首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute cessation of flow (ischemia) leads to depolarization of the endothelial cell (EC) membrane mediated by KATP channels and followed by production of reactive oxygen species (ROS) from NADPH oxidase. We postulated that ROS are a signal for initiating EC proliferation associated with the loss of shear stress. Flow cytometry was used to identify proliferating CD31-positive pulmonary microvascular endothelial cells (mPMVECs) from wild-type, Kir6.2–/–, and gp91phox–/– mice. mPMVECs were labeled with PKH26 and cultured in artificial capillaries for 72 h at 5 dyn/cm2 (flow adaptation), followed by 24 h of stop flow or continued flow. ROS production during the first hour of ischemia was markedly diminished compared with wild-type mice in both types of gene-targeted mPMVECs. Cell proliferation was defined as the proliferation index (PI). After 72 h of flow, >98% of PKH26-labeled wild-type mPMVECs were at a single peak (PI 1.0) and the proportion of cells in the S+G2/M phases were at 5.8% on the basis of cell cycle analysis. With ischemia (24 h), PI increased to 2.5 and the ratio of cells in S+G2/M phases were at 35%. Catalase, diphenyleneiodonium, and cromakalim markedly inhibited ROS production and cell proliferation in flow-adapted wild-type mPMVECs. Significant effects of ischemia were not observed in Kir6.2–/– and gp91phox–/– cells. ANG II activation of NADPH oxidase was unaffected by KATP gene deletion. Thus loss of shear stress in flow-adapted mPMVECs results in cell division associated with ROS generated by NADPH oxidase. This effect requires a functioning cell membrane KATP channel. cell signaling; ischemia; mechanotransduction; KATP channels; NADPH oxidase  相似文献   

2.
Light-induced changes in membrane potential in Spirogyra   总被引:2,自引:0,他引:2  
Spirogyra cells exhibited changes in membrane potential whenthey were exposed to light. Cells made chloroplast-free didnot show any light-induced potential change (LPC) upon illuminationwith white light and also monochromatic red (680 nm) and farred (720 nm) light. LPC was observed when the cell containedonly a small fragment of chloroplast, whether the cell had anucleus or not. The magnitude of LPC depended on the amountof chloroplast in the cell. DCMU at 10–5 M, CCCP at 10–5 M and DNP at 10–4M at pH 5.5 suppressed LPC, while CCCP at 1–5 ? 10–6M, NH4Cl at 5 ? 10–2 M and DNP at 10–4 M at pH 7.0stimulated LPC. PMS at 10–4 M stimulated LPC and couldinduce LPC which was completely inhibited by DCMU. These factssuggest that LPC is related to noncyclic and cyclic electronflows. The influences of light and dark conditions and various metabolicinhibitors (DCMU, DNP, CCCP, NH4Cl) on ATP level have been investigated.No significant difference in the ATP level was observed betweencells in the light and dark. DNP at 10–4 M (pH 5.5) andCCCP at 5 ? 10–6 M decreased the ATP level significantly,while DCMU and NH4Cl only slightly. Good correlation was notfound between the total ATP level and LPC in Spirogyra. LPC occurred even when the external medium contained only asingle salt such as KCl, NaCl or CaSO4. LPC was also recorded in chloroplasts in situ and in vitro.The mode of LPC of chloroplasts was quite different from thatof the cell. On illumination, the chloroplast potential changedvery rapidly and transiently in the positive direction thenrecovered spontaneously to almost the original potential level. Possible causes of LPC are discussed in relation to the electrogenicion pump. 1 Present address: Department of Botany, Faculty of Science,University of Tokyo, Hongo, Bunkyo, Tokyo 113, Japan. (Received November 9, 1977; )  相似文献   

3.
5 x 10–5 M L-phenylalanine overcame the inhibitory effectof white light on cell division in artichoke callus culturesand increased extractable phenylalanine ammonia-lyase (PAL)activity compared to cultures grown in the presence of 5 x 10–4M phenylalanine The lower concentration of the amino acid alsoenhanced rates of uptake and incorporation of 14C labelled phenylalaninethroughout G1 and S. Differences between the two concentrationswere greatest during S with a 4-fold increase in uptake anda 3-fold increase in incorporation It is suggested thereforethat the capacity of 5 x10–5 M phenylalanine to offsetthe light effect is due to an indirect stimulatory effect onamino acid and protein metabolism Increased levels of extractablePAL activity would then be reflected by this general stimulationof protein synthesis. Helianthus tuberosus L, Jerusalem artichoke, callus culture, cell division, phenylalanine ammonia-lyase  相似文献   

