共查询到20条相似文献,搜索用时 0 毫秒
1.
Anderson OR 《The Journal of eukaryotic microbiology》2000,47(2):148-155
ABSTRACT. The abundance, sizes, and when appropriate, diversity of gymnamoebae were documented at approximately monthly intervals for four years (1995–1998) at a grassy, terrestrial site slightly upslope from a freshwater pond. Soil samples were analyzed for viable gymnamoebae using a standard laboratory culturing protocol. The mean density of gymnamoebae based on the total data set was ca. 1,600/g (s.e. ± 190). Minimum densities of gymnamoebae (156/g) occurred in January 1995, and a maximum for the sampling period (5,838/g) occurred in July 1997, when a rainy period followed an extended period of drought. Among the environmental variables monitored (precipitation, soil moisture, organic content, and temperature) only precipitation correlated significantly with abundance of gymnamoebae (r= 0.34 , p = 0.02 ). During the mild, moist El Niño winter of 1997–1998, a larger than usual number of gymnamoebae was recorded at the site (~3,800/g) compared to a mean density of ~900/g for comparable periods in preceding years. The mean sizes were also larger. Since gymnamoebae are increasingly recognized as major members of soil microbial communities enhancing soil fertility through nutrient mineralization, it is important to document environmental variables that influence their abundance and activity in terrestrial ecosystems. 相似文献
2.
ABSTRACT. In North America, zebra mussels ( Dreissena polymorpha ) are notoriously known as invasive species. The abundance of naked amoebae sampled from the shells of zebra mussels was compared with abundances from rock scrapings at approximately monthly intervals for 1 year. The sites were 2 km apart along the same shoreline. No significant difference in abundance of naked amoebae ( F =1.44; P ≤0.270) was detected for the two sampling sites. The combined data showed a minimum density of naked amoebae in winter, followed by peaks in early spring. The percent encysted increased from a low of 1% in the summer to 80% in early winter. 相似文献
3.
Vascular vegetation and protozoan communities were sampled in seven wetland sites — two bogs, two fens, two marshes, and one swamp — in summer 1977. Two similarity indices were used to compare vascular vegetation and Protozoa from each site with all the other sites. Bog sites were the most distinct from other wetland types with respect to chemical and physical characteristics, dominant vascular vegetation, and protozoan species composition. The swamp site had the highest similarity to all other sites with respect to both dominant vascular vegetation and protozoan species. Protozoan communities from different wetland types were much more similar than dominant vascular species; however, the pattern of similarity between wetland sites was very similar for both groups (Pearson product-moment correlation coefficient = 0.76).Protozoan communities were also compared with those from several nearby lakes with respect to colonization rate onto polyurethane foam artificial substrates. The structure and dynamics of protozoan communities of wetlands were broadly different from those of other freshwaters, and somewhat unique to the other wetland types. Evidence for a high degree of eutrophy in certain bog lakes is presented. 相似文献
4.
Anderson OR 《The Journal of eukaryotic microbiology》2007,54(4):388-391
The total carbon contents of gymnamoebae and ciliates, dwelling in the water column of the Hudson Estuary and a highly productive freshwater pond, were monitored during a 7-month period from April through October 2006. The carbon contents of the gymnamoebae and the ciliates were greater in the pond compared with the estuary, and carbon contents of gymnamoebae were greater in the spring and autumn in both locations than those of ciliates. Given the global distribution of gymnamoebae, these results suggest that greater attention should be given to the potential role of gymnamoebae in microbial food webs. 相似文献
5.
