首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of this work was to design a biodegradable delivery system for oligonucleotides providing both a sustained release and an improved intracellular penetration. To this purpose oligonucleotide/polyethylenimine (ON/PEI) complexes at nitrogen to phosphate (N/P) molar ratios of about 15 or 40 were encapsulated into poly(lactide-co-glycolide) microspheres by the multiple emulsion-solvent evaporation technique. ON/PEI complexes were efficiently entrapped inside microspheres. The introduction of salts within the external aqueous phase allowed an improvement of microsphere characteristics. In particular, the use of sodium chloride led to a reduced microsphere porosity and a more homogeneous ON distribution inside the polymeric matrix. These effects were attributed to the reduced flux of water from the external aqueous phase toward the internal aqueous droplets, due to the osmotic effect of sodium chloride. Both, the reduced porosity and the improved ON distribution inside the matrix, were considered responsible for the lower burst effect and the slower ON release rate from microsphere prepared with sodium chloride. ON/PEI complexes encapsulated inside microspheres were also protected toward enzymatic degradation in fetal calf serum. Interestingly, ON/PEI complexes slowly released from microspheres efficiently penetrated inside HeLa cells and oligonucleotides were preferentially located in the nucleus.  相似文献   

2.
Polymeric microsphere system has been widely used in tissue-regeneration matrix and drug delivery systems. To apply these biomaterials as novel cell supporting matrix for stem cell delivery, we have devised a novel method for the fabrication of nanostructured 3D scaffolds that growth factor loaded heparin/poly(L-lysine) nanoparticles were physically attached on the positively charged surface of PLGA microspheres precoated with low molecular weight of poly(ethyleneimmine) (PEI) via a layer-by-layer (LbL) system. Based on a previous study, we have prepared poly(lactide-co-glycolide) (PLGA) microspheres harboring heparin/poly(L-lysine) loaded with growth factors. Growth factor loaded heparin/poly(L-lysine) nanoparticles, which were simply produced as polyion complex micelles (PICM) with diameters of 50-150 nm, were fabricated in the first step. Microsphere matrix (size, 20 approximately 80 nm) containing TGF-beta 3 showed a significantly higher number of specific lacunae phenotypes at the end of the 4 week study in vitro culture of mesenchymal stem cells. Thus, growth factor delivery of PLGA microsphere can be used to engineer synthetic extracellular matrix. This PLGA microsphere matrix containing TGF-beta 3 showed promise as coatings for implantable biomedical devices to improve biocompatibility and ensure in vivo performance.  相似文献   

3.
 A novel biodegradable poly(lactic acid) microsphere formulation was evaluated for in vivo cytokine immunotherapy of cancer in a human tumor xenograft/severe combined immunodeficiency (SCID) mouse model. Co-injection of interleukin-2 (IL-2)-loaded microspheres with tumor cells into a subcutaneous site resulted in the complete suppression of tumor engraftment in 80% of animals. In contrast, bovine-serum-albumin(BSA)-loaded particles or bolus injections of poly(ethylene glycol)/IL-2 were ineffective in preventing tumor growth. The antitumor effect of IL-2 released by the microspheres was shown to be mediated by the mouse natural killer cells. This is the first evidence that the rejection of human tumor xenografts can be provoked by the sustained in vivo delivery of IL-2 from biodegradable microspheres. The use of poly(lactic acid) microspheres to deliver cytokines to the tumor environment could provide a safer and simpler alternative to gene therapy protocols in the treatment of cancer. Received: 9 September 1997 / Accepted: 30 October 1997  相似文献   

