) consist of roughly equal amounts of two divergent subunits, alpha and beta. The functional significance of these isoforms, their structural organization into tetradecamers, and their interactions with the unique binary chloroplast chaperonin 10 (cpn10) have not been elucidated. Toward this goal, we have cloned the alpha and beta subunits of the ch-cpn60 of pea (Pisum sativum), expressed them individually in Escherichia coli, and subjected the purified monomers to in vitro reconstitution experiments. In the absence of other factors, neither subunit (alone or in combination) spontaneously assembles into a higher order structure. However, in the presence of MgATP, the beta subunits form tetradecamers in a cooperative reaction that is potentiated by cpn10. In contrast, alpha subunits only assemble in the presence of beta subunits. Although beta and alpha/beta 14-mers are indistinguishable by electron microscopy and can both assist protein folding, their specificities for cpn10 are entirely different. Similar to the authentic chloroplast protein, the reconstituted alpha/beta 14-mers are functionally compatible with bacterial, mitochondrial, and chloroplast cpn10. In contrast, the folding reaction mediated by the reconstituted beta 14-mers is only efficient with mitochondrial cpn10. The ability to reconstitute two types of functional oligomer in vitro provides a unique tool, which will allow us to investigate the mechanism of this unusual chaperonin system.  相似文献   

13.
Mitochondrial chaperonins are necessary for the folding of newly imported and stress-denatured mitochondrial proteins. The goal of this study was to investigate the structure and function of the mammalian mitochondrial chaperonin system. We present evidence that the 60 kDa chaperonin (mt-cpn60) exists in solution in dynamic equilibrium between monomers, heptameric single rings and double-ringed tetradecamers. In the presence of ATP and the 10 kDa cochaperonin (mt-cpn10), the formation of a double ring is favored. ADP at very high concentrations does not inhibit malate dehydrogenase refolding or ATP hydrolysis by mt-cpn60 in the presence of mt-cpn10. We propose that the cis (mt-cpn60)14.nucleotide.(mt-cpn10)7 complex is not a stable species and does not bind ADP effectively at its trans binding site.  相似文献   

14.
Protein secretion in bacteria is driven through the ubiquitous SecYEG complex by the ATPase SecA. The structure of SecYEG alone or as a complex with SecA in detergent reveal a monomeric heterotrimer enclosing a central protein channel, yet in membranes it is dimeric. We have addressed the functional significance of the oligomeric status of SecYEG in protein translocation using single molecule and ensemble methods. The results show that while monomers are sufficient for the SecA- and ATP-dependent association of SecYEG with pre-protein, active transport requires SecYEG dimers arranged in the back-to-back conformation. Molecular modeling of this dimeric structure, in conjunction with the new functional data, provides a rationale for the presence of both active and passive copies of SecYEG in the functional translocon.  相似文献   

15.
Polyglutamine (polyQ)-expansion proteins cause neurodegenerative disorders including Huntington's disease, Kennedy's disease and various ataxias. The cytotoxicity of these proteins is associated with the formation of aggregates or other conformationally toxic species. Here, we show that the cytosolic chaperonin CCT (also known as TRiC) can alter the course of aggregation and cytotoxicity of huntingtin (Htt)-polyQ proteins in mammalian cells. Disruption of the CCT complex by RNAi-mediated knockdown enhanced Htt-polyQ aggregate formation and cellular toxicity. Analysis of the aggregation states of the Htt-polyQ proteins by fluorescence correlation spectroscopy revealed that CCT depletion results in the appearance of soluble Htt-polyQ aggregates. Similarly, overexpression of all eight subunits of CCT suppressed Htt aggregation and neuronal cell death. These results indicate that CCT has an essential role in protecting against the cytotoxicity of polyQ proteins by affecting the course of aggregation.  相似文献   

