首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of specific and non-specific rat liver messenger RNAs has been studied during 3'-methyl-4-(dimethylamino)azobenzene (3'-MeDAB) carcinogenesis, using cDNA probes complementary to mRNAs encoding aldolase A and B, L-type pyruvate kinase, albumin, alpha-fetoprotein, transferrin and an unidentified 2.7 X 10(3)-base mRNA. mRNAs specific for undifferentiated cells, such as those encoding aldolase A and the unidentified 2.7 X 10(3)-base species were re-expressed very early, being easily detectable at the 1st week of 3'-MeDAB treatment. They reached a maximum of expression at the 4th week. Simultaneously the levels of aldolase B and L-type pyruvate kinase mRNAs dramatically decreased as compared to controls, but remained responsive to induction by a high-carbohydrate diet. Albumin and transferrin mRNA levels were only slightly modified in the course of the carcinogenic diet. At the terminal stage of hepatocarcinogenesis, i.e. in malignant hepatoma cells, expression and inducibility of aldolase B and L-type pyruvate kinase mRNAs were similar to those in normal adult rats while mRNAs specific for undifferentiated or foetal stages were also synthesized. The very early changes in gene expression for aldolases A and B, L-type pyruvate kinase and the 2.7 X 10(3)-base mRNA species could indicate that carcinogenic diet modifies gene control mechanisms long before inducing hepatoma.  相似文献   

2.
3.
Hepatocyte-hepatoma hybrid cells were obtained by fusion of hepatocytes from adult rats and Fao hepatoma cells in the presence of polyethylene glycol. These hybrids were called hepatocytoma cells. The preservation of liver-specific enzyme activities and metabolic functions was studied in the hybrid clone 1E3. 1) The proliferating hepatocytoma cells formed monolayers presenting morphological similarity to primary cultures of hepatocytes. 2) In contrast to Fao hepatoma cells, activities of all gluconeogenic key enzymes were preserved at normal or reduced levels. 3) Lactate-dependent glucose formation was maintained at a state reduced to 36% of the gluconeogenesis in hepatocytes; no glucose formation was detected in Fao hepatoma cells. 4) The activity of the liver-specific glucokinase was reduced in hepatocytoma cells, but it was still present in contrast to Fao cells. The liver-specific isoenzyme pyruvate kinase type L was replaced by the isoenzyme type M2. 5) Gluconeogenic and glycolytic enzyme activities were regulated in hepatocytoma cells by glucagon (0.1 microM) and by insulin (0.1 microM). 6) The genome of hepatocytoma cells and its expression were stable for at least one year, when spontaneously dedifferentiating cells were removed by recloning in hypoxanthine-aminopterine-thymidine (HAT) medium.  相似文献   

4.
Summary Aldolase and pyruvate kinase isozymes were investigated in cultured hepatocytes from fetal, regenerating, and 2-acetyl-aminofluorene-fed rat liver as well as in some epithelial liver cell lines. Our results show that: (a) cell proliferation and prolonged expression of specific isozymes were found only in cultured hepatocytes from 17-day old fetuses; (b) the fetal type of pyruvate kinase expressed in regenerating and carcinogen-treated liver was temporarily lost only in cultured hepatocytes from regenerating liver; (c) the adult type of aldolase and pyruvate kinase was absent in one epithelial cell line derived from a carcinogen-treated liver and in the hepatoma tissue cell (HTC) line but was found in the Faza clone of the Reuber H35 cell line during the 50 first passages in vitro; and (d) the isozyme pattern of pyruvate kinase was always more strongly shifted than that of aldolase. The observations suggest that: (a) hepatocytes from carcinogen-treated liver exhibit the same lack of ability to proliferate in primary culture as normal adult hepatocytes; (b) adult hepatocytes can produce fetal isozymes without prior cell division; (c) pyruvate kinase is a stronger marker of dedifferentiation (retrodifferentiation) than aldolase; and (d) regulatory processes of isozyme expression are different during ontogenesis, regeneration, and hepatocarcinogenesis. This work was supported by the “Institut National de la Santé et de la Recherche Médicale” and the “Fondation pour la Recherche Medicale Fran?aise”  相似文献   

