首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
J Mo  M E Holtzer  A Holtzer 《Biopolymers》1992,32(11):1581-1587
The kinetics of folding from random coils to two-chain coiled coils of beta beta-tropomyosin was studied by stopped-flow CD (SFCD) in the backbone region (222 nm). Two species were studied: the reduced form and the doubly disulfide cross-linked form. The proteins were totally unfolded in 6M urea-saline buffer, then refolded by tenfold dilution into benign buffer. In the refolding medium, they spontaneously recover the two-chain coiled-coil structure. Reduced beta beta refolds in at least two stages: one or more fast phases (< 0.04 s), in which an intermediate with 71% of the equilibrium ellipticity forms, followed by a slower time-resolvable phase that completes the folding. The slow phase is first order, signifying that dimerization occurs in the fast phase. The time constant of the slow phase is 2 s at 20 degrees C and requires activation parameters of delta S not equal to = -7 +/- 0.3 cal/mol.K, delta H not equal to = 15 +/- 1 kcal/mol. These results are very similar to those previously found for the reduced genetic variant alpha alpha-tropomyosin. In contrast, refolding of doubly disulfide cross-linked beta beta is complete within the dead time (< 0.04 s), whereas the singly cross-linked alpha alpha species also displays a slow phase. The opposite process, unfolding reduced beta beta from the coiled-coil state, is complete within the dead time, as in the alpha alpha variant.  相似文献   

2.
J Mo  M E Holtzer  A Holtzer 《Biopolymers》1992,32(7):751-756
The kinetics of folding random coils of alpha alpha-tropomyson (Tm) subsequences to two-chain coiled coils was studied by stopped-flow CD. Subsequences studied were those comprising residues 11-127 (11Tm127), 142-281 (142Tm281), 1-189 (1Tm189), and 190-284 (190Tm284) of the parent 284-residue alpha-tropomyosin chain. Unlike the parent, subsequences 1Tm189 and 11Tm127 fold within the dead time of the instrument (less than 0.04 s). Like the parent, subsequences 142Tm281 and 190Tm284 fold in two phases. In the fast phase, 45% and 32%, respectively, of the equilibrium helical content form. In the time-resolvable, first-order slow phase (k-1 = 2.7 s at 20 degrees C for 142Tm281 and k-1 = 2.0 s at 15 degrees C for 190Tm284), the remaining structure forms. Neither reduced 142Tm281 nor 190Tm284 show any dependence of the rate on concentration, so chain association occurs in the fast phase. Like the parent 142Tm281 forms more helical content in the fast phase when cross-linked at C-190, and the remaining structure forms slowly with rate parameters similar to those of the reduced species. Comparison of the folding behavior of C- and N-terminal subsequences with that of the parent protein suggests that the slow phase in the parent is caused by a folding bottleneck somewhere nearer the C-terminus. However, rapid association and partial folding near the N-terminus is not necessary for prompt folding, since even 190Tm284 chains associate and partially fold very rapidly (less than 0.04 s), and then complete the folding in seconds.  相似文献   

3.
Circular dichroism was used to study the folding of alpha alpha-tropomyosin and AcTM43, a 43-residue peptide designed to serve as a model for the N-terminal domain of tropomyosin. The sequence of the peptide is AcMDAIKKKMQMLKLDVENLLDRLEQLEADLKALEDRYKQLEGGC. The peptide appeared to form a coiled coil at low temperatures (< 25 degrees C) in buffers with physiological ionic strength and pH. The folding and unfolding of the peptide, however, were noncooperative. When CD spectra were examined as a function of temperature, the apparent degree of folding differed when the ellipticity was followed at 222, 208, and 280 nm. Deconvolution of the spectra suggested that at least three component curves contributed to the CD in the far UV. One component curve was similar to the CD spectrum of the coiled-coil alpha-helix of native alpha alpha-tropomyosin. The second curve resembled the spectrum of single-stranded short alpha-helical segments found in globular proteins. The third was similar to that of polypeptides in the random coil conformation. These results suggested that as the peptide folded, the alpha-helical content increased before most of the coiled coil was formed. When the CD spectrum of striated muscle alpha alpha-tropomyosin was examined as a function of temperature, the unfolding was also not totally cooperative. As the temperature was raised from 0 to 25 degrees C, there was a decrease in the coiled coil and an increase in the conventional alpha-helix type spectrum without formation of random coil. The major transition, occurring at 40 degrees C, was a cooperative transition characterized by the loss of all of the remaining coiled coil and a concomitant increase in random coil.  相似文献   