Anderson OR 《The Journal of eukaryotic microbiology》2002,49(1):17-23
Soil samples (varying in granularity) from four natural sites were cultured in microcosms to determine small-scale patchiness in abundance and diversity of gymnamoebae. Eighty grams of the same thoroughly mixed soil, either moistened with distilled water (- nutrients) or supplemented with an equivalent vol. of organically enriched water (+ nutrients), were placed in covered glass jars and incubated for 14 d (25 degrees C). Abundances (number/gram soil) were assessed in each of 3 core samples (5-10 mm apart). Assay precision was estimated to be +/- 4%. Abundances were similar in the 3 closely-spaced samples, but occasional samples had higher abundances, probably representing localized enriched sites (\"nutrient hot spots\"). Diversity within the triplicate, closely spaced samples varied substantially. Mean abundance and diversity of amoebae were consistently higher in organically enriched soil and in soil of increasing granularity. Field samples collected directly from two of the sites showed similar patterns of abundance and diversity as found in the experimental studies, indicating substantial small-scale compartmentalization of soil protist communities. These data provide evidence of soil eukaryotic microbiocoenoses and indicate that soil microfauna may encounter wide variations in resources and prey communities as they migrate within small distances of several millimeters or less. 相似文献
6.
Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones 总被引:11,自引:0,他引:11
1. Streams and their adjacent riparian zones are closely linked by reciprocal flows of invertebrate prey. We review characteristics of these prey subsidies and their strong direct and indirect effects on consumers and recipient food webs. 2. Fluxes of terrestrial invertebrates to streams can provide up to half the annual energy budget for drift‐feeding fishes such as salmonids, despite the fact that input occurs principally in summer. Inputs appear highest from closed‐canopy riparian zones with deciduous vegetation and vary markedly with invertebrate phenology and weather. Two field experiments that manipulated this prey subsidy showed that it affected both foraging and local abundance of stream fishes. 3. Emergence of adult insects from streams can constitute a substantial export of benthic production to riparian consumers such as birds, bats, lizards, and spiders, and contributes 25–100% of the energy or carbon to such species. Emergence typically peaks in early summer in the temperate zone, but also provides a low‐level flux from autumn to spring in ice‐free streams. This flux varies with in‐stream productivity, and declines exponentially with distance from the stream edge. Some predators aggregate near streams and forage on these prey during periods of peak emergence, whereas others rely on the lower subsidy from autumn through spring when terrestrial prey are scarce. Several field experiments that manipulated this subsidy showed that it affected the short‐term behaviour, growth, and abundance of terrestrial consumers. 4. Reciprocal prey subsidies also have important indirect effects on both stream and riparian food webs. Theory predicts that allochthonous prey should increase density of subsidised predators, thereby increasing predation on in situ prey and causing a negative indirect effect via apparent competition. However, short‐term experiments have produced either positive or negative indirect effects. These contrasting results may be due to characteristics of the subsidies and individual consumers, but could also result from differences in experimental designs. 5. New study approaches are needed to better determine the direct and indirect effects of reciprocal prey subsidies. Experiments coupled with comparative research will be required to measure their effects on individual consumer fitness and population demographics. Future work should investigate whether reciprocal prey fluxes stabilise linked stream–riparian ecosystems, explore how landscape context affects the magnitude and importance of subsidies, and determine how impacts of human disturbance can propagate between streams and riparian zones via these trophic linkages. Study of these reciprocal connections is helping to define a more holistic perspective of catchments, and has the potential to shape new directions for ecology in general. 相似文献
7.
Baltasar Mayo Caio T. C. C Rachid ángel Alegría Analy M. O Leite Raquel S Peixoto Susana Delgado 《Current Genomics》2014,15(4):293-309
Understanding the Maxam-Gilbert and Sanger sequencing as the first generation, in recent years there has been an explosion of newly-developed sequencing strategies, which are usually referred to as next generation sequencing (NGS) techniques. NGS techniques have high-throughputs and produce thousands or even millions of sequences at the same time. These sequences allow for the accurate identification of microbial taxa, including uncultivable organisms and those present in small numbers. In specific applications, NGS provides a complete inventory of all microbial operons and genes present or being expressed under different study conditions. NGS techniques are revolutionizing the field of microbial ecology and have recently been used to examine several food ecosystems. After a short introduction to the most common NGS systems and platforms, this review addresses how NGS techniques have been employed in the study of food microbiota and food fermentations, and discusses their limits and perspectives. The most important findings are reviewed, including those made in the study of the microbiota of milk, fermented dairy products, and plant-, meat- and fish-derived fermented foods. The knowledge that can be gained on microbial diversity, population structure and population dynamics via the use of these technologies could be vital in improving the monitoring and manipulation of foods and fermented food products. They should also improve their safety. 相似文献
8.