5.
Abstract. The expression of liver-specific functions of different dexamethasone-resistant variants derived from a well-differentiated dexamethasone-sensitive Reuber H35 rat hepatoma cell line (Faza 967) was examined during long-term cultivation. The dexamethasone-sensitive Faza 967 cells are characterized by the activity of tyrosine aminotransferase (TAT) and gluconeogenic enzymes, secretion of serum albumin, and the presence of liver isozymes of alcohol dehydrogenase (L-ADH), aldolase (aldolase-B), and five isoenzymes of lactate dehydrogenase (LDH). The hormone-resistant cells undergo a very dramatic change in expression of most liver-specific functions (dedifferentiation) during long-term culture, in contrast to the sensitive cells in which only certain functions (TAT activity, inducibility, and synthesis of serum albumin) exhibit considerable changes. The hormone-dependent growth sensitivity and the expression of other differentiated functions is not controlled in coordinated way in Faza 967 cells. The time course of the expression of liver-specific functions shows that the cells are resistant before they became 'dedifferentiated', i.e., loss of these liver-specific functions is not a prerequisite of the establishment of the hormone-resistant state.  相似文献   

6.
The expression of liver-specific functions of different dexamethasone-resistant variants derived from a well-differentiated dexamethasone-sensitive Reuber H35 rat hepatoma cell line (Faza 967) was examined during long-term cultivation. The dexamethasone-sensitive Faza 967 cells are characterized by the activity of tyrosine aminotransferase (TAT) and gluconeogenic enzymes, secretion of serum albumin, and the presence of liver isozymes of alcohol dehydrogenase (L-ADH), aldolase (aldolase-B), and five isoenzymes of lactate dehydrogenase (LDH). The hormone-resistant cells undergo a very dramatic change in expression of most liver-specific functions (dedifferentiation) during long-term culture, in contrast to the sensitive cells in which only certain functions (TAT activity, inducibility, and synthesis of serum albumin) exhibit considerable changes. The hormone-dependent growth sensitivity and the expression of other differentiated functions is not controlled in coordinated way in Faza 967 cells. The time course of the expression of liver-specific functions shows that the cells are resistant before they became 'dedifferentiated', i.e., loss of these liver-specific functions is not a prerequisite of the establishment of the hormone-resistant state.  相似文献   

7.
The pattern of protein synthesis in hepatoma cell clones was analysed by two-dimensional separation of [35S]methionine-labelled proteins. The clones were derived from the differentiated Reuber H 35 hepatoma and showed differences in the expression of a number of liver-specific functions and the resistance to the growth-inhibitory effect of glucocorticoids. Five protein spots were observed in the extracts of the differentiated Faza 967 cells that were absent from the electrophoretogram of the dedifferentiated H 56 cells. This clone, on the other hand, displayed six spots absent from Faza 967 cells. The growth of both Faza 967 and H 56 cells was strongly inhibited by 1 microM dexamethasone. The dexamethasone-resistant clone 2, a dedifferentiated derivative of Faza 967 cells, synthesized two polypeptides that were not present in Faza 967 or H 56 cells and produced four polypeptides at a lower level than Faza 967 cells. The examination of the short-term effect of dexamethasone on protein synthesis in Faza 967 cells revealed nine induced and one repressed protein spots, which appeared to be in good agreement with earlier published data. It is concluded that dedifferentiation, although bringing about marked changes in certain liver-specific functions, such as enzyme activities or protein secretion, affects only a relatively small fraction of the genes expressed.  相似文献   

8.
9.
10.
The role of DNA methylation in the expression of the rat gamma-glutamyl transpeptidase (GGT) gene was assessed in the Fao cell line using a hypomethylating agent, 5-azacytidine. Ten repetitive treatments of the cells, with 8 microM 5-azacytidine for 24 h, led to 13- and 80-fold increases, respectively, in GGT activity and in GGT mRNA level. The DNA methylation patterns generated by the isoschizomeric restriction enzymes Hpa II and Msp I indicated that the GGT gene, highly methylated in Fao cells, became strongly demethylated after 5-azacytidine treatments. Thus, DNA demethylation increases the expression of the GGT gene. 5-Azacytidine treatments also increased, but to a lesser extent, mRNAs level for actin, albumin, mitochondrial aspartate aminotransferase, aldolase B mRNAs (12- to 16-fold) as well as for tubulin, gluthathione transferase, and tyrosine aminotransferase mRNAs (2- to 5-fold). The GGT gene expression was further studied in B4 cells, cloned from the demethylated Fao cell population. This clone B4 exhibited a stable and strong GGT activity and a highly demethylated GGT gene. Among the three GGT mRNA I, II, or III, transcribed from three different promoters of the single rat GGT gene, only mRNA III was detected in Fao cells and was increased in clone B4, indicating that the demethylation acts on the promoter for mRNA III. The analysis of the differentiation state of B4 cells, as compared to Fao cells, showed a loss of the regulation of GGT and aspartate aminotransferase genes by dexamethasone, as well as a loss of the gluconeogenic pathway. Interestingly, B4 cells have retained many other specific functions of hepatic differentiation and have acquired alpha-fetoprotein expression; thus this clone exhibits the characteristics of a hepatic fetal phenotype.  相似文献   