4.
5.
Synthesis and CD and (13)C(alpha)-NMR studies in a near-neutral saline buffer are reported for a 65-residue peptide ((190)Tm(254)) comprising residues 190-254 of the alpha-tropomyosin chain. CD on a version disulfide cross-linked via the N-terminal cysteine side chains indicates that this dimer is highly helical and melts near 48 degrees C. The CD is independent of peptide concentration, showing that association of (190)Tm(254) stops at the two-strand level. Similar studies on the reduced version show much lower helix content at low temperature, melting points below room temperature, and the expected concentration dependence. The observed melting temperature of the reduced peptide is far below (by 27 degrees C) that expected from an extant analysis of calorimetry data on parent tropomyosin that designates (190)Tm(254) as an independently melting "cooperative block." This disagreement and the pronounced nonadditivity seen when data for (190)Tm(254) are combined with extant data for other subsequences argue decisively against the concept of specific independently melting blocks within the tropomyosin chain. The data for (190)Tm(254) also serve to test recent ideas on the sequence determinants of structure and stability in coiled coils. Analysis shows that some ideas, such as the stabilizing effect of leucine in the d heptad position, find support, but others--such as the destabilizing effect of alanine in d, the dimer-disfavoring effect of beta-branching in d and its dimer-favoring effect in a, and the dimer-directing effect of asparagine in a--are more questionable in tropomyosin than in the leucine zipper coiled coils. (13)C(alpha)-NMR data at two labeled sites, L228(d) and V246(a), of (190)Tm(254) display well-separated resonances for folded and unfolded forms at each site, indicating that the transition is slow on the NMR time scale and thus demonstrating the possibility of obtaining thermodynamic and kinetic information on the transition at the residue level.  相似文献   

6.
Studies by one-dimensional NMR are reported on the interconversion of folded and unfolded forms of the GCN4 leucine zipper in neutral saline buffer. The peptide bears 99% 13C(alpha) labels at three sites: V9, L12, and G31. Time-domain 13C(alpha)-NMR spectra are interpreted by global Bayesian lineshape analysis to extract the rate constants for both unfolding and folding as functions of temperature in the range 47-71 degrees C. The data are well fit by the assumption that the same rate constants apply at each labeled site, confirming that only two conformational states need be considered. Results show that 1) both processes require a free energy of activation; 2) unfolding is kinetically enthalpy-opposed and entropy-driven, while folding is the opposite; and 3) the transition state dimer ensemble averages approximately 40% helical. The activation parameters for unfolding, derived from NMR data at the elevated temperatures where both conformations are populated, lead to estimates of the rate constant at low temperatures (5-15 degrees C) that agree with extant values determined by stopped-flow CD via dilution from denaturing media. However, the corresponding estimated values for the folding rate constant are larger by two to three orders of magnitude than those obtained by stopped flow. We propose that this apparent disagreement is caused by the necessity, in the stopped-flow experiment, for initiation of new helices as the highly denaturant-unfolded molecule adjusts to the newly created benign solvent conditions. This must reduce the success rate of collisions in producing the folded molecule. In the NMR determinations, however, the unfolded chains always have a small, but essential, helix content that makes such initiation unnecessary. Support for this hypothesis is adduced from recent extant experiments on the helix-coil transition in single-chain helical peptides and from demonstration that the folding rate constants for coiled coils, as obtained by stopped flow, are influenced by the nature of the denaturant used.  相似文献   

7.
Measurements are presented on the time course of chain exchange among two-chain alpha-helical coiled coils of rabbit tropomyosin. All experiments are in a regime (temperature, protein concentration) in which coiled-coil dimers are the predominant species. Self-exchange in alpha alpha-tropomyosin was investigated by mixing alpha alpha species with alpha* alpha*, the asterisk designating an alpha-chain whose lone sulfhydryl (C190) has been blocked by carboxyamidomethylation. The overall process alpha alpha + alpha* alpha* in equilibrium with 2 alpha alpha* is followed by measurement of the fraction (h) of alpha alpha* species as a function of time. Similarly, self-exchange in beta beta-tropomyosin is examined by measurements of the overall process: beta beta + beta* beta* in equilibrium with 2 beta beta*, in which beta* signifies a beta-chain blocked at both sulfhydryls (C36 and C190). The observed time course for both chains is well fit by the first-order equation: h (t) = h (infinity) (1-e-k1t), with h (infinity) congruent to 0.5. This long-time limit is as expected for self-exchange, and agrees with experiments that attain equilibrium after slow cooling of thermally dissociated and unfolded chains. The simplest consonant mechanism is chain exchange by rate-limiting dissociation of dimers followed by random reassociation. Kinetic analysis shows k1 to be the rate constant for the chain dissociation step, a quantity not previously measured for any coiled coil. This rate constant for beta beta species is about an order of magnitude greater than for alpha alpha. In both, the activation enthalpy and entropy are very large, suggesting that activation to an extensively (greater than 50%) unfolded species necessarily precedes dissociation. Experiments are also reported for overall processes: alpha alpha + beta* beta* in equilibrium with 2 alpha beta* and alpha* alpha* + beta beta in equilibrium with 2 alpha* beta. Results are independent of which chain is blocked. Again h (infinity) congruent to 0.5, in agreement with equilibrium experiments, and the time course is first order. The rate constants and activation parameters are intermediate between those for self-exchange.  相似文献   