Jost C Lawrence CA Campolongo F van de Bund W Hill S DeAngelis DL 《Theoretical population biology》2004,66(1):37-51
Recognition of the microbial loop as an important part of aquatic ecosystems disrupted the notion of simple linear food chains. However, current research suggests that even the microbial loop paradigm is a gross simplification of microbial interactions due to the presence of mixotrophs-organisms that both photosynthesize and graze. We present a simple food web model with four trophic species, three of them arranged in a food chain (nutrients-autotrophs-herbivores) and the fourth as a mixotroph with links to both the nutrients and the autotrophs. This model is used to study the general implications of inclusion of the mixotrophic link in microbial food webs and the specific predictions for a parameterization that describes open ocean mixed layer plankton dynamics. The analysis indicates that the system parameters reside in a region of the parameter space where the dynamics converge to a stable equilibrium rather than displaying periodic or chaotic solutions. However, convergence requires weeks to months, suggesting that the system would never reach equilibrium in the ocean due to alteration of the physical forcing regime. Most importantly, the mixotrophic grazing link seems to stabilize the system in this region of the parameter space, particularly when nutrient recycling feedback loops are included. 相似文献
9.
Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure? 总被引:1,自引:0,他引:1
Summary It has been suggested by Cohen and Newman (1985) that many of the patterns in published food webs can be derived from a stochastic model in which the species are arranged in a trophic hierarchy (the cascade model). We suggest that, if predators are larger than their prey, a trophic hierarchy can be generated on the basis of body size Empirical evidence from the literature shows that there is a positive relationship between predator and prey size for a range of invertebrates and that predators are usually larger than their prey. Using experimental data on an aquatic food web we show that body size can lead to the type of trophic hierarchy used in the cascade model, suggesting that many food web patterns may be a product of body size. This conclusion is discussed with respect to the limitations of the food web data and the relationship between static and dynamic models of web structure. 相似文献
10.
Summary We use field and laboratory experiments to determine whether Hyphydrus ovatus, a predatory aquatic beetle, is food limited, and whether any food shortage results from depletion of prey by these predators (intrinsic food shortage) or is independent of predation by these beetles (extrinsic food shortage). In the laboratory, differences in feeding rate influence body fat content, thus making fat content a useful index of recent feeding history. H. ovatus collected during the breeding season have fat contents significantly greater than those of H. ovatus starved for 25 days, but not significantly different from those of H. ovatus fed ad libitum for 25 days, indicating that natural feeding rates are near the maximum possible. H. ovatus confined at a density 60 times greater than natural show reduced fat content and feeding rate relative to natural, indicating that at very high densities H. ovatus is capable of depleting its prey. Addition of supplemental natural prey (primarily Cladocera) to experimental enclosures resulted in an order of magnitude increase in prey availability, and a significant increase in fat content and feeding rate of confined H. ovatus. Adults of this species do not appear to be food limited during the breeding season, and extraordinarily high densities of adults seem to be necessary to produce intrinsic food shortage. These results suggest that feeding links between H. ovatus an its principal prey do not have major effects on population dynamics under typical field conditions, and call into question the assumption that closely coupled predator-prey interactions are the sole explanation for observed food-web patterns. 相似文献
11.