4.
In this study the w/o/w extraction-evaporation technique was adopted to prepare poly(lactic-co-glycolic acid) (PLGA) microspheres loading recombinant human epidermal growth factor (rhEGF). The microspheres were characterized for morphology by transmission electron microscopy (TEM) and particle size distribution. The release performances, the proliferation effects and therapeutic effects of rhEGF-loaded PLGA microspheres were all studied. The results showed that these spherical microspheres had a narrow size distribution and a high drug encapsulation efficiency (85.6%). RhEGF-loaded microspheres enhanced the growth rate of fibroblasts and wound healing more efficiently than pure rhEGF. The number of the proliferating cell nuclear antigen (PCNA) in the epidermis layer with the microsphere treatment was significantly larger than those of the control groups. Overall locally sustained delivery of rhEGF from biodegradable PLGA microspheres may serve as a novel therapeutic strategy for diabetic ulcer repair.  相似文献   

5.
In this study the w/o/w extraction–evaporation technique was adopted to prepare poly(lactic-co-glycolic acid) (PLGA) microspheres loading recombinant human epidermal growth factor (rhEGF). The micro-spheres were characterized for morphology by transmission electron microscopy (TEM) and particle size distribution. The release performances, the proliferation effects and therapeutic effects of rhEGF-loaded PLGA microspheres were all studied. The results showed that these spherical micro-spheres had a narrow size distribution and a high drug encapsulation efficiency (85.6%). RhEGF-loaded microspheres enhanced the growth rate of fibroblasts and wound healing more efficiently than pure rhEGF. The number of the proliferating cell nuclear antigen (PCNA) in the epidermis layer with the mi-crosphere treatment was significantly larger than those of the control groups. Overall locally sustained delivery of rhEGF from biodegradable PLGA microspheres may serve as a novel therapeutic strategy for diabetic ulcer repair.  相似文献   

6.
The use of biodegradable poly(dl-lactic-co-glycolic acid) microspheres as a cancer vaccine delivery system for induction of anti-idiotypic responses was investigated using a murine monoclonal antibody B43.13 that recognizes the human ovarian cancer antigen CA125. Immunization of mice with mAb B43.13 encapsulated in poly(dl-lactic-co-glycolic acid) microspheres resulted in enhanced humoral and cellular immune responses compared with mAb B43.13 alone or mAb B43.13 mixed with microspheres. The antibody responses could be further enhanced by the co-encapsulation of mAb B43.13 with monophosphoryl lipid A, a non-toxic adjuvant, in microspheres. Anti-idiotypic humoral responses were shown to result in Ab2 antibodies mimicking the nominal antigen CA125 and Ab3 antibodies recognizing CA125. Further, microsphere delivery of mAb B43.13 also resulted in induction of T cell responses involving T2 cells reactive with mAb B43.13 epitopes and T3 cells recognizing CA125. These results indicate that microsphere delivery of Ab1 can induce both humoral and cellular anti-idiotypic responses relevant to cancer antigens. This raises the possibility of the use of such formulations for anti-idiotypic induction immunotherapy for cancer. Received: 27 August 1997 / Accepted: 24 April 1998  相似文献   

7.
Immobilization of catalase (molecular weight 240,000 daltons) in polyelectrolyte microspheres was studied. The microspheres were obtained by alternating adsorption of dextran sulfate and protamine on commercially available melamine formaldehyde cores followed by the core hydrolysis at pH 1.7. As the interior of the microspheres was filled with homogeneous matrix, the catalase distribution inside the microspheres was uniform. The quantity of entrapped catalase was dependent on the initial concentration of the enzyme and pH of solution, and the peak value was 10(8)-10(9) molecules per microsphere. It was demonstrated that catalase was entrapped in the microspheres via electrostatic and hydrophobic interactions. The catalase activity inside the microspheres increased as the quantity of enzyme decreased, which was due to the switch between diffusion and kinetic regimes of the enzymatic reaction. The microspheres could be applied for separation and concentration of high molecular weight proteins.  相似文献   