8.
The binding site of skeletal alpha-tropomyosin on troponin-T   总被引:2,自引:0,他引:2  
The binding site for rabbit skeletal alpha-tropomyosin on troponin-T has been localized to the cyanogen bromide fragment, CB2 (residues 71-151), using affinity chromatography. The entire fragment is required to bring about the correct secondary structure conducive to binding. CB2 contains about 80% alpha-helix and accounts for most of the helical content found in troponin-T (35%). The molecular weight of CB2 obtained by sedimentation equilibrium (9700) agrees closely with the value calculated from sequence analysis (9850). Circular dichroism and sedimentation velocity experiments indicate that the helix is stable and not affected by salt concentrations of 0.1 to 1.6 M KCl nor by composition of the buffer. The helical content is unaffected by pH from 3.3 to 9.1 but decreases at pH 10-11. Temperature denaturation studies CB2 and troponin-T show that both are similarly heat labile, with loss of 50% of the ellipticity at 39 degrees C. Binding of CB2 to alpha-tropomyosin occurs in the pH range of 5.0 to 9.1, but not at pH 3-4 or 10-11. It is concluded that the helical region of CB2, and perhaps the carboxyl side chains of aspartic and glutamic acids, may be involved in binding over a limited surface area of the double-stranded coiled coil of alpha-tropomyosin.  相似文献   

9.
Previous folding studies of alpha-1-proteinase inhibitor (alpha1-PI), which regulates the activity of the serine protease human neutrophil elastase, show an intermediate state at approximately 1.5 M guanidine-HCl (Gu). For the normal form of alpha1-PI, we demonstrate the reversible formation of the same stable distribution of monomeric and polymeric intermediates after approximately 1 h in 1.5 M Gu at approximately 23 degrees C from fully folded or fully unfolded alpha1-PI at similar final total concentrations and show that the stable distribution of monomeric and polymeric intermediates conforms with the law of mass action. We attribute these observations to an apparent equilibrium among intermediates. Our CD data are compatible with the intermediates having slightly relaxed structures relative to that of fully folded alpha1-PI and, thus, with the polymeric intermediates having a loop-sheet structure. Furthermore, we observe that the rates of folding (fast and slow terms) from the intermediate state are the same as those from the fully unfolded state, thereby supporting the contention that this intermediate state is on the folding pathway. We attribute the tendency of the Z mutant protein to polymerize/aggregate to an increased rate of the monomeric intermediate to form the apparent equilibrium distribution of intermediate species relative to its rate of folding to give intact alpha1-PI.  相似文献   

10.
M E Holtzer  T Breiner  A Holtzer 《Biopolymers》1984,23(10):1811-1833
The nature of the interhelix interaction in two-chain, α-helical, coiled coils is studied by experiments on the formation of hydrid molecules in which one helical chain is an α-tropomyosin and the other a β-tropomoysin. By means of a recently developed assay, the population of heterohelical (i.e., αβ hybrid) molecules relative to their homohelical (αα and ββ) parent species is determined under a variety of conditions, both equilibrium and nonequilibrium. It is found that mixed intact αα and ββ molecules do not form hybrid species in detectible amounts even after incubation at room temperature (or below) for periods of over one week. That the lack of αβ species in this “native-exchange” system is a result of a kinetic barrier is evident from experiments involving a thermal denaturation–renaturation cycle in which the largely dissociated, unfolded chains at higher temperature are annealed to benign temperatures over a period of 6 h, thus assuring an equilibrium population of two-chain species. In the resulting equilibrium state, the αβ population is one-half the total, indicating that recombination is random. Furthermore, this same (equilibrium) state is reached if the separated, mostly unfolded chains are renatured by a rapid (~ 40 s) quench to benign temperatures. Some implications of these results for the thermodynamics of interhelix interation, for kinetics of chain dissociation and recombination, and for in vivo genesis of two-chain coiled coils are discussed.  相似文献   