Complex multi-dimensional datasets are now pervasive in science and elsewhere in society. Better interactive tools are needed for visual data exploration so that patterns in such data may be easily discovered, data can be proofread, and subsets of data can be chosen for algorithmic analysis. In particular, synthetic research such as ecological interaction research demands effective ways to examine multiple datasets. This paper describes our integration of hundreds of food-web datasets into a common platform, and the visualization software, EcoLens, we developed for exploring this information. This publicly-available application and integrated dataset have been useful for our research predicting large complex food webs, and EcoLens is favorably reviewed by other researchers. Many habitats are not well represented in our large database. We confirm earlier results about the small size and lack of taxonomic resolution in early food webs but find that they and a non-food-web source provide trophic information about a large number of taxa absent from more modern studies. Corroboration of Tuesday Lake trophic links across studies is usually possible, but lack of links among congeners may have several explanations. While EcoLens does not provide all kinds of analytical support, its label- and item-based approach is effective at addressing concerns about the comparability and taxonomic resolution of food-web data. 相似文献
12.
Vandermeer J 《Journal of theoretical biology》2006,238(3):497-504
The ecological concept of omnivory, feeding at more than a single trophic level, is formulated as an intermediate stage between any two of three classical three-dimensional species interaction systems-tritrophic chain, competition, and polyphagy. It is shown that omnivory may be either stabilizing or destabilizing, depending, in part, on the conditions of the parent systems from which it derives. It is further conjectured that the tritrophic to competition gradient cannot be entirely stable, that there must be an instability at some level of intermediate omnivory. 相似文献
13.
David A. Caron 《The Journal of eukaryotic microbiology》2013,60(4):407-413
The increasing use of genetic information for the development of methods to study the diversity, distributions, and activities of protists in nature has spawned a new generation of powerful tools. For ecologists, one lure of these approaches lies in the potential for DNA sequences to provide the only immediately obvious means of normalizing the diverse criteria that presently exist for identifying and counting protists. A single, molecular taxonomy would allow studies of diversity across a broad range of species, as well as the detection and quantification of particular species of interest within complex, natural assemblages; goals that are not feasible using traditional methods. However, these advantages are not without their potential pitfalls and problems. Conflicts involving the species concept, disagreements over the true (physiological/ecological) meaning of genetic diversity, and a perceived threat by some that sequence information will displace knowledge regarding the morphologies, functions and physiologies of protistan taxa, have created debate and doubt regarding the efficacy and appropriateness of some genetic approaches. These concerns need continued discussion and eventual resolution as we move toward the irresistible attraction, and potentially enormous benefits, of the application of genetic approaches to protistan ecology. 相似文献
14.
Jingyi Li Mingyu Luo Shaopeng Wang Benoit Gauzens Myriam R. Hirt Benjamin Rosenbaum Ulrich Brose 《Ecology letters》2023,26(1):76-86
Understanding the formation of feeding links provides insights into processes underlying food webs. Generally, predators feed on prey within a certain body-size range, but a systematic quantification of such feeding niches is lacking. We developed a size-constrained feeding-niche (SCFN) model and parameterized it with information on both realized and non-realized feeding links in 72 aquatic and 65 terrestrial food webs. Our analyses revealed profound differences in feeding niches between aquatic and terrestrial predators and variation along a temperature gradient. Specifically, the predator–prey body-size ratio and the range in prey sizes increase with the size of aquatic predators, whereas they are nearly constant across gradients in terrestrial predator size. Overall, our SCFN model well reproduces the feeding relationships and predation architecture across 137 natural food webs (including 3878 species and 136,839 realized links). Our results illuminate the organisation of natural food webs and enables novel trait-based and environment-explicit modelling approaches. 相似文献
15.
Food webs are complex networks describing trophic interactions in ecological communities. Since Robert May's seminal work on random structured food webs, the complexity-stability debate is a central issue in ecology: does network complexity increase or decrease food-web persistence? A multi-species predator-prey model incorporating adaptive predation shows that the action of ecological dynamics on the topology of a food web (whose initial configuration is generated either by the cascade model or by the niche model) render, when a significant fraction of adaptive predators is present, similar hyperbolic complexity-persistence relationships as those observed in empirical food webs. It is also shown that the apparent positive relation between complexity and persistence in food webs generated under the cascade model, which has been pointed out in previous papers, disappears when the final connection is used instead of the initial one to explain species persistence. 相似文献
16.
Benthos as the basis for arctic lake food webs 总被引:2,自引:0,他引:2
Plankton have traditionally been viewed as the basis for limnetic food webs, with zooplankton acting as a gateway for energy passing between phytoplanktonic primary producers and fish. Often, benthic production has been considered to be important primarily in shallow systems or as a subsidy to planktonic food web pathways. Stable isotope food web analyses of two arctic lakes (NE14 and I minus) in the Toolik Lake region of Alaska indicate that benthos are the primary source of carbon for adults of all species of benthic and pelagic fish present. We found no effect of turbidity, which may suppress benthic algae by shading, on food web structure. Even though Secchi transparency varied from 10.2 m in NE14 to 0.55–2.6 m in I minus, food webs in both lakes were based upon benthos, had four trophic levels, and culminated with omnivorous lake trout. We suggest that the importance of benthos in the food webs of these lakes is due to their extreme oligotrophy, resulting in planktonic resources that are insufficient for the support of planktivorous consumers. 相似文献
17.
Network Analyses Can Advance Above-Belowground Ecology 总被引:1,自引:0,他引:1
Kelly S. Ramirez Stefan Geisen Elly Morriën Basten L. Snoek Wim H. van der Putten 《Trends in plant science》2018,23(9):759-768
18.
Studies in lakes show that fish and crayfish predators play an important role in determining the abundance of freshwater snails.
In contrast, there are few studies of snails and their predators in shallow ponds and marshes. Ponds often lack fish and crayfish
but have abundant insect populations. Here we present the results of field surveys, laboratory foraging trials, and an outdoor
mesocosm experiment, testing the hypothesis that insects are important predators of pulmonate snails. In laboratory foraging
trials, conducted with ten species of insects, most insect taxa consumed snails, and larval dragonflies were especially effective
predators. The field surveys showed that dragonflies constitute the majority of the insect biomass in fishless ponds. More
focused foraging trials evaluated the ability of the dragonflies Anax junius and Pantala hymenaea to prey upon different sizes and species of pulmonate snails (Helisoma trivolvis, Physa acuta, and Stagnicola elodes). Anax junius consumed all three species up to the maximum size tested. Pantala hymenaea consumed snails with a shell height of 3 mm and smaller, but did not kill larger snails. P. acuta were more vulnerable to predators than were H. trivolvis or S. elodes. In the mesocosm experiment, conducted with predator treatments of A. junius, P. hymenaea, and the hemipteran Belostoma flumineum, insect predators had a pronounced negative effect on snail biomass and density. A. junius and B. flumineum reduced biomass and density to a similar degree, and both reduced biomass more than did P. hymenaea. Predators did not have a strong effect on species composition. A model suggested that A. junius and P. hymenaea have the largest effects on snail biomass in the field. Given that both pulmonate snails and dragonfly nymphs are widespread
and abundant in marshes and ponds, snail assemblages in these water bodies are likely regulated in large part by odonate predation. 相似文献
19.
This is the second of two papers dedicated to the relationship between population models of competition and biodiversity. Here, we consider species assembly models where the population dynamics is kept far from fixed points through the continuous introduction of new species, and generalize to such models the coexistence condition derived for systems at the fixed point. The ecological overlap between species and shared preys, that we define here, provides a quantitative measure of the effective interspecies competition and of the trophic network topology. We obtain distributions of the overlap from simulations of a new model based both on immigration and speciation, and show that they are in good agreement with those measured for three large natural food webs. As discussed in the first paper, rapid environmental fluctuations, interacting with the condition for coexistence of competing species, limit the maximal biodiversity that a trophic level can host. This horizontal limitation to biodiversity is here combined with either dissipation of energy or growth of fluctuations, which in our model limit the length of food webs in the vertical direction. These ingredients yield an effective model of food webs that produce a biodiversity profile with a maximum at an intermediate trophic level, in agreement with field studies. 相似文献