11.
12.
13.
Dedifferentiated variants of a rat hepatoma: analysis by cell hybridization   总被引:18,自引:0,他引:18  
Two independent dedifferentiated variants, H5 and FaoflC2, derived from the Reuber H35 hepatoma, produce trans-acting diffusible substances(s) that extinguish the expression of liver-specific proteins when hybridized with a well-differentiated cell line of the same origin (Fao and Fu5-5, respectively). H5 x Fao hybrids show total and stable extinction of four liver functions and clonal variability in the expression of three others. FaoflC2 x Fu5-5 hybrids are initially flat (like FaoflC2 cells), and die in glucose-free medium where survival requires expression of hepatic gluconeogenic enzymes, but then evolve to hepatoma-like and finally round morphology; these latter cells express all liver functions analyzed including the gluconeogenic enzymes. Two exceptional clones that remained flat long enough for complete analysis showed extinction of all hepatic functions not expressed by FaoflC2 cells. We conclude that this transitory extinction reflects the action and then loss of extinguishing factor(s) contributed by FaoflC2. When crossed with BW1-J mouse hepatoma cells. FaoflC2 causes stable extinction of mouse aldolase B. We propose that production of extinguishing factor(s) is the rule for dedifferentiated variants.  相似文献   

14.
Most of the hybrid clones derived from a cross of Chinese hamster fibroblasts (DON) with rat hepatoma cells (Faza 967) showed preferential loss of rat chromosomes. Two of the hybrid clones retained the rat chromosomes, and both showed extinction of 4 liver-specific enzymes: aldolase B, liver alcohol dehydrogenase, and the inducible enzymes tyrosine aminotransferase and alanine aminotransferase. Subcloning of 1 of these hybrids, which contained 2 sets of hepatoma chromosomes and 1 set of hamster chromosomes, permitted the isolation of some clones which reexpressed 1 or more of the liver-specific enzymes. Liver alcohol dehydrogenase was the most frequently reexpressed enzyme and aldolase B the least. Tyrosine aminotransferase inducibility was reexpressed independently of basal activity, and the enzyme produced by the reexpressing hybrid cells was precipitated by a specific antiserum. No correlation was detected between the presence or absence of the marker chromosomes (large metacentrics) of the hamster parent and the extinction and reexpression of the hepatic enzymes. The results reported confirm and extend to interspecific hybrids the observation of the stable and independent reexpression of tissue-specific enzymes.  相似文献   

15.
Molecular cloning of cDNA for rat L-type pyruvate kinase and aldolase B   总被引:13,自引:0,他引:13  
Two double-stranded cDNA recombinant pBR322 plasmid libraries were constructed starting from high carbohydrate diet rat liver poly(A)+ mRNA, either fractionated by denaturing sucrose gradient centrifugation for the cloning of L-type pyruvate kinase cDNA, or nonfractionated for aldolase B. Both libraries were screened with single-stranded cDNA probes reverse transcribed from fasted or high carbohydrate diet rat liver mRNAs. mRNAs from fasted animals were also fractionated by sucrose gradient centrifugation and mRNAs from the fed animals were, in addition, further purified by high performance liquid gel filtration chromatography. Those clones hybridizing with the "positive" probe (from animals fed the high carbohydrate diet) and not with the "negative" one (from fasted animals) were preselected and their plasmid DNA was purified and analyzed by positive hybridization-selection. Thirty of 4500 bacteria colonies transformed by recombinant plasmids were preselected by differential screening for pyruvate kinase, and 8 of 864 colonies for aldolase B. Twenty-two recombinant plasmids for pyruvate kinase and two for aldolase B were shown to contain specific cDNA inserts by positive hybridization-selection. Plasmids DNAs of some pyruvate kinase and aldolase B clones (whose inserts ranged from 700 to 1050 bases in length) were labeled by nick translation and used as probes for Northern blot hybridization. The pyruvate kinase cDNA probes recognized mainly a 3400-base RNA species which was detected in high carbohydrate diet rat liver, but not in fasted rat liver and in tissues which do not synthesize L-type pyruvate kinase. In addition, some pyruvate kinase probes hybridized with minor RNA species of about 2000 bases in length, only observed after carbohydrate diet. For aldolase B, the recombinant plasmid DNA hybridized with a single RNA species of 1750 bases. This RNA, detected in kidney, small intestine and liver, was induced by a high carbohydrate diet and increased with liver development. The rat probe cross-hybridized with human aldolase B messenger RNA.  相似文献   

