首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
thiK and thiL loci of Escherichia coli.   总被引:4,自引:4,他引:0       下载免费PDF全文
Nitrogenase proteins were isolated from cultures of the photosynthetic bacterium Rhodopseudomonas capsulata grown on a limiting amount of ammonia. Under these conditions, the nitrogenase N2ase A was active in vivo, and nitrogenase activity in vitro was not dependent upon manganese and the activating factor. The nitrogenase proteins were also isolated from nitrogen-limited cultures in which the in vivo nitrogenase activity had been stopped by an ammonia shock. This nitrogenase activity, N2ase R, showed an in vitro requirement for manganese and the activating factor for maximal activity. The Mo-Fe protein (dinitrogenase) was composed of two dissimilar subunits with molecular weights of 55,000 and 59,500; the Fe protein (dinitrogenase reductase), from either type of culture, was composed of a single subunit (molecular weight), 33,500). The metal and acid labile sulfur contents of both nitrogenase proteins were similar to those found for previously isolated nitrogenases. The Fe proteins from both N2ase A and N2ase R contained phosphate and ribose, 2 mol of each per mol of N2ase R Fe protein and about 1 mol of each per mol of N2ase A Fe protein. The greatest difference between the two types of Fe protein was that the N2ase R Fe protein contained about 1 mol per mol of an adenine-like molecule, whereas the N2ase A Fe protein content of this compound was insignificant. These results are compared with various models previously presented for the short-term regulation of nitrogenase activity in the photosynthetic bacteria.  相似文献   

2.
Three electrophoretically distinct superoxide dismutases (EC 1.15.1.1) were observed in the crude extracts from Pseudomonas ovalis. One of these was isolated as an iron-containing superoxide dismutase. It contained 1.4 gatoms of Fe per mol of enzyme, and had a specific activity of 3900 units per mg of protein. A crystallized enzyme contained 1.1 gatoms of Fe per mol of enzyme, and had a specific activity of 3100 units per mg of protein. The results of sedimentation equilibrium and gel filtration indicated a molecular weight of 40,000. S020,W was estimated as 3.18 by sedimentation velocity study. Sodium dodecyl sulfate gel electrophoresis indicated that the enzyme was composed of two subunits, and had a molecular weight of 19,500. Analysis for sulfhydryl groups showed that there were four such groups per mol of enzyme. The spectrum of visible and ultraviolet region, the amino acid composition, the CD spectrum of the enzyme, and the effect of certain compounds on the enzyme, were studied and compared with iron-containing superoxide dismutases isolated from other organisms.  相似文献   

3.
A ferritin was isolated from the obligate anaerobe Bacteroides fragilis. Estimated molecular masses were 400 kDa for the holomer and 16.7 kDa for the subunits. A 30-residue N-terminal amino acid sequence was determined and found to resemble the sequences of other ferritins (human H-chain ferritin, 43% identity; Escherichia coli gen-165 product, 37% identity) and to a lesser degree, bacterioferritins (E. coli bacterioferritin, 20% identity). The protein stained positively for iron, and incorporated 59Fe when B. fragilis was grown in the presence of [59Fe]citrate. However, the isolated protein contained only about three iron atoms per molecule, and contained no detectable haem. This represents the first isolation of a ferritin protein from bacteria. It may alleviate iron toxicity in the presence of oxygen.  相似文献   

4.
Stabilization of iron in a bioavailable form is the function of ferritin, a protein of 24 subunits forming a coat around a core of less than or equal to 4500 hydrated iron atoms. The core of ferritin isolated from tissues contains Fe3+, but Fe2+ is required for experimental core formation in protein coats; reduction of Fe3+ to Fe2+ facilitates iron removal from protein coats. Using the differences in x-ray absorption spectra (x-ray absorption near edge structure) between Fe2+ and Fe3+ to monitor reconstitution of ferritin from Fe2+ and protein coats, we observed stabilization of Fe2+, apparently inside the coat. Mixtures of Fe2+ and Fe3+ persisted for greater than or equal to 16 h in air indicating that, in vivo, some iron in ferritin could be stored as Fe2+ and with Fe3+ could yield magnetite.  相似文献   

5.
T. Hayakawa  S. Kanematsu  K. Asada 《Planta》1985,166(1):111-116
Thylakoid-bound superoxide dismutase (SOD; EC 1.15.1.1) was solubilized by Triton X-100 from spinach and purified to a homogeneous state. The molecular weight of thylakoid-bound SOD was 52000; the enzyme was composed of two equal subunits. Its activity was not sensitive to cyanide and hydrogen peroxide, and the isolated SOD contained Mn, but neither Fe nor Cu. Thus, the thylakoid-bound SOD is a Mn-containing enzyme. The subunit molecular weight of thylakoid Mn-SOD is the highest among Mn-SODs isolated so far, a fact which might reflect its binding to the membranes.  相似文献   

6.
A novel lectin was purified to homogeneity from winter buds of Lysichiton camtschatcensis (L.) Schott of the Araceae family. It was a tetramer composed of two non-covalently associated polypeptides with small subunits (11 kDa) and large subunits (12 kDa). Sequencing of both subunits yielded unique N-terminal sequences. A cDNA encoding the lectin was cloned. The isolated cDNA contained an open reading frame that encoded 267 amino acids. It encoded both subunits, indicating that the lectin is synthesized as a single precursor protein that is post-translationally processed into two different subunits with 45% sequence identity. Each subunit contained a mannose-binding motif known to be conserved in monocot mannose-binding lectins, but its activity was not inhibited by monosaccharides, including methyl α-mannoside. Asialofetuin and yeast invertase were potent inhibitors. Lectin activity was detected in the buds formed during the winter season but not in the expanded leaves.  相似文献   

7.
By using a modified purification procedure in which we have substituted detergent exchange gel filtration for DEAE-cellulose or hydroxylapatite chromatography (Mason, T. L., Poyton, R. O., Wharton, D. C., and Schatz, G. (1973) J. Biol. Chem. 248, 1346-1354), we have isolated yeast cytochrome c oxidase preparations which are low in contaminating polypeptides and which have been successfully used for the large scale purification of subunits. Subunits have been purified from this preparation by a simple two-step procedure which involves: 1) the release of subunits IV and VI from an "insoluble" core composed of subunits I, II, III, V, and VII; and 2) gel filtration of the "core" subunits in the presence of sodium dodecyl sulfate. Molecular weights of the isolated subunits, obtained from sodium dodecyl sulfate gel retardation coefficients (KR) derived from Ferguson plots, were: I, 54,000; II, 31,000; III, 29,500; IV, 14,500; V, 12,500; VI, 9,500; VII, 4,500. In their purified state all subunits, except for subunit V, exhibited electrophoretic behavior similar to that exhibited by unpurified subunits in sodium dodecyl sulfate-dissociated holoenzyme preparations. As purified, subunit V exhibits a slightly smaller apparent molecular weight than its counterpart in the holoenzyme. Amino acid analysis of the isolated subunits revealed that subunit III, a mitochondrial translation product, contained 41.9% polar amino acids, whereas subunits V and VII, cytoplasmic translation products, each contained 47.7% polar amino acids. These results extend and support our previous finding that the mitochondrially translated subunits of yeast cytochrome c oxidase are more hydrophobic than the cytoplasmically translated subunits.  相似文献   

8.
M J Yablonski  E C Theil 《Biochemistry》1992,31(40):9680-9684
Ferritin is a large protein, highly conserved among higher eukaryotes, which reversibly stores iron as a mineral of hydrated ferric oxide. Twenty-four polypeptides assemble to form a hollow coat with the mineral inside. Multiple steps occur in iron core formation. First, Fe2+ enters the protein. Then, several alternate paths may be followed which include oxidation at site(s) on the protein, oxidation on the core surface, and mineralization. Sequence variations occur among ferritin subunits which are classified as H or L; Fe2+ oxidation at sites on the protein appears to be H-subunit-specific or protein-specific. Other steps of ferritin core formation are likely to involve conserved sites in ferritins. Since incorporation of Fe2+ into the protein must precede any of the other steps in core formation, it may involve sites conserved among the various ferritin proteins. In this study, accessibility of Fe2+ to 1,10-phenanthroline, previously shown to be inaccessible to Fe2+ inside ferritin, was used to measure Fe2+ incorporation in two different ferritins under various conditions. Horse spleen ferritin (L/H = 10-20:1) and sheep spleen ferritin (L/H = 1:1.6) were compared. The results showed that iron incorporation measured as inaccessibility of Fe2+ to 1,10-phenanthroline increased with pH. The effect was the same for both proteins, indicating that a step in iron core formation common among ferritins was being measured. Conserved sites previously proposed for different steps in ferritin core formation are at the interfaces of pairs and trios of subunits. Dinitrophenol cross-links, which modify pairs of subunits and affect iron oxidation, had no effect on Fe2+ incorporation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A mucus glycoprotein was isolated from the duodenal glands of the rat and purified by repeated density-gradient centrifugation. The characterized glycoprotein is unique to the mucous cells of the duodenal glands and is not present in parts of the small intestine devoid of these glands. The chemical composition of the purified glycoprotein is characteristic for glycoproteins of the mucin-type. Its protein content is relatively high and amount to 35% by weight. No neuraminic acid and little sulphate (2%) is present. Evidence is presented that the native glycoprotein is built up from subunits held together via disulphide bridges in a non-glycosylated region of the protein core.  相似文献   

10.
A procedure was developed for the purification of sheathed flagella from Bdellovibrio bacteriovorus 109J. Preparations of isolated flagella appeared as filaments 28 nm in diameter, did not vary in sheath content by more than 10% from the mean, and contained 50% protein, 38% phospholipid, and 12% lipopolysaccharide (LPS) by weight. The sheath was readily solubilized by Triton X-100, whether or not EDTA was present, and contained all of the LPS and phospholipid and 30 to 40% of the protein of the intact flagella; sedimentable core filament polypeptides accounted for the remainder. Flagellar LPS was significantly enriched in nonadecenoic acid (19:1) and depleted in beta-hydroxymyristic acid relative to outer membrane LPS from intraperiplasmically grown bdellovibrios. These observations suggest that the sheath is a stable domain distinct from the bulk of the outer membrane. The sheath also contained substantially more phospholipid (57%) and less protein (26%) of a more heterogeneous composition than that of previously described outer membranes. This unusual balance of constituents was predicted to result in a fluid membrane compatible with a model for the generation of motility by rotation of the core filament within a highly flexible sheath.  相似文献   

11.
Isolation and characterization of a novel nonheme chloroperoxidase   总被引:1,自引:0,他引:1  
Chloroperoxidase, purified from the fermentation of Curvularia inaequalis, had a molecular weight of approximately 240,000 and was composed of 4 subunits of identical molecular weight (Mr 66,000). The enzyme was specific for I-, Br- and Cl-, and inactive toward F-. The optimum pH of the enzyme was centered around 5.0. X-ray fluorescence revealed that the enzyme contained 2.2 atoms of zinc and 0.7 atom of Fe per molecule of protein. The enzyme had no heme-like compound as a prosthetic group, making it the first nonheme chloroperoxidase to be reported. Under oxidative conditions that rapidly inactivated other haloperoxidases, this enzyme was remarkably stable.  相似文献   

12.
Soluble nitrogenase from Rhodospirillum rubrum has been isolated and separated into its two components, the MoFe protein and the Fe protein. The MoFe protein has been purified to near homogeneity and has a molecular weight or 215 000. It contains two Mo, 25--30 Fe and 19--22 acid-labile sulphide and consists of four subunits, Mw 56 000. The Fe protein has a molecular weight 65 000. It contains approximately four Fe and four acid-labile sulphide and consists of two subunits, Mw 31 500. The highest specific activities for the purified components are 920 and 1260 nmol ethylene produced per min per mg protein, respectively. The purified components require the membrane component for activity (Nordlund, S., Eriksson, U. and Baltscheffsky, H. (1977) Biochim. Biophys. Acta 462, 187--195). Titration of the MoFe protein with the Fe protein shows saturation and excess MoFe protein over Fe protein is inhibitory. Addition of Fe2+ or Mn2+ to the reaction mixture increases the activity apparently through interaction with the membrane component.  相似文献   

13.
A Zn-binding protein (ZBP) was induced in the liver of Donaldson strain rainbow trout by 7 mg/kg i.p. injections of divalent Zn ions. ZBP synthesis was inhibited (74%) by cycloheximide. ZBP had a minimum molecular weight of 16,900 and was composed of two subunits with apparent molecular weights of 9650 and 6050. Purified ZBP contained 4% phenylalanine, 4% isoleucine, 5-6% leucine and 3.48% Zn. Each protein molecule bound nine Zn atoms and contained at least four sulfhydryl groups. Molecular weight, two subunits and the presence of aromatic amino acids suggested that ZBP was not metallothionein.  相似文献   

14.
李毅平  龚和  朴镐用 《昆虫学报》2000,43(-1):77-84
采用KBr密度梯度超速离心并结合常规Sepharose CL-4B凝胶柱层析,从越冬松针瘿蚊Thecodiplosis japonensis(Uchida et Inouye) 幼虫整体中,分离并纯化了一种携脂蛋白。这是第二例从昆虫整体分离并纯化出携脂蛋白的报道。采用凝胶柱层析确定该携脂蛋白的相对分子质量为638 kD,它是由分别为240 kD和52 kD的两个亚基组成 。整体分子中含有52.8%的蛋白和47.2%的脂类 。苏丹黑B和希夫氏试剂染色显示阳性,说明它是一种糖脂复合蛋白。采用超速离心确定它的密度为1.11 g/mL,表明它是一种高密度的脂蛋白。  相似文献   

15.
A ribosomal subunit antiassociation activity has been purified from both the postribosomal supernatant and ribosomal salt-wash protein fractions of rabbit reticulocyte lysates. A majority (greater than 90%) of the activity is associated with a low molecular weight protein of Mr of approximately 25,000. A small but significant level of antiassociation activity (less than 10%) was found to be associated with higher molecular weight protein fractions. The purified 25,000-dalton antiassociation factor interacts with 60 S ribosomal subunits to prevent them from reassociating with 40 S ribosomal subunits. The factor does not seem to interact directly with 40 S subunits nor does it dissociate 80 S monosomes. The properties of this factor are thus similar to the eukaryotic initiation factor 6 isolated from both wheat germ and calf liver extracts.  相似文献   

16.
A minocycline (MINO)-resistant mutant was isolated from Mycobacterium smegmatis strain Rabinowitschi. Polypeptide synthesis in the cell-free system prepared from the mutant was resistant to minocycline (MINO) because of alterated 30S ribosomal subunits. Upon two-dimensional gel electrophoresis, two proteins of 30S subunit were found to be altered. MINO resistance phenotype was transferred by mating to the recipient strain P-53. MINO resistance phenotype of a recombinant thus obtained was transferred by a different mating system to the recipient strain Jucho, once again. Ribosomal proteins of each of the donors, recipients and recombinants were analyzed and compared on 2-dimensional (2D) electrophoresis. Approximately 50 ribosomal proteins were observed in 70S ribosomes. Some proteins were differently electrophoresed in different strains. The 30S ribosomal subunits contained at least 19 proteins and 50S ribosomal subunits contained at least 23 proteins. Some proteins were easily washed off during dissociation of subunits in sucrose gradients. At least one protein (designated F) in both subunits was observed at the same position. One protein designated C in 30S subunits could be co-transferred to the recipient cells together with resistance phenotype at the frequency of 100% in the 30 recombinants examined so far. The other protein designated D in 30S subunits could be transferred at the frequency of 86-88%. Three other proteins in 50S subunits could be co-transferred to the recipient strain at a lower frequency. Minocycline resistance, therefore, could be mapped close to genes encoding the structure of ribosomal proteins in M. smegmatis.  相似文献   

17.
Proteoglycan monomer (D1) and aggregate (A1) preparations were isolated from 4 M guanidinium chloride extracts of the Swarm rat chondrosarcoma. When EDTA, 6-aminohexanoic acid, and benzamidine were present in the solutions, the D1 preparation contained a single component (SO = 23 S), and the A1 preparation contained 30% monomer (SO = 23 S) and 70 percent aggregate (SO = 111 S). In the absence of EDTA, 6-aminohexanoic acid, and benzamidine, the A1 preparations contained only small proteoglycan fragments, indicating that extensive enzymatic degradation had occurred. The composition of the proteoglycan monomer was different from that of proteoglycan monomer preparations from normal hyaline cartilages in that it did not contain keratan sulfate and chondroitin 6-sulfate; only chondroitin 4-sulfate was found. The A1 preparation from the chondrosarcoma contained only one link protein, which was like the smaller (molecular weight of 40,000) of the two link proteins present in A1 preparations from bovine nasal cartilage. When the A1 preparation from the chondrosarcoma was treated with chondroitinase ABC and trypsin and the digest was chromatographed on Sepharose 2B, a complex was isolated which contained the link protein and the segments of the protein core from the hyaluronic acid-binding region of the proteoglycan molecules.  相似文献   

18.
Proteoglycan aggregates were isolated from bovine aorta by extraction with 0.5 M guanidine hydrochloride in the presence of proteinase inhibitors and purified by isopycnic CsCl centrifugation. The bottom two-fifths (A1) of the gradient contained 30% of proteoglycans in the aggregated form. The aggregate had 14.8% protein and 20.4% hexuronic acid with hyaluronic acid, dermatan sulfate and chondroitin sulfates in a proportion of 18:18:69. A link protein-containing fraction was isolated from the bottom two-fifths by dissociative CsCl isopycnic centrifugation. The link protein that floated to the top one-fifth of the gradient was purified by chromatography on Sephadex G-200 in the presence of 4 M guanidine hydrochloride. It moved as a single band in SDS-polyacrylamide gel electrophoresis with a molecular weight of 49 000. The amino acid composition of link protein resembled that of link protein from cartilage, but was strikingly different from that of the protein core of the proteoglycan monomer. The neutral sugar content of link protein was 3.5% of dry weight. Galactose, mannose and fucose constituted 21, 62 and 16%, respectively of the total neutral sugars. In aggregation studies the link protein was found to interact with both proteoglycan monomer and hyaluronic acid. Oligosaccharides derived from hyaluronic acid decreased the viscosity of link protein-free aggregates of proteoglycan and hyaluronic acid but not of link-stabilized aggregates, demonstrating that the link protein increases the stability of proteoglycan aggregates.  相似文献   

19.
NADPH is an intermediate in the oxidation of organic compounds coupled to Fe(III) reduction in Geobacter species, but Fe(III) reduction with NADPH as the electron donor has not been studied in these organisms. Crude extracts of Geobacter sulfurreducens catalyzed the NADPH-dependent reduction of Fe(III)-nitrilotriacetic acid (NTA). The responsible enzyme, which was recovered in the soluble protein fraction, was purified to apparent homogeneity in a four-step procedure. Its specific activity for Fe(III) reduction was 65 micromol. min(-1). mg(-1). The soluble Fe(III) reductase was specific for NADPH and did not utilize NADH as an electron donor. Although the enzyme reduced several forms of Fe(III), Fe(III)-NTA was the preferred electron acceptor. The protein possessed methyl viologen:NADP(+) oxidoreductase activity and catalyzed the reduction of NADP(+) with reduced methyl viologen as electron donor at a rate of 385 U/mg. The enzyme consisted of two subunits with molecular masses of 87 and 78 kDa and had a native molecular mass of 320 kDa, as determined by gel filtration. The purified enzyme contained 28.9 mol of Fe, 17.4 mol of acid-labile sulfur, and 0.7 mol of flavin adenine dinucleotide per mol of protein. The genes encoding the two subunits were identified in the complete sequence of the G. sulfurreducens genome from the N-terminal amino acid sequences derived from the subunits of the purified protein. The sequences of the two subunits had about 30% amino acid identity to the respective subunits of the formate dehydrogenase from Moorella thermoacetica, but the soluble Fe(III) reductase did not possess formate dehydrogenase activity. This soluble Fe(III) reductase differs significantly from previously characterized dissimilatory and assimilatory Fe(III) reductases in its molecular composition and cofactor content.  相似文献   

20.
The Escherichia coli Dps protein belongs to a specific family of bacterial ferritins; it is a nanosized particle that contains an inorganic core (~5 nm in diameter) and a protein shell with a size of 8–9 nm. The protein shell consists of 12 identical subunits with the known crystal structure of a dodecamer. The composition and structure of the core have been less studied. The core formation is associated with the oxidation products of Fe2+ ions in the ferroxidase centers of the protein. Thus, Fe2O3 oxides are the main compounds of the core. However, the mineralization properties of Fe2+ ions under anaerobic conditions in vitro may indicate a more complicated composition of the core in the native Dps protein. This paper presents a technique for the preparation of purified Dps samples for ultrahigh vacuum synchrotron experiments by X-ray absorption near edge structure spectroscopy of the iron absorption edge in the soft X-ray region. The conducted synchrotron experiments have revealed the presence of both trivalent and divalent iron ions in the octahedral and tetrahedral environment of oxygen atoms in the prepared biological samples. This points to a complex ionic composition of the core even in the native Dps protein, which has been isolated from aerobically grown bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号