11.
Refolding kinetics of two homologous proteins, lysozyme and alpha-lactalbumin, were studied by following the time-dependent changes in the circular dichroism spectra in the aromatic and the peptide regions. The refolding was initiated by 20-fold dilution of the protein solutions originally unfolded at 6 M guanidine hydrochloride, at pH 1.5 for lysozyme and pH 7.0 for alpha-lactalbumin at 4.5 degrees C. In the aromatic region, almost full changes in ellipticity that were expected from the equilibrium differences in the spectra between the native and unfolded proteins were observed kinetically. The major fast phase of lysozyme folding has a decay time of 15 s. The decay time of alpha-lactalbumin depends on the presence or absence of bound Ca2+: 10 s for the holoprotein and 100 s for the apoprotein. In the peptide region, however, most of the ellipticity changes of the two proteins occur within the dead time (less than 3 s) of the present measurements. This demonstrates existence of an early folding intermediate which is still unfolded when measured by the aromatic bands but has folded secondary structure as measured by the peptide bands. Extrapolation of the ellipticity changes to zero time at various wavelengths gives a spectrum of the folding intermediate. Curve fitting of the peptide spectra to estimate the secondary structure fractions has shown that the two proteins assume a similar structure at an early stage of folding and that the intermediate has a structure similar to that of partially unfolded species produced by heat and, for alpha-lactalbumin, also by acid and a moderate concentration of guanidine hydrochloride.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A Holtzer  M E Holtzer 《Biopolymers》1990,30(13-14):1231-1241
Two extant models of thermal folding/unfolding equilibria in two-chain, alpha-helical coiled coils are tested by comparison with experimental results on excised, isolated subsequences of rabbit alpha alpha-tropomyosin (Tm). These substances are designated iTmj where i and j are, respectively, the residue numbers (in the 284-residue parent chain) of the N- and C-terminal residues of the subsequence. One model postulates that a coiled coil consists of segments, each denaturing in an all-or-none manner, like small globular proteins. Thus this model yields a small number of populated molecular species. In an extant calorimetry study of 11Tm127 and of 190Tm284, each required only two all-or-none-segments, and their enthalpies and transition temperatures were assigned. These assignments are shown here to yield the concentration of all molecular species, and therefore the helix content, as a function of temperature. Such calculations for 190Tm284 are in tolerable agreement with CD experiments, but those for 11Tm127 are in gross disagreement. Thus, either the model itself or the calorimetric assignment is faculty. In the second model, all conformational states are counted and weighted, as in the Zimm-Bragg theory for single-chain polypeptides. This theory has been extended (by Skolnick) to two-chain coiled coils and is here used to fit CD data for 11Tm127, 142Tm281, and 190Tm284. The fit is tolerable for 11Tm127, good for 142Tm281, and quantitative for 190Tm284. Thus this comparison does not falsify this second model. The helix-helix interaction free energy, obtainable from the fit, shows nonadditivity when isolated subsequences are compared with the parent. This suggests that removal of a region from a long coiled coil allows energetically substantial adjustments in side-chain packing in the helix-helix interface. Thus, the helix-helix interaction in long coiled coils is characteristic of a global free energy minimum and not just of the regional constellation of side chains.  相似文献   

13.
Coiled coils consist of two or more amphipathic a-helices wrapped around each other to form a superhelical structure stabilized at the interhelical interface by hydrophobic residues spaced in a repeating 3-4 sequence pattern. Dimeric coiled coils have been shown to often form in a single step reaction in which association and folding of peptide chains are tightly coupled. Here, we ask whether such a simple folding mechanism may also apply to the formation of a three-stranded coiled coil. The designed 29-residue peptide LZ16A was shown previously to be in a concentration-dependent equilibrium between unfolded monomer (M), folded dimer (D), and folded trimer (T). We show by time-resolved fluorescence change experiments that folding of LZ16A to D and T can be described by 2M (k1)<==>(k(-1)) D and M + D (k2)<==>(k(-2)) T. The following rate constants were determined (25 degrees C, pH 7): k1 = 7.8 x 10(4) M(-1) s(-1), k(-1) = 0.015 s(-1), k2 = 6.5 x 10(5) M(-1) s(-1), and k(-2) = 1.1 s(-1). In a separate experiment, equilibrium binding constants were determined from the change with concentration of the far-ultraviolet circular dichroism spectrum of LZ16A and were in good agreement with the kinetic rate constants according to K(D) = k1/2k(-1) and K(T) = k2/k(-2). Furthermore, pulsed hydrogen-exchange experiments indicated that only unfolded M and folded D and T were significantly populated during folding. The results are compatible with a two-step reaction in which a subpopulation of association competent (e.g., partly helical) monomers associate to dimeric and trimeric coiled coils.  相似文献   