4.
NADP malic enzyme (EC 1.1.1.40 [EC] ) from leaves of two C4 speciesof Cyperus (C. rotundus and C. brevifolius var leiolepis) exihibiteda low level of activity in an assay mixture that contained lowconcentrations of Cl. This low level of activity wasmarkedly enhanced by increases in the concentration of NaClup to 200 mM. Since the activity of NADP malic enzyme was inhibitedby Na2SO4 and stimulated by relatively high concentration ofTris-HCl (50–100 mM, pH 7–8), the activation ofthe enzyme by NaCl appears to be due to Cl. Variationsin the concentration of Mg2+ affected the KA (the concentrationof activator giving half-maximal activation) for Cl,which decreased from 500 mM to 80 mM with increasing concentrationsof Mg2+ from 0.5 mM to 7 mM. The Km for Mg2+ was decreased from7.7 mM to 1.3 mM with increases in the concentration of NaClfrom zero to 200 mM, although the increase of Vmax was not remarkable.NADP malic enzyme from Cyperus, being similar to that from otherC4 species, was able to utilize Mn2+. The Km for Mn2+ was 5mM, a value similar to that for Mg2+. The addition of 91 mMNaCl markedly decreased the Km for Mn2+ to 20 +M. NADP malicenzyme from Setaria glauca, which contains rather less Clthan other C4 species, was inactivated by concentrations ofNaCl above 20 mM, although slight activation of the enzyme wasobserved at low concentrations of NaCl at pH7.6. (Received February 20, 1989; Accepted June 12, 1989)  相似文献   

5.
A rapid and convenient procedure was developed for isolatingguard cell protoplasts (GCPs) from epidermal strips of Viciafaba L. The mean rates of O2 uptake in the dark and evolutionin light of the isolated GCPs were 200 and 290 µmol O2mg–1 Chl h–1, respectively, showing net O2 evolutionin light. Photosynthetic O2 evolution was suppressed completelyby 5 µM DCMU. Addition of 5 µM DCMU to the incubationmedium after 30 min of light exposure also suppressed the light-inducedswelling of GCP, indicating possible participation of PS IIin volume regulation in GCP. 4Present address: Division of Environmental Biology, The NationalInstitute for Environmental Studies, Yatabe machi, Tsukuba,Ibaraki 305, Japan. (Received December 17, 1983; Accepted March 21, 1984)  相似文献   

6.
In "air-grown" Chroomonas sp. cells, low concentrations of DCMU(less than 0.1 µM) could prevent the inhibition of 14CO2fixation by anaerobiosis under light-saturating conditions (morethan 40 W.m–2), with phenazine methosulfate showing asimilar effect. Antimycin A, carbonyl cyanide m-chlorophenylhydrazone(CCCP), and N,N'-dicyclohexylcarbodiimide strongly inhibitedanaerobic photosynthesis at concentrations which did not significantlyinhibit the rate under 2% O2 at high light intensity (200 W.m–2),although 0.2 µM CCCP stimulated the rate under 2% O2 tosome extent. On the other hand, KCN inhibited the rate muchmore strongly under 2% O2 than N2, although it inhibited therate very strongly at concentrations above 5 µM both underN2 and 2% O2. These results suggest that the inhibition of photosynthetic14CO2 fixation by anaerobiosis in this alga result from ATPdeficiency caused by over-reduction of electron carriers ofthe cyclic electron flow and that oxygen can prevent the over-reduction.Cyclic electron flow seems to be necessary to provide additionalATP for CO2 reduction under anaerobic conditions, although itseems to be less necessary under aerobic conditions. (Received July 21, 1983; Accepted January 23, 1984)  相似文献   

7.
In whole filaments of Anabaena cylindrica dark nitrogen-fixingactivity (measured as acetylene reduction) and respiration increasedwith the light intensity of a fixed period of preillumination,saturating at ca. 10,000 lux. With saturating light during preillumination,the amount and duration of dark nitrogen-fixing activity increasedwith length of preillumination, but respiration declined rapidlyin the dark. At dark respiration rates below 250 nmol O2 uptake mg protein–1?h–1(State 1) no significant nitrogen-fixing activity is observed.From 250 to 550 nmol O2 uptake?mg protein–1?h–1(State 2), nitrogen-fixing activity depends on O2 uptake whileabove 550 nmol O2 uptake?mg protein–1?h–1 (State3), nitrogen-fixing activity no longer increases with furtherincrease in O2 uptake rate. (Received June 18, 1983; Accepted November 10, 1983)  相似文献   