8.
Microspheres were formed from blends of the biodegradable polymer poly(DL-lactic-co-glycolic acid) (PLGA) together with poly(epsilon-CBZ-L-lysine) (PCBZL) by a double-emulsification/solvent evaporation technique. The size of the microspheres formed by this method was dependent both on the total concentration of the polymers and on the ratio of PLGA to PCBZL. The use of the microspheres for encapsulation was demonstrated by the inclusion of a solution of Texas Red fluorescent dye. Lysine epsilon-amino groups on the surface of the microspheres were deprotected by acid hydrolysis or lithium/liquid ammonia reduction. Acid hydrolysis damaged the surface of the microspheres as assessed by scanning electron microscopy, whereas deprotection by lithium/ammonia produced less damage and allowed the retention of encapsulated dye solution. The surface lysine groups made available on the surface of the microspheres could be used to covalently link a variety of biologically active molecules to alter their in vivo properties and allow targeting to specific cell types.  相似文献   

9.
Accelerated in vitro release testing methodology has been developed as an indicator of product performance to be used as a discriminatory quality control (QC) technique for the release of clinical and commercial batches of biodegradable microspheres. While product performance of biodegradable microspheres can be verified by in vivo and/or in vitro experiments, such evaluation can be particularly challenging because of slow polymer degradation, resulting in extended study times, labor, and expense. Three batches of Leuprolide poly(lactic-co-glycolic acid) (PLGA) microspheres having varying morphology (process variants having different particle size and specific surface area) were manufactured by the solvent extraction/evaporation technique. Tests involving in vitro release, polymer degradation and hydration of the microspheres were performed on the three batches at 55°C. In vitro peptide release at 55°C was analyzed using a previously derived modification of the Weibull function termed the modified Weibull equation (MWE). Experimental observations and data analysis confirm excellent reproducibility studies within and between batches of the microsphere formulations demonstrating the predictability of the accelerated experiments at 55°C. The accelerated test method was also successfully able to distinguish the in vitro product performance between the three batches having varying morphology (process variants), indicating that it is a suitable QC tool to discriminate product or process variants in clinical or commercial batches of microspheres. Additionally, data analysis utilized the MWE to further quantify the differences obtained from the accelerated in vitro product performance test between process variants, thereby enhancing the discriminatory power of the accelerated methodology at 55°C.  相似文献   

10.
The aim of this study was to investigate the in vitro degradation of hydroxyl ethyl methacrylated dextran (dex-HEMA) microspheres. Dextran microspheres were incubated in phosphate buffer pH 7.4 at 37 degrees C, and the dry mass, mechanical strength, and chemical composition of the microspheres were monitored in time. The amount and nature of the formed degradation products were established for microspheres with different cross-link densities by FT-IR (Fourier transformed infrared spectroscopy), NMR, mass spectrometry, SEC analysis, and XPS (X-ray photoelectron microscopy). The dex-HEMA microspheres DS 12 (degree of HEMA substitution; the number of HEMA groups per 100 glucose units) incubated at pH 7.4 and 37 degrees C showed a continuous mass loss, leaving after 6 months a residue of about 10% (w/w) of water-insoluble products. NMR, mass spectrometry, and SEC showed that the water-soluble degradation products consisted of dextran, low molecular weight pHEMA (M(n) approximately 15 kg/mol), and small amounts of unreacted HEMA and HEMA-DMAP (intermediate reaction product of the Baylis-Hillman reaction of HEMA with DMAP (4-dimethyl aminopyridine)). Microscopy revealed that the water-insoluble residue consisted of particles with shape and size similar to that of nondegraded microspheres. However, these particles had lost their mechanical strength as evidenced from micromanipulation experiments. FT-IR and XPS (X-ray photoelectron microscopy) revealed that these particles consisted of pHEMA, of which a small fraction was soluble in methanol (M(n) ranging between 27 and 82 kg/mol). The insoluble material likely consisted of lightly cross-linked pHEMA. In conclusion, in vitro degradation of dex-HEMA microspheres results in the formation of water-soluble degradation products (mainly dextran), leaving a small water-insoluble residue mainly consisting of pHEMA.  相似文献   

11.
生物可降解微球作为乙型肝炎基因免疫佐剂的研究   总被引:3,自引:0,他引:3  
探讨生物可降解微球对基因免疫的增强作用。采用有机溶剂蒸发法制备聚乳酸聚乙醇酸共聚 物(PLGA)微球,构建含有乙型肝炎病毒表面抗原S基因的pRC-CMV真核表达载体,用微球与基因 载体共孵育法制备其混合物。肌肉注射免疫Balb/c小鼠。结果表明:微球注射组的血清抗体滴度达到 l:1600,其效果与乙型肝炎病毒表面抗原加铝佐剂注射组相近,而裸DNA注射组没有反应。说明了 生物可降解微球可显著的提高基因免疫的免疫反应。  相似文献   

12.
Reggiani M  Taddei P  Tinti A  Fagnano C 《Biopolymers》2004,74(1-2):146-150
The enzymatic in vitro degradation of a commercial biodegradable hydroxyapatite (HA)-polymer (poly(epsilon-caprolactone)-poly(oxyethylene)(POE)-poly(epsilon-caprolactone) block copolymer) composite membrane was investigated by Raman and IR spectroscopies in two enzymatic solutions at 37 degrees C: esterase and alpha-chymotrypsin in saline phosphate buffer (SPB, pH 7.4). The degradation was found to be faster in the enzymatic medium than in SPB and alkaline solutions. The fastest degradation rate was observed in esterase solution. The trend of properly chosen Raman and IR intensity ratios was evaluated to go deeper inside the degradation mechanism: both polymeric and apatitic components were found to be involved in degradation. The former underwent preferential degradation of POE blocks, while HA is removed by the degradation medium faster than the polymer. Vibrational spectroscopy proved a valid tool for investigating the degradation of the membrane.  相似文献   

13.
New versatile, elastomeric, degradable polymeric materials for medicine.   总被引:5,自引:0,他引:5  
The present investigation was focused on the cell compatibility of recently developed biodegradable polyesterurethane-foam (DegraPol-foam) to chondrocytes and osteoblasts. Both chondrocytes and osteoblasts, isolated from adult male rats, exhibited relatively high cell adhesion on DegraPol-foam. Scanning electron microscopy (SEM) showed that cells grew on the surface and into the open cell pores of the foam. Morphologically, cells found on the surface of the foam exhibited a flat cell appearance and built a confluent cell multilayer. In contrast, inside the foams cell showed rounded morphology building cell aggregates and cell islets. In addition, chondrocytes and osteoblasts proliferated on the DegraPol-foam and preserved their phenotype for up to 2 weeks. During degradation of these polymers, small crystalline particles of short-chain poly[(R)-3-hydroxybutyric acid] (Mn approximately 2300) (PHB-P) and lysine methyl ester are released. Therefore, lysine methyl ester and PHB-P, as possible degradation products of the polymer, are investigated here for their effects on macrophages and osteoblasts. Results obtained in the present study clearly indicate that macrophages and, to a lesser degree, osteoblasts have the ability to take up (phagocytose) PHB-P. At low concentrations, particles of PHB failed to induce cytotoxic effects or to activate macrophages. Osteoblasts showed only limited PHB-P phagocytosis and no signs of any cellular damage. At high concentrations of PHB-P, the cell viability of macrophages and to a lesser extent of osteoblasts was affected.  相似文献   

14.
Mullerad J  Cohen S  Voronov E  Apte RN 《Cytokine》2000,12(11):1683-1690
Interleukin 1alpha (IL-1alpha), a pleiotropic cytokine with multiple anti-tumour activities, has been investigated in our laboratory for its potential to serve as an immunotherapeutic agent. In the present study, an attempt was made to direct IL-1alpha to macrophages, in order to induce their immunoregulatory activities. For that purpose, IL-1alpha was encapsulated within biodegradable poly(lactic/glycolic acid) microspheres, 1-5 microm diameter in size. The microspheres were efficiently taken-up by macrophages in culture and after intraperitoneal injection into mice. In culture, phagocytosis of the microspheres reached saturation within 3 h and there was no apparent effect of polymer type on the extent of uptake. In vivo uptake of human IL-1alpha-microspheres by the macrophages lead to cell activation, as evidenced by the enhanced production of murine IL-1alpha, IL-6 and IL-12. Control microspheres, containing bovine serum albumin, induced only background to low levels of cytokine production. These cytokines, when expressed by or secreted from macrophages, may stimulate in situ diverse immune and inflammatory responses, including T cell-mediated immune responses, such as the development of Th(1)cells and cytotoxic lymphocytes. Thus, directing IL-1alpha into macrophages, via the appropriate microspheres, may serve as a unique mean to activate these cells to participate in anti-tumour immune responses in situ.  相似文献   

15.
The stability, in vitro release, and in vitro cell transfection efficiency of plasmid DNA (pDNA) poly (D,L.-lactide-co-glycolide) (PLGA) microsphere formulations were investigated. PLGA microspheres containing free and polylysine (PLL)-complexed pDNA were prepared by a water-oil-water solvent extraction/evaporation technique. Encapsulation enhanced the retention of the supereoiled structure of pDNA as determined by gel electrophoresis. PLL complexation of pDNA prior to encapsulation increased both the stability of the supercoiled form and the encapsulation efficiency. Free pDNA was completely degraded after exposure to DNase while encapsulation protected the pDNA from enzymatic degradation. Rapid initial in vitro release of pDNA was obtained from microspheres containing free pDNA. while the release from microspheres containing PLL-complexed pDNA was sustained for more than 42 days. Bioactivity of encapsulated pDNA determined by in vitro cell transfection using Chinese hamster ovary cells (CHO) showed that the bioactivity of encapsulated pDNA was retained in both formulations but to a greater extent with PLL-complexed pDNA microspheres. These results demonstrated that PLGA microspheres could be used to formulate a controlledrelease delivery system for pDNA that can protect the pDNA from DNase degradation without loss of functional activity.  相似文献   

16.
Herein, we describe a protocol for simultaneously measuring six proteins in saliva using a fiber-optic microsphere-based antibody array. The immuno-array technology employed combines the advantages of microsphere-based suspension array fabrication with the use of fluorescence microscopy. As described in the video protocol, commercially available 4.5 μm polymer microspheres were encoded into seven different types, differentiated by the concentration of two fluorescent dyes physically trapped inside the microspheres. The encoded microspheres containing surface carboxyl groups were modified with monoclonal capture antibodies through EDC/NHS coupling chemistry. To assemble the protein microarray, the different types of encoded and functionalized microspheres were mixed and randomly deposited in 4.5 μm microwells, which were chemically etched at the proximal end of a fiber-optic bundle. The fiber-optic bundle was used as both a carrier and for imaging the microspheres. Once assembled, the microarray was used to capture proteins in the saliva supernatant collected from the clinic. The detection was based on a sandwich immunoassay using a mixture of biotinylated detection antibodies for different analytes with a streptavidin-conjugated fluorescent probe, R-phycoerythrin. The microarray was imaged by fluorescence microscopy in three different channels, two for microsphere registration and one for the assay signal. The fluorescence micrographs were then decoded and analyzed using a homemade algorithm in MATLAB.  相似文献   

17.
Recombinant human growth hormone (rhGH) was encapsulated within poly(D,L-lactic-co-glycolic acid) microspheres by a double emulsion solvent evaporation method. A mixture of methylene chloride and ethyl acetate in varying volume ratios was used for the microsphere preparation. Protein release profiles from three different microsphere formulations demonstrated initial burst effects ranging from 28.2% to 54.7% after a 1-day incubation and exhibited no further significant releases up to 19 days. This was because the encapsulated rhGH with the microspheres was largely aggregated in a noncovalent fashion during the formulation. Nonaggregated water soluble rhGH species within the microspheres are likely to be responsible for the rapid release upon incubation. The initially released rhGH in the incubation medium, however, was composed of mostly monomer species with a small amount of dimer as probed by size-exclusion chromatography. Circular dichroism spectra of the initially released rhGH in the medium revealed that the conformation of the released rhGH was correctly folded relative to that of native rhGH, with little variation in alpha-helix contents depending on the formulations. The "nonrelease" mechanism after the initial burst release was attributed to nonspontaneously dissociable noncovalent protein aggregation and surface adsorption of rhGH present within the microspheres.  相似文献   

18.
Synthetic biodegradable poly(butylene adipate-co-butylene terephthalate), P(BA-co-BT), with 56 mol % butylene adipate, BA, was characterized by solid-state NMR spectroscopy, thermal analysis, X-ray diffraction, computer modeling, and polarization microscopy. The NMR study showed the presence of BA and butylene terephthalate, BT. T(1C) NMR measurements proved that some BA and BT units were in crystalline regions. Thermal analysis showed one glass-transition temperature and a single diffuse melting endotherm corresponding to a large melting-point depression of about 100 degrees C compared with poly(butylene terephthalate), PBT. These results suggest that there is only one crystalline phase. An X-ray fiber diagram of a stretched film could be indexed with the same unit cell as that for PBT. Computer modeling showed that the adipate unit fits into the crystal structure of PBT by adopting a TTGTG dihedral angle sequence in the crystalline conformation proposed for the cocrystallization model. The predicted fiber diagram from the proposed model qualitatively agrees with the experimental one. Polarization microscopy revealed that the spherulite growth rate of P(BA-co-BT) was similar to that for poly(butylene adipate), PBA.  相似文献   

19.
The nontoxic, neutral degradation products of amino acid ester polyphosphazenes make them ideal candidates for in vivo orthopedic applications. The quest for new osteocompatible materials for load bearing tissue engineering applications has led us to investigate mechanically competent amino acid ester substituted polyphosphazenes. In this study, we have synthesized three biodegradable polyphosphazenes substituted with side groups, namely, leucine, valine, and phenylalanine ethyl esters. Of these polymers, the phenylalanine ethyl ester substituted polyphosphazene showed the highest glass transition temperature (41.6 degrees C) and, hence, was chosen as a candidate material for forming composite microspheres with 100 nm sized hydroxyapatite (nHAp). The fabricated composite microspheres were sintered into a three-dimensional (3-D) porous scaffold by adopting a dynamic solvent sintering approach. The composite microsphere scaffolds showed compressive moduli of 46-81 MPa with mean pore diameters in the range of 86-145 microm. The 3-D polyphosphazene-nHAp composite microsphere scaffolds showed good osteoblast cell adhesion, proliferation, and alkaline phosphatase expression and are potential suitors for bone tissue engineering applications.  相似文献   

20.
The aim of this study was to prepare biodegradable sustained release magnetite microspheres sized between 1 to 2 μm. The microspheres with or without magnetic materials were prepared by a W/O/W double emulsion solvent evaporation technique using poly(lactide-co-glycolide) (PLGA) as the biodegradable matrix forming polymer. Effects of manufacturing and formulation variables on particle size were investigated with non-magnetic microspheres. Microsphere size could be controlled by modification of homogenization speed, PLGA concentration in the oil phase, oil phase volume, solvent composition, and polyvinyl alcohol (PVA) concentration in the outer water phase. Most influential were the agitation velocity and all parameters that influence the kinematic viscosity of oil and outer water phase, specifically the type and concentration of the oil phase. The magnetic component yielding homogeneous magnetic microspheres consisted of magnetite nanoparticles of 8 nm diameter stabilized with a polyethylene glycole/polyacrylic acid (PEG/PAA) coating and a saturation magnetization of 47.8 emu/g. Non-magnetic and magnetic microspheres had very similar size, morphology, and size distribution, as shown by scanning electron microscopy. The optimized conditions yielded microspheres with 13.7 weight% of magnetite and an average diameter of 1.37 μm. Such biodegradable magnetic microspheres seem appropriate for vascular administration followed by magnetic drug targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号