首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Eight primer combinations were used to investigate the application of amplified fragment length polymorphism (AFLP) markers in catfish for genetic analysis. Intraspecific polymorphism was low among channel catfish or blue catfish strains. Interspecific AFLP polymorphism was high between the channel catfish and blue catfish. Each primer combination generated from 70 to more than 200 bands, of which 38.6–75.7% were polymorphic between channel catfish and blue catfish. On average, more than 20 polymorphic bands per primer combination were produced as quality markers suitable for genetic analysis. All AFLP markers were transmitted into channel catfish?×?blue catfish F1 hybrids, except rare markers that were heterozygous in the parents and therefore were segregating in F1 hybrids. The two reciprocal channel catfish?×?blue catfish F1 hybrids (channel catfish female?×?blue catfish male; blue catfish female?×?channel catfish male) produced identical AFLP profiles. The AFLP markers were inherited and segregated in expected Mendelian ratios. At two loci, E8-b9 and E8-b2, markers were found at significantly lower frequencies than expected with F2 and backcross hybrids which had been selected for increased growth rates. The reproducibility of AFLP was excellent. These characteristics of the catfish AFLP markers make them highly useful for genetic analysis of catfish, especially for construction of genetic linkage and quantitative trait loci maps, and for marker-assisted selection.  相似文献   

2.
Eight primer combinations were used to investigate the application of amplified fragment length polymorphism (AFLP) markers in catfish for genetic analysis. Intraspecific polymorphism was low among channel catfish or blue catfish strains. Interspecific AFLP polymorphism was high between the channel catfish and blue catfish. Each primer combination generated from 70 to more than 200 bands, of which 38.6–75.7% were polymorphic between channel catfish and blue catfish. On average, more than 20 polymorphic bands per primer combination were produced as quality markers suitable for genetic analysis. All AFLP markers were transmitted into channel catfish × blue catfish F1 hybrids, except rare markers that were heterozygous in the parents and therefore were segregating in F1 hybrids. The two reciprocal channel catfish × blue catfish F1 hybrids (channel catfish female × blue catfish male; blue catfish female × channel catfish male) produced identical AFLP profiles. The AFLP markers were inherited and segregated in expected Mendelian ratios. At two loci, E8-b9 and E8-b2, markers were found at significantly lower frequencies than expected with F2 and backcross hybrids which had been selected for increased growth rates. The reproducibility of AFLP was excellent. These characteristics of the catfish AFLP markers make them highly useful for genetic analysis of catfish, especially for construction of genetic linkage and quantitative trait loci maps, and for marker-assisted selection. Received: 10 September 1997 / Accepted: 10 December 1997  相似文献   

3.
Catfish is the leading aquaculture species in the United States. The interspecific hybrid catfish produced by mating female channel catfish with male blue catfish outperform both of their parent species in a number of traits. However, mass production of the hybrids has been difficult because of reproductive isolation. Investigations of genome structure and organization of the hybrids provide insights into the genetic basis for maintenance of species divergence in the face of gene flow, thereby helping develop strategies for introgression and efficient production of the hybrids for aquaculture. In this study, we constructed a high‐density genetic linkage map using the hybrid catfish system with the catfish 250K SNP array. A total of 26 238 SNPs were mapped to 29 linkage groups, with 12 776 unique marker positions. The linkage map spans approximately 3240 cM with an average intermarker distance of 0.25 cM. A fraction of markers (986 of 12 776) exhibited significant deviation from the expected Mendelian ratio of segregation, and they were clustered in major genomic blocks across 15 LGs, most notably LG9 and LG15. The distorted markers exhibited significant bias for maternal alleles among the backcross progenies, suggesting strong selection against the blue catfish alleles. The clustering of distorted markers within genomic blocks should lend insights into speciation as marked by incompatibilities between the two species. Such findings should also have profound implications for understanding the genomic evolution of closely related species as well as the introgression of hybrid production programs in aquaculture.  相似文献   

4.
An amplified fragment length polymorphism map of the silkworm   总被引:52,自引:0,他引:52  
Tan YD  Wan C  Zhu Y  Lu C  Xiang Z  Deng HW 《Genetics》2001,157(3):1277-1284
The silkworm (Bombyx mori L.) is a lepidopteran insect with a long history of significant agricultural value. We have constructed the first amplified fragment length polymorphism (AFLP) genetic linkage map of the silkworm B. mori at a LOD score of 2.5. The mapping AFLP markers were genotyped in 47 progeny from a backcross population of the cross no. 782 x od100. A total of 1248 (60.7%) polymorphic AFLP markers were detected with 35 PstI/TaqI primer combinations. Each of the primer combinations generated an average of 35.7 polymorphic AFLP markers. A total of 545 (44%) polymorphic markers are consistent with the expected segregation ratio of 1:1 at the significance level of P = 0.05. Of the 545 polymorphic markers, 356 were assigned to 30 linkage groups. The number of markers on linkage groups ranged from 4 to 36. There were 21 major linkage groups with 7-36 markers and 9 relatively small linkage groups with 4-6 markers. The 30 linkage groups varied in length from 37.4 to 691.0 cM. The total length of this AFLP linkage map was 6512 cM. Genetic distances between two neighboring markers on the same linkage group ranged from 0.2 to 47 cM with an average of 18.2 cM. The sex-linked gene od was located between the markers P1T3B40 and P3T3B27 at the end of group 3, indicating that AFLP linkage group 3 was the Z (sex) chromosome. This work provides an essential basic map for constructing a denser linkage map and for mapping genes underlying agronomically important traits in the silkworm B. mori L.  相似文献   

5.
The quail is a valuable farm and laboratory animal. Yet molecular information about this species remains scarce. We present here the first genetic linkage map of the Japanese quail. This comprehensive map is based solely on amplified fragment length polymorphism (AFLP) markers. These markers were developed and genotyped in an F2 progeny from a cross between two lines of quail differing in stress reactivity. A total of 432 polymorphic AFLP markers were detected with 24 TaqI/EcoRI primer combinations. On average, 18 markers were produced per primer combination. Two hundred and fifty eight of the polymorphic markers were assigned to 39 autosomal linkage groups plus the ZW sex chromosome linkage groups. The linkage groups range from 2 to 28 markers and from 0.0 to 195.5 cM. The AFLP map covers a total length of 1516 cM, with an average genetic distance between two consecutive markers of 7.6 cM. This AFLP map can be enriched with other marker types, especially mapped chicken genes that will enable to link the maps of both species and make use of the powerful comparative mapping approach. This AFLP map of the Japanese quail already provides an efficient tool for quantitative trait loci (QTL) mapping.  相似文献   

6.
古瑜  赵前程  孙德岭  宋文芹 《遗传》2007,29(6):751-757
利用AFLP和NBS profiling技术, 以花椰菜自交系“AD白花”与高代自交不亲和系“C-8”杂交得到的F1代自交产生的F2代分离群体为材料, 构建了第一个花椰菜遗传连锁图谱。该图谱由234个AFLP标记和21个NBS标记构成了9个连锁群, 总图距为668.4 cM, 标记间平均距离为2.9 cM。每个连锁群包含的位点数从12到47个, 相邻两标记之间的距离范围是0~14.9 cM。NBS标记分布在8个连锁群中, 这些标记大部分聚在一起。本研究为今后的基因定位及重要农艺性状的分析提供框架图。此外, 研究NBS profiling 方法在花椰菜中的稳定性和有效性以及NBS-LRR类RGA在花椰菜基因组中的分布和特点。  相似文献   

7.
AFLP-based genetic linkage map for the red flour beetle (Tribolium castaneum)   总被引:11,自引:0,他引:11  
The red flour beetle (Tribolium castaneum) is a major pest of stored grain and grain products and a popular model species for a variety of ecological, evolutionary, and developmental biology studies. Development of a linkage map based on reproducible and highly polymorphic molecular markers would greatly facilitate research in these disciplines. We have developed a genetic linkage map using 269 amplified fragment length polymorphism (AFLP) markers. Ten previously known random amplified polymorphic DNA (RAPD) markers were used as anchor markers for linkage group assignment. The linkage map was constructed through genotyping two independent F(2) segregating populations with 48 AFLP primer combinations. Each primer combination generated an average of 4.6 AFLP markers eligible for linkage mapping. The length of the integrated map is 573 cM, giving an average marker resolution of 2.0 cM and an average physical distance per genetic distance of 350 kb/cM. A cluster of loci on linkage group 3 exhibited significant segregation distortion. We have also identified six X-linked and two Y-linked markers. Five mapped AFLP fragments were sequenced and converted to sequence-tagged site (STS) markers.  相似文献   

8.
A genetic linkage map of tef was constructed with amplified fragment length polymorphism (AFLP) markers using F5 recombinant inbred lines (RILs) derived by single seed descent from the intraspecific cross of ’Kaye Murri’×’Fesho’. A total of 192 EcoRI/MseI primer combinations were screened for parental polymorphism. Around three polymorphic fragments per primer combination were detected, indicating a low polymorphism level in tef. Fifty primer combinations were selected to assay the mapping population, and 226 loci segregated among 85 F5 RILs. Most AFLP loci behaved as dominant markers (presence or absence of a band), but about 15% of the loci were codominant. Significant deviations from the expected Mendelian segregation ratio were observed for 26 loci. The genetic linkage map comprised 211 markers assembled into 25 linkage groups and covered 2,149 cM of genome. AFLP is an efficient marker system for mapping plant species with low polymorphism such as tef. This is the first genetic linkage map constructed for tef. It will facilitate the mapping of genes controlling agronomically important traits and cultivar improvement in tef. Received: 27 April 1998 / Accepted: 4 January 1999  相似文献   

9.
The channel catfish ( Ictalurus punctatus ) has become the most important aquaculture species in the USA. A genetic linkage map in catfish is needed to improve efficiency of breeding by marker-assisted selection (MAS) and for identification of economically important genes such as disease resistance genes. To identify DNA-based genetic polymorphism, the present authors tested 42 randomly amplified polymorphic DNA (RAPD) primers for their utility in identifying genetic polymorphism in catfish. Out of these primers, 22 generated 171 highly reproducible RAPD markers, producing almost eight polymorphic bands per primer. The remaining 20 primers produced an additional 20 polymorphic bands. The RAPD markers were highly reproducible, transmitted to F1 hybrids, and segregated in F2 or backcross progeny in ratios that did not differ from Mendelian expectations. Because the interspecific hybrids of channel catfish and blue catfish are fertile, RAPD markers using the interspecific hybrid system will be useful for rapid construction of genetic linkage maps of catfish and for analysis of important quantitative trait loci.  相似文献   

10.
Molecular genetic maps were constructed for two full-sib populations, TTC1 and TTC2, derived from two Leymus triticoides x Leymus cinereus hybrids and one common Leymus triticoides tester. Informative DNA markers were detected using 21 EcoRI-MseI and 17 PstI-MseI AFLP primer combinations, 36 anchored SSR or STS primer pairs, and 9 anchored RFLP probes. The 164-sib TTC1 map includes 1069 AFLP markers and 38 anchor loci in 14 linkage groups spanning 2001 cM. The 170-sib TTC2 map contains 1002 AFLP markers and 36 anchor loci in 14 linkage groups spanning 2066 cM. Some 488 homologous AFLP loci and 24 anchor markers detected in both populations showed similar map order. Thus, 1583 AFLP markers and 50 anchor loci were mapped into 14 linkage groups, which evidently correspond to the 14 chromosomes of allotetraploid Leymus (2n = 4x = 28). Synteny of two or more anchor markers from each of the seven homoeologous wheat and barley chromosomes was detected for 12 of the 14 Leymus linkage groups. Moreover, two distinct sets of genome-specific STS markers were identified in these allotetraploid Leymus species. These Leymus genetic maps and populations will provide a useful system to evaluate the inheritance of functionally important traits of two divergent perennial grass species.  相似文献   

11.
 Amplified fragment length polymorphisms (AFLP) were used to rapidly generate a dense linkage map for pinyon pine (Pinus edulis). The map population consisted of 40 megagametophytes derived from one tree at Sunset Crater, Arizona. A total of 78 primer combinations, each with three to five selective nucleotides, amplified 542 polymorphic markers. Of these, 33 markers showed significant deviation from the expected Mendelian genotypic segregation ratio of 1 : 1, and 164 showed complete linkage with another marker. This resulted in 338 unique markers mapping to 25 linkage groups, each of which ranged from 2 to 22 markers, averaging 80 centiMorgans (cM) in size and covering 2,012 cM (2,200 cM with the inclusion of 25 cM for each of 7 unlinked markers). Pairwise linkage values gave a genome size estimate of 2,390 cM, suggesting comprehensive coverage of the genome. A search for subsets of primer combinations giving the best map coverage found 10 primer combinations which together marked 72% of the linkage map to within 10 cM; an additional 10 primer combinations increased this percentage to 85%. Our map represents an initial step towards the identification of quantitative trait loci associated with pest resistance and water stress in pinyons and will further allow us to examine introgression rates between P. edulis and P. californiarum. Received: 14 October 1997 / Accepted: 29 April 1998  相似文献   

12.
Zhang L  Yang C  Zhang Y  Li L  Zhang X  Zhang Q  Xiang J 《Genetica》2007,131(1):37-49
Pacific white shrimp (Litopenaeus vannamei) is the leading species farmed in the Western Hemisphere and an economically important aquaculture species in China. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP) and microsatellite markers. One hundred and eight select AFLP primer combinations and 30 polymorphic microsatellite markers produced 2071 markers that were polymorphic in either of the parents and segregated in the progeny. Of these segregating markers, 319 were mapped to 45 linkage groups of the female framework map, covering a total of 4134.4 cM; and 267 markers were assigned to 45 linkage groups of the male map, covering a total of 3220.9 cM. High recombination rates were found in both parental maps. A sex-linked microsatellite marker was mapped on the female map with 6.6 cM to sex and a LOD of 17.8, two other microsatellite markers were also linked with both 8.6 cM to sex and LOD score of 14.3 and 16.4. The genetic maps presented here will serve as a basis for the construction of a high-resolution genetic map, quantitative trait loci (QTLs) detection, marker-assisted selection (MAS) and comparative genome mapping.  相似文献   

13.
Restriction fragment length polymorphism (RFLP) maps have been constructed for cultivated sunflower (Helianthus annuus L.) using three independent sets of RFLP probes. The aim of this research was to integrate RFLP markers from two sets with RFLP markers for resistance gene candidate (RGC) and amplified fragment length polymorphism (AFLP) markers. Genomic DNA samples of HA370 and HA372, the parents of the F2 population used to build the map, were screened for AFLPs using 42 primer combinations and RFLPs using 136 cDNA probes (RFLP analyses were performed on DNA digested with EcoRI, HindIII, EcoRV, or DraI). The AFLP primers produced 446 polymorphic and 1101 monomorphic bands between HA370 and HA372. The integrated map was built by genotyping 296 AFLP and 104 RFLP markers on 180 HA370 x HA372 F2 progeny (the AFLP marker assays were performed using 18 primer combinations). The HA370 x HA372 map comprised 17 linkage groups, presumably corresponding to the 17 haploid chromosomes of sunflower, had a mean density of 3.3 cM, and was 1326 cM long. Six RGC RFLP loci were polymorphic and mapped to three linkage groups (LG8, LG13, and LG15). AFLP markers were densely clustered on several linkage groups, and presumably reside in centromeric regions where recombination is reduced and the ratio of genetic to physical distance is low. Strategies for targeting markers to euchromatic DNA need to be tested in sunflower. The HA370 x HA372 map integrated 14 of 17 linkage groups from two independent RFLP maps. Three linkage groups were devoid of RFLP markers from one of the two maps.  相似文献   

14.
Construction of a genetic map for arabica coffee   总被引:2,自引:0,他引:2  
We have used AFLPs to construct a genetic linkage map on a pseudo-F2 population of arabica coffee (Coffea arabica L.) derived from a cross between the cultivars Mokka hybrid and Catimor. Sixty trees from this population were selected on the basis of plant height distribution to construct a linkage map. A total of 456 dominant markers and eight co-dominant markers were generated from 288 AFLP primer combinations. Of the total number of markers generated, 68% were from cv. Catimor, 30% from cv. Mokka hybrid, and 2% were co-dominant. This distribution suggests that the heterozygosity within the cv. Catimor sub-genomes was twice that within the cv. Mokka hybrid sub-genomes. Linkage groups were constructed using MAPMAKER version 3.0, resulting in 16 major linkage groups containing 4–21 markers, and 15 small linkage groups consisting of 2–3 linked markers each. The total length of the map was 1,802.8 cM, with an average distance of 10.2 cM between adjacent markers. This genetic map will serve as the framework for mapping QTL controlling source-sink traits in the same population.Communicated by H.F. Linskens  相似文献   

15.
Abstract Here we use amplified fragment length polymorphism (AFLP) to assess genetic differentiation of Helicoverpa armigera and H. assulta . The results indicated that both species-specific fingerprints and cluster analysis showed the ability of AFLP technique to discriminate the two sibling species; among a total 1963 AFLP markers amplified from nine primer combinations: 777 (39.6%) were H. armigera -specific, 602 (30.7%) were H. assulta -specific, and 584 (29.7%) were common bands. The mean number of H. armigera -specific bands was significantly more than that of H. assulta -specific bands for nine primer combinations ( P < 0.05); the intraspecific distance of H. armigera and H. assulta was 0.123 0 and 0.110 7 respectively, and the interspecific distance was 0.178 3. In addition, the percentage of polymorphic loci and estimated average heterozygosity were used to estimate genetic diversity of the two species. This study therefore demonstrates that AFLP analysis is a sensitive and reliable technique to study genetic differentiation and genetic relationships between species and provides sufficient molecular markers for future linkage map construction, location and eventual cloning of genes involved in traits differentiation.  相似文献   

16.
AFLPTM is a new technique to generate large numbers of molecular markers for genetic mapping. The method involves the selective amplification of a limited number of DNA restriction fragments out of complex plant genomic DNA digests using PCR. With six primer combinations 264 segregating AFLP amplification products were identified in a diploid backcross population from non-inbred potato parents. The identity of an AFLP marker was specified by the primer combination of the amplification product and its size estimated in bases. The segregating AFLP amplification products were mapped by using a mapping population with 217 already known RFLP, isozyme and morphological trait loci. In general, the AFLP markers were randomly distributed over the genome, although a few clusters were observed. No indications were found that AFLP markers are present in other parts of the genome than those already covered by RFLP markers. Locus specificity of AFLP markers was demonstrated because equally sized amplification products segregating from both parental clones generally mapped to indistinguishable maternal and paternal map positions. Locus specificity of AFLP amplification products will allow to establish the chromosomal identity of linkage groups in future mapping studies.Since AFLP technology is a multi-locus detection system, it was not possible to identify the AFLP alleles which belong to a single AFLP locus. The consequences of a genetic analysis based on single alleles, rather than on loci with two or more alleles on mapping studies using progenies of non-inbred parents are discussed.  相似文献   

17.
In accordance with pseudo-testcross strategy, the first genetic linkage map of Eucommia ulmoides Oliv. was constructed by an F1 population of 122 plants using amplified fragment length polymorphism (AFLP) markers. A total of 22 AFLP primer combinations generated 363 polymorphic markers. We selected 289 markers segregating as 1:1 and used them for constructing the parent-specific linkage maps. Among the candidate markers, 127 markers were placed on the maternal map LF and 108 markers on the paternal map Q1. The maternal map LF spanned 1116.1 cM in 14 linkage groups with a mean map distance of 8.78 cM; the paternal map Q1 spanned 929.6 cM in 12 linkage groups with an average spacing of 8.61 cM. The estimated coverage of the genome through two methods was 78.5 and 73.9% for LF, and 76.8 and 71.2% for Q1, respectively. This map is the first linkage map of E. ulmoides and provides a basis for mapping quantitative-trait loci and breeding applications.  相似文献   

18.
利用向日葵重组自交系构建遗传图谱   总被引:2,自引:0,他引:2  
张永虎  于海峰  侯建华  李素萍  吕品  于志贤 《遗传》2014,36(10):1036-1042
以向日葵自选系K55为母本、K58为父本杂交组合,通过单粒传得到的187个F5:6代重组自交系群体为作图材料,联合应用SSR和AFLP标记构建遗传连锁图谱。经过78对SSR引物和48对AFLP引物组合选择性扩增,分别得到341和1119条带,共1460条,分别获得多态性条带184条和393条,共577条多态性条带,占所有条带的39.52%。SSR和AFLP标记各有84个和108个多态性标记偏离孟德尔分离比例(P=0.05),共192个偏分离标记。采用JoinMap4.0软件进行连锁分析,构建了1张总长度为2759.4 cM、包含17个连锁群、连锁495个多态性标记的遗传图谱,其中偏分离标记170个,标记间的平均图距为5.57 cM。每个连锁群上分布有5~72个标记,长68.88~250.17 cM。本图谱为向日葵永久性图谱,为向日葵重要性状QTL定位和基因克隆奠定基础。  相似文献   

19.
A genetic map for the model legume Lotus japonicus has been developed. The F(2) mapping population was established from an interspecific cross between L. japonicus and L. filicaulis. A high level of DNA polymorphism between these parents was the source of markers for linkage analysis and the map is based on a framework of amplified fragment length polymorphism (AFLP) markers. Additional markers were generated by restriction fragment length polymorphism (RFLP) and sequence-specific PCR. A total of 524 AFLP markers, 3 RAPD markers, 39 gene-specific markers, 33 microsatellite markers, and six recessive symbiotic mutant loci were mapped. This genetic map consists of six linkage groups corresponding to the six chromosomes in L. japonicus. Fluorescent in situ hybridization (FISH) with selected markers aligned the linkage groups to chromosomes as described in the accompanying article by Pedrosa et al. 2002(this issue). The length of the linkage map is 367 cM and the average marker distance is 0.6 cM. Distorted segregation of markers was found in certain sections of the map and linkage group I could be assembled only by combining colormapping and cytogenetics (FISH). A fast method to position genetic loci employing three AFLP primer combinations yielding 89 markers was developed and evaluated by mapping three symbiotic loci, Ljsym1, Ljsym5, and Ljhar1-3.  相似文献   

20.
Genetic diversity for traits such as fibre quality or disease resistance to microorganisms is limited in the elite cotton germplasm; consequently, cotton breeders are looking for novel alleles in the secondary or even in the tertiary gene pools. The wild Australian Gossypium species (tertiary gene pool) represent an alternative source of novel alleles. However, to use these species efficiently, enabling tools are required. Chromosome-specific molecular markers are particularly useful tools to track the transmission of this exotic genetic material into the cultivated cotton during introgression. In this study, we report the construction of a genetic linkage map of the Australian wild C-genome species Gossypium sturtianum. The map, based on an F(2) population of 114 individuals, contains 291 AFLP loci. The map spans 1697 cM with an average distance of 5.8 cM between markers. To associate C-genome chromosomes with the A and D subgenomes of cultivated cotton, 29 SSR and RFLP-STS markers were assigned to chromosomes using cultivated cotton mapped marker information. Polymorphisms were revealed by 51 AFLP primer combinations and 38 RFLP-STS and 115 SSR cotton mapped markers. The utility of transferring RFLP-STS and SSR cotton mapped markers to other Gossypium species shows the usefulness of a comparative approach as a source of markers and for aligning the genetic map of G. sturtianum with the cultivated species in the future. This also indicates that the overall structure of the G. sturtianum linkage groups is similar to that of the A and D subgenomes of cotton at the gross structural level. Applications of the map for the Australia wild C-genome species and cotton breeding are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号