8.
The cell quotas of microcystin (Qmcyst), protein (Qprot), chlorophylla (Qchloro) and carbohydrate (Qcarbo), as well as the net productionrates of these parameters, were determined during the exponentialand stationary phases in nine batch cultures of Microcystisaeruginosa (CYA 228) at light regimes from 33 to 53 µmolphotons m–2 s–1. The following results were obtained.(i) A parallel pattern was found in the changes of Qmcyst, Qprot,Qchloro and Qcarbo during the entire growth cycle and significantcorrelations were recorded between Qmcyst and Qprot, Qchloroand Qcarbo. (ii) The net microcystin production rate (µmcyst)was positively correlated with the specific cell division rate(µc), the chlorophyll production rate (µchloro)and the protein production rate. (iii) A significant inverselinear relationship was found between µc and Qmcyst, i.e.cultures with a positive µc had a Qmcyst between 110 and400 fg microcystin cell–1, while declining cultures hadQmcyst values >400 fg microcystin cell–1. Maximum variationin Qmcyst within cultures was 3.5-fold. Collectively, the resultsshow that cells produced microcystin at rates approximatingthose needed to replace losses to daughter cells during divisionand that microcystin was produced in a similar way to proteinand chlorophyll, indicating a constitutive microcystin production.  相似文献   

9.
The theory and practice of applying the thermodynamics of irreversibleprocesses to mass-flow theories is presented. Onsager coefficientswere measured on cut and uncut phloem and cut xylem strandsof Heracleum muntegazzimum. In 0.3 N sucrose + 1 mN KC1 theyare as follows. In phloem, LEE = 5 ? 10–4 mho cm–1,LpE = 9 ? 10–6 cm3 s–1 cm–2 volt–1 cm,and LPP = 0.16 cm3 s–1 cm–2 (J cm–3)–1cm. In uncut phloem strands LEE is about 1 ? 10–3 mhocm–1. In xylem in 2 x 10–3 N KCI, Lpp = 50 to 225,LPE = 2 ? 10–4, and LEE = 4 ? 10–3. The measurementsare tentative since the blockage of the sieve plates is an interferingfactor, but if they are valid they lead to the conclusion thatneither a pressure-flow nor an electro-kinetic mechanism envisaginga ‘long distance’ current pathway can be the majormotive ‘force’ for transport in mature phloem. Measurementsof biopotentials along conducting but laterally detached phloembundles of Heracleum suggest, nevertheless, that there may bea small electro-osmotic component of at least 0.1 mV cm–1endogenous in the phloem.  相似文献   

10.
Sexual reproduction in heterothallic strains of Closterium peracerosum-strigostan-littorale,KAS-4-29 (mating type minus) and KAS-4-30 (mating type plus),depended on a light intensity higher than 3,000 lux. Two kindsof cell division occurred in the mating medium: 1) one kindoccurred at low light intensity (less than 1,000 lux) and wasnot linked to conjugation, and 2) a sexual one occurred at highlight intensity (higher than 3,000 lux) and was linked to conjugation.3-(4-Chlorophenyl)-l,l-dimethylurea at 1 µM added at thebeginning of the mating culture completely inhibited conjugationbut not cell division. Chloramphenicol at 20 to 40 µg/mladded at the beginning of the culture inhibited conjugationcompletely and cell division partly. The drugs added after 12h of the mating culture did not inhibit the division processes.Varying light intensity after 12 h of culture did not affectsexual activity. The photosynthetic activity was highest inthe cells at the beginning of the mating culture, and then markedlydecreased. The data indicate that the early period of the matingprocess depends strictly on the light conditions. (Received March 12, 1982; Accepted November 30, 1982)  相似文献   