16.
17.
In rats, oxidized fats activate the peroxisome proliferator-activated receptor alpha (PPARalpha), leading to reduced triglyceride concentrations in liver, plasma and very low density lipoproteins. Oxidation products of linoleic acid constitute an important portion of oxidized dietary fats. This study was conducted to check whether the primary lipid peroxidation product of linoleic acid, 13-hydroperoxy-9,11-octadecadienoic acid (13-HPODE), might be involved in the PPARalpha-activating effect of oxidized fats. Therefore, we examined the effect of 13-HPODE on the expression of PPARalpha target genes in the rat Fao and the human HepG2 hepatoma cell lines. In Fao cells, 13-HPODE increased the mRNA concentration of the PPARalpha target genes acyl-CoA oxidase (ACO), cytochrome P450 4A1 and carnitine-palmitoyltransferase 1A (CPT1A). Furthermore, the concentration of cellular and secreted triglycerides was reduced in Fao cells treated with 13-HPODE. Because PPARalpha mRNA was not influenced, we conclude that these effects are due to an activation of PPARalpha by 13-HPODE. In contrast, HepG2 cells seemed to be resistant to PPARalpha activation by 13-HPODE because no remarkable induction of the PPARalpha target genes ACO, CPT1A, mitochondrial HMG-CoA synthase and delta9-desaturase was observed. Consequently, cellular and secreted triglyceride levels were not changed after incubation of HepG2 cells with 13-HPODE. In conclusion, this study shows that 13-HPODE activates PPARalpha in rat Fao but not in human HepG2 hepatoma cells.  相似文献   

18.
Three species of aldolase A mRNA (mRNAs I, II, and III) only differing in the structure of the 5'-terminal noncoding region were detected in rat tissues. The cDNA clones for mRNAs II and III were prepared from ascites hepatoma AH60C and sequenced. The mRNA II is 1393 nucleotides long excluding poly(A) tail, while the mRNA III is 1440 nucleotides long, some 50 nucleotides longer than the mRNA II. The mRNAs II and III differ in the sequence between -25 and the 5' termini from the previously reported skeletal muscle aldolase A mRNA (mRNA I, 1343 nucleotides long). By contrast, the residual 5' noncoding sequence (-24 to -1) and the coding and 3' noncoding sequences are common to all the mRNAs. By dot spot hybridization and S1 mapping the distribution of these mRNAs in the various tissues was determined. The mRNA I appears exclusively in a skeletal muscle and some in heart and hepatoma AH60C, whereas the mRNAs II and III appear more or less in all the tissues examined, implying that their appearances are under tissue-specific control. Furthermore, partial nucleotide sequence analysis of the fetal liver aldolase A mRNA supports that aldolase A mRNA that reappeared in hepatoma is really a resurgence of the gene product expressed in the fetus.  相似文献   

19.
20.
A large number of hepatoma cell lines has been used to study expression and regulation of liver-specific function. However these cells, even the most differentiated, are morphologically far from hepatocytes. In no case is the typical hepatocyte cell polarity well maintained. Cell hybridization has been used as a potential means for turning on specific genes. From hybrids between well differentiated Fao rat hepatoma cells and WI 38 human fibroblasts, we have attempted to isolate segregated cells that are highly differentiated and polarized. Such cells, detected in aged cultures of only one hybrid (WIF12), were isolated by subcloning. One subclone, WIF12-1 was analyzed. Expression of liver-specific functions extinguished in the original hybrid is restored in all WIF12-1 cells at a very high level, similar to that of hepatocytes and 5-30 times higher that that of parental cells. Moreover human genes coding for liver-specific proteins (albumin, fibrinogen, and alcohol dehydrogenase) are actively expressed. WIF12-1 cells have acquired a polarized phenotype as attested by the presence of bile canaliculi between adjacent cells and by the asymmetrical localization of apical (Mg(2+)-ATPase, gamma-glutamyl transpeptidase) and basolateral membrane markers. The bile canaliculi formed are dynamic and functional structures, characterized by long periods of expansion followed by rapid contractions. The ability to polarize is a general and permanent property of WIF12-1 cells. These cells appear to constitute a valid model for the in vitro study of hepatocyte cell polarity, membrane domain formation and mechanisms of membrane protein sorting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号