16.
Chromatium vinosum contains a polypeptide that is functionally and structurally similar to the Escherichia coli chaperonin 10. The protein has been purified to homogeneity by sucrose density gradient centrifugation followed by gel filtration using a Bio-Gel A-1.5 m column. The molecular mass of chaperonin 10, as determined by gel filtration or nondenaturing polyacrylamide gel electrophoresis, is 95 kDa. The oligomer is composed of seven or eight subunits. Comparisons of the overall amino acid composition and N-terminal sequences among chaperonin 10 species from C. vinosum and E. coli reflect a high degree of similarity. A physical association between chaperonins 60 and 10 from C. vinosum, in vitro, is supported by three experimental approaches. First, the proteins form a stable binary complex in sucrose density gradients, gel filtration chromatography, and nondenaturing polyacrylamide gel electrophoresis, solely in the presence of ATP and Mg2+. Second, chaperonin 10 from C. vinosum binds, selectively, to a chaperonin 60-coupled Affi-Gel 10 matrix column. Third, a slight molar excess of chaperonin 10 is able to abolish, almost completely, the ATPase in chaperonin 60. The rate for ATPase activity of chaperonin 60 from C. vinosum is enhanced when supplemented with monovalent cations.  相似文献   

17.
We have compared the interaction of ncd (non-claret disjunctional), a kinesin related protein, with microtubules and tubulin heterodimer. Ultracentrifugation experiments revealed that the ncd motor domain, residues 335-700 (ncd335), does not induce tubulin polymerization but stabilizes pre-formed microtubules with a maximum effect at a 1:1 ncd335:tubulin ratio. Ncd335 binding to tubulin or microtubules was estimated by following the change in fluorescence polarization of an exogenous dye attached to Cys670 of ncd335. Ncd335 binding to tubulin (containing GTP or GDP-bound) is characterized by a 2:1 stoichiometry, a higher affinity and an increased sensitivity towards salt, ADP, ATP and AMPPNP, as compared with ncd335 binding to microtubules. Maximum ATPases were 0.06-0.08 sec(-1) and 1.8-2.0 sec(-1) for the ncd335-tubulin and ncd335-microtubules complexes, respectively. Only the polymerized complex is fully functional, suggesting the presence of additional contacts between adjacent protofilaments. Moreover, the data reveal that the oligomeric state of microtubules is a potent regulator for the activity of kinesin related proteins.  相似文献   

18.
Yahr TL  Wickner WT 《The EMBO journal》2000,19(16):4393-4401
SecA insertion and deinsertion through SecYEG drive preprotein translocation at the Escherichia coli inner membrane. We present three assessments of the theory that oligomers of SecYEG might form functional translocation sites. (i) Formaldehyde cross- linking of translocase reveals cross-links between SecY, SecE and SecG, but not higher order oligomers. (ii) Cross-linking of membranes containing unmodified SecE and hemagglutinin-tagged SecE (SecE(HA)) reveals cross-links between SecY and SecE and between SecY and SecE(HA). However, anti-HA immunoprecipitates contain neither untagged SecE nor SecY cross-linked to SecE. (iii) Membranes containing similar amounts of SecE and SecE(HA) were saturated with translocation intermediate (I(29)) and detergent solubilized. Anti-HA immunoprecipitation of I(29) required SecYE(HA)G and SecA, yet untagged SecE was not present in this translocation complex. Likewise, anti-HA immunoprecipitates of membranes containing equal amounts of SecY and SecY(HA) were found to contain SecY(HA) but not SecY. Both immunoprecipitates contain more moles of I(29) than of the untagged subunit, again suggesting that translocation intermediates are not engaged with multiple copies of SecYEG. These studies suggest that the active form of preprotein translocase is monomeric SecYEG.  相似文献   

19.
Early pregnancy factor (EPF) has been identified as an extracellular homologue of chaperonin 10 (Cpn10), a heat shock protein that functions within the cell as a molecular chaperone. Here, we report the production of polyclonal antibodies directed against several different regions of the human Cpn10 molecule and their application to specific protein quantitation and localization techniques. These antibodies will be valuable tools in further studies to elucidate the mechanisms underlying the differential spatial and temporal localization of EPF and Cpn10 and in studies to elucidate structure and function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号