11.
The water-relations parameters of Chara inflata cells were determineddirectly using the micro pressure probe technique. The turgorpressure of cells in artificial pond water (0 = 0.06 MPa) wasabout 0.65 MPa and the half-time (T1/2) for water exchange wasabout 6.5 s. The calculated values of the hydraulic conductivity(LP) were in the range 1–2 ? 10–6m s–1 (MPa)–1.The volumetric elastic modulus () was 32.8 MPa for turgor rangingfrom 0.77 to 0.82 MPa. Large changes in the water-relations parameters and the electricalproperties of the membrane occurred when the turgor was decreasedto low values. These changes included: (i) a decrease in theT1/2 for water exchange, (ii) an increase in LP and (iii) depolarizationof the membrane potential difference (Vm). The micro pressure probe, which enabled the turgor pressureof the cell to be altered, was used in combination with thevoltage-clamp technique to determine the relationship betweenK+ and Cl conductances of the plasmalemma and the cellturgor. The K+ conductance increased reversibly as the turgorwas reduced in the range 0 to 0.6 MPa and the Cl -conductanceincreased as the turgor was reduced in the range 0.1 to 0.5MPa. It is suggested that these pressure-dependent K+ and Clconductances may have a dual role in electrical events and thenon-electrical responses such as changes in the cell volume. Key words: Chara inflata, membrane conductances, ion channels, water-relations parameters  相似文献   

12.
The effects of root age, temperature, and soil water statuson root hydraulic conductivity (LP) were investigated for twocactus species, Ferocactus acanthodes and Opuntia ficus-indica.The volumetric flux density of water was measured for excisedroot segments, either using negative hydrostatic pressures appliedto the proximal end or using reverse flow of water from theroot to the soil. For both species, LP at 20 ?C increased withroot age, average values reaching a maximum of 3.9 ? 10–7m s–1 MPa–1 for F. acanthodes and 5.2 ? 10–7m s–1 MPa–1 for O.ficus-indica at 11 to 17 weeksof age; LP subsequently declined with increasing root age forboth species. LP was maximal at a temperature of about 10 ?Cfor the youngest roots (1–3 weeks), this optimum shiftingto 40 ?C for 8-week-old roots of both species. For older roots(up to 1.5-years-old), LP increased with temperature from 0?C to 50 ?C, with a Q10 of 1.3 between 20 ?C and 30 ?C. At asoil water potential (soil) of –0.016 MPa, root LP wasindependent of the direction of water flow for both species.Depending on root age, LP declined 45- to 500-fold for F. acanthodesand 90- to 800-fold for O.ficus-indica as soil was reduced from–0.016 to –1.06 MPa, consistent with a rectifier-likebehaviour with respect to water movement between soil and roots.Incorporation of such responses into water uptake models shouldlead to a better understanding of root function. Key words: Ferocactus acanthodes, Opuntia ficus-indica, water potential, tension, reverse flow  相似文献   

13.
Heme induces Cl secretion in intestinal epithelial cells, most likely via carbon monoxide (CO) generation. The major source of endogenous CO comes from the degradation of heme via heme oxygenase (HO). We hypothesized that an inhibitor of HO activity, tin protoporphyrin (SnPP), may inhibit the stimulatory effect of heme on Cl secretion. To test this hypothesis, we treated an intestinal epithelial cell line (Caco-2 cells) with SnPP. In contrast to our expectations, Caco-2 cells treated with SnPP had an increase in their short-circuit currents (Isc) in Ussing chambers. This effect was observed only when the system was exposed to ambient light. SnPP-induced Isc was caused by Cl secretion because it was inhibited in Cl-free medium, with ouabain or 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). The Cl secretion was not via activation of the CFTR, because a specific inhibitor had no effect. Likewise, inhibitors of adenylate cyclase and guanylate cyclase had no effect on the enhanced Isc. SnPP-induced Isc was inhibited by the antioxidant vitamins, -tocopherol and ascorbic acid. Electron paramagnetic resonance experiments confirmed that oxidative reactions were initiated with light in cells loaded with SnPP. These data suggest that SnPP-induced effects may not be entirely due to the inhibition of HO activity but rather to light-induced oxidative processes. These novel effects of SnPP-photosensitized oxidation may also lead to a new understanding of how intestinal Cl secretion can be regulated by the redox environment of the cell. heme oxygenase; electrolyte transport; carbon monoxide; cGMP; reactive oxygen species  相似文献   