14.
The unfolding transition and kinetic refolding of dimeric creatine kinase after urea denaturation were monitored by intrinsic fluorescence and far ultraviolet circular dichroism. An equilibrium intermediate and a kinetic folding intermediate were identified and characterized. The fluorescence intensity of the equilibrium intermediate is close to that of the unfolded state, whereas its ellipticity at 222 nm is about 50% of the native state. The transition curves measured by these two methods are therefore non-coincident. The kinetic folding intermediate, formed during the burst phase of refolding under native-like conditions, possesses 75% of the native secondary structure, but is mostly lacking in native tertiary structure. In moderate concentrations of urea, only the initial, rapid change in fluorescence intensity or negative ellipticity is observed, and the final state values do not reach the equivalent unfolding values. The unfolding and refolding transition curves measured under identical conditions are non-coincident within the transition from intermediate to fully unfolded state. It is observed by SDS-PAGE that disulfide bond-linked dimeric or oligomeric intermediates are formed in moderate urea concentrations, especially in the refolding reaction. These rapidly formed, soluble intermediates represent an off-pathway event that leads to the hysteresis in the refolding transition curves.  相似文献   

15.
The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.  相似文献   

16.
Chaudhuri TK  Arai M  Terada TP  Ikura T  Kuwajima K 《Biochemistry》2000,39(50):15643-15651
The equilibrium and kinetics of the unfolding and refolding of authentic and recombinant human alpha-lactalbumin, the latter of which had an extra methionine residue at the N-terminus, were studied by circular dichroism spectroscopy, and the results were compared with the results for bovine and goat alpha-lactalbumins obtained in our previous studies. As observed in the bovine and goat proteins, the presence of the extra methionine residue in the recombinant protein remarkably destabilized the native state, and the destabilization was entirely ascribed to an increase in the rate of unfolding. The thermodynamic stability of the native state against the unfolded state was lower, and the thermodynamic stability of the molten globule state against the unfolded state was higher for the human protein than for the other alpha-lactalbumins previously studied. Thus, the population of the molten globule intermediate was higher during the equilibrium unfolding of human alpha-lactalbumin by guanidine hydrochloride. Unlike the molten globule states of the bovine and goat proteins, the human alpha-lactalbumin molten globule showed remarkably more intense circular dichroism ellipticity than the native state in the far-ultraviolet region below 225 nm. During refolding from the unfolded state, human alpha-lactalbumin thus exhibited overshoot kinetics, in which the alpha-helical peptide ellipticity exceeded the native value when the molten globule folding intermediate was formed in the burst phase. The subsequent folding involved reorganization of nonnative secondary structures. It should be noted that the rate constant of the major refolding phase was approximately the same among the three types of alpha-lactalbumin and that the rate constant of unfolding was accelerated 18-600 times in the human protein, and these results interpreted the lower thermodynamic stability of this protein.  相似文献   

17.
Kim DH  Jang DS  Nam GH  Yun S  Cho JH  Choi G  Lee HC  Choi KY 《Biochemistry》2000,39(42):13084-13092
Equilibrium and kinetic analyses have been carried out to elucidate the folding mechanism of homodimeric ketosteroid isomerase (KSI) from Comamonas testosteroni. The folding of KSI was reversible since the activity as well as the fluorescence and CD spectra was almost completely recovered after refolding. The equilibrium unfolding transitions monitored by fluorescence and CD measurements were almost coincident with each other, and the transition midpoint increased with increasing protein concentration. This suggests that the KSI folding follows a simple two-state mechanism consisting of native dimer and unfolded monomer without any thermodynamically stable intermediates. Sedimentation equilibrium analysis and size-exclusion chromatography of KSI at different urea concentrations supported the two-state model without any evidence of folded monomeric intermediates. Consistent with the two-state model, (1)H-(15)N HSQC spectra obtained for KSI in the unfolding transition region could be reproduced by a simple addition of the spectra of the native and the unfolded KSI. The KSI refolding kinetics as monitored by fluorescence intensity could be described as a fast first-order process followed by a second-order and a subsequent slow first-order processes with rate constants of 60 s(-)(1), 5.4 x 10(4) M(-)(1).s(-)(1), and 0.017 s(-)(1), respectively, at 0.62 M urea, suggesting that there may be a monomeric folding intermediate. After a burst phase that accounts for >83% of the total amplitude, the negative molar ellipticity at 225 nm increased slowly in a single phase at a rate comparable to that of the bimolecular intermediate step. The kinetics of activity recovery from the denatured state were markedly dependent upon the protein concentration, implying that the monomers are not fully active. Taken together, our results demonstrate that the dimerization induces KSI to fold into the complete structure and is crucial for maintaining the tertiary structure to perform efficient catalysis.  相似文献   

18.
How fast can a protein possibly fold? This question has stimulated experimentalists to seek fast folding proteins and to engineer them to fold even faster. Proteins folding at or near the speed limit are prime candidates for all-atom molecular dynamics simulations. They may also have no free energy barrier, allowing the direct observation of intermediate structures on the pathways from the unfolded to the folded state. Both experimental and theoretical approaches predict a speed limit of approximately N/100micros for a generic N-residue single-domain protein, with alpha proteins folding faster than beta or alphabeta. The predicted limits suggest that most known ultrafast folding proteins can be engineered to fold more than ten times faster.  相似文献   

19.
13C alpha chemical shifts and site-specific unfolding curves are reported for 12 sites on a 33-residue, GCN4-like leucine zipper peptide (GCN4-lzK), ranging over most of the chain and sampling most heptad positions. Data were derived from NMR spectra of nine synthetic, isosequential peptides bearing 99% 13C alpha at sites selected to avoid spectral overlap in each peptide. At each site, separate resonances appear for unfolded and folded forms, and most sites show resonances for two folded forms near room temperature. The observed chemical shifts suggest that 1) urea-unfolded GCN4-lzK chains are randomly coiled; 2) thermally unfolded chains include significant transient structure, except at the ends; 3) the coiled-coli structure in the folded chains is atypical near the C-terminus; 4) only those interior sites surrounded by canonical interchain salt bridges fail to show two folded forms. Local unfolding curves, obtained from integrated resonance intensities, show that 1) sites differ in structure content and in melting temperature, so the equilibrium population must comprise more than two molecular conformations; 2) there is significant end-fraying, even at the lowest temperatures, but thermal unfolding is not a progressive unwinding from the ends; 3) residues 9-16 are in the lowest melting region; 4) heptad position does not dictate stability; 5) significant unfolding occurs below room temperature, so the shallow, linear decline in backbone CD seen there has conformational significance. It seems that only a relatively complex array of conformational states could underlie these findings.  相似文献   

20.
Langevin dynamics is used with our physics-based united-residue (UNRES) force field to study the folding pathways of the B-domain of staphylococcal protein A (1BDD (alpha; 46 residues)). With 400 trajectories of protein A started from the extended state (to gather meaningful statistics), and simulated for more than 35 ns each, 380 of them folded to the native structure. The simulations were carried out at the optimal folding temperature of protein A with this force field. To the best of our knowledge, this is the first simulation study of protein-folding kinetics with a physics-based force field in which reliable statistics can be gathered. In all the simulations, the C-terminal alpha-helix forms first. The ensemble of the native basin has an average RMSD value of 4 A from the native structure. There is a stable intermediate along the folding pathway, in which the N-terminal alpha-helix is unfolded; this intermediate appears on the way to the native structure in less than one-fourth of the folding pathways, while the remaining ones proceed directly to the native state. Non-native structures persist until the end of the simulations, but the native-like structures dominate. To express the kinetics of protein A folding quantitatively, two observables were used: (i) the average alpha-helix content (averaged over all trajectories within a given time window); and (ii) the fraction of conformations (averaged over all trajectories within a given time window) with Calpha RMSD values from the native structure less than 5 A (fraction of completely folded structures). The alpha-helix content grows quickly with time, and its variation fits well to a single-exponential term, suggesting fast two-state kinetics. On the other hand, the fraction of folded structures changes more slowly with time and fits to a sum of two exponentials, in agreement with the appearance of the intermediate, found when analyzing the folding pathways. This observation demonstrates that different qualitative and quantitative conclusions about folding kinetics can be drawn depending on which observable is monitored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号