14.
KAMALUDDIN  M.; GRACE  J. 《Annals of botany》1992,69(6):557-562
Acclimation of fully developed leaves of Bischofia javanicaBlume to shadelight was examined. Seedlings were grown undersimulated daylight (1000 µmol m–2 s–1), thentransferred to a simulated shadelight (40 µmol m–2s–1). When a high-light leaf was transferred to low light, large negativenet photosynthetic rates (Pm) were recorded. This decrease wasrapid, but within 7 d the rate increased and became equal tothe low-light control leaf. These changes in photosynthesisdid not follow the pattern of changes in stomatal conductance(gs). Transfer to the low light resulted in a dramatic decreasein leaf weight per unit area (Lw), and most of the decreasesin Lw occurred within 3 d of transfer when the Pm of the transferredleaf was well below that of the low-light control leaf. There was a significant decrease in chlorophyll a in the transferredleaf without an appreciable change in chlorophyll b resultingin a large decrease in the chlorophyll a to chlorophyll b ratio.Leaf chlorophylls per unit area were higher in the transferredleaf than the low-light control leaf. Maximum photosyntheticrate in the transferred leaf was decreased by 40% compared tothat for the high-control leaf, but was almost at the same extenthigher than the low-light control leaf The results are discussedin the context of carbon gain capacity of its seedlings underlight-limiting forest understorey habitats. Bischofia, chlorophylls, light, photosynthesis, shade acclimation, tree seedlings, tropical tree  相似文献   

15.
A Cl current activated by extracellular acidification, ICl(pHac), has been characterized in various mammalian cell types. Many of the properties of ICl(pHac) are similar to those of the cell swelling-activated Cl current ICl(swell): ion selectivity (I > Br > Cl > F), pharmacology [ICl(pHac) is inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), 1,9-dideoxyforskolin (DDFSK), diphenylamine-2-carboxylic acid (DPC), and niflumic acid], lack of dependence on intra- or extracellular Ca2+, and presence in all cell types tested. ICl(pHac) differs from ICl(swell) in three aspects: 1) its rate of activation and inactivation is very much more rapid, currents reaching a maximum in seconds rather than minutes; 2) it exhibits a slow voltage-dependent activation in contrast to the fast voltage-dependent activation and time- and voltage-dependent inactivation observed for ICl(swell); and 3) it shows a more pronounced outward rectification. Despite these differences, study of the transition between the two currents strongly suggests that ICl(swell) and ICl(pHac) are related and that extracellular acidification reflects a novel stimulus for activating ICl(swell) that, additionally, alters the biophysical properties of the channel. cell swelling-activated chloride current; patch clamp; pH  相似文献   

16.
Permeability coefficients (PS values) for CO2 of the plasmamembrane (PM) of the unicellular green algae Eremosphaera viridis,Dunaliella parva, and Dunaliella acidophila, and of mesophyllprotoplasts isolated from Valerianella locusta were determinedfrom 14CO2 uptake experiments using the rapid separation ofcells by the silicone oil layer centrifugation technique. Theexperimental PS values were compared with calculated numbersobtained by interpolation of Collander plots, which are basedon lipid solubility and molecular size, for D. parva cells,mesophyll protoplasts isolated from Spinacia oleracea, mesophyllcells and guard cells of Valerianella, and guard cell protoplastsisolated from Vicia faba. The conductivity of algal plasma membranes for CO2 varies between0.1 and 9 ? 10–6 m s–1, whereas for the plasmalemmaof cells and protoplasts isolated from leaves of higher plantsvalues between 0.3 and 11 ? 10–6 m s–1 were measured.By assuming that these measurements are representative for plantsand algae in general, it is concluded that the CO2 conductivityof algal PM is of the same order of magnitude as that of thehigher plant cell PM. Ps values of plasma membranes for CO2are lower than those for SO2, but are in the same order of magnitudeas those measured for H2O. On the basis of these results itis concluded that theoretical values of about 3000 ? 10–6m s–1 believed to be representative for higher plant cells(Nobel, 1983) and which are frequently used for computer-basedmodels of photosynthesis, lack experimental confirmation andrepresent considerable overestimations. However, with severalsystems, including higher plant cells, the conductance of thePM for CO2 was significantly higher in light than in darkness.This suggests that in light, additional mechanisms for CO2 uptakesuch as facilitated diffusion or active uptake may operate inparallel with diffusional uptake. Key words: Conductivity, CO2, permeability coefficient, photosynthesis, plasmalemma  相似文献   

17.
1) With Chlorella ellipsoidea cells, in the presence of 5x10–6M DSPD, or in its absence, the amounts of 14CO2 incorporatedin P-esters, serine-plus-glycine and alanine were larger underred light than under blue light, whereas blue light specificallyincreased 14CO2-incorporation in aspartate, glutamate, malateand fumarate (blue light effect). The amount of total 14C fixedunder blue or red light was greatly decreased by the additionof DSPD. When the concentration of DSPD was raised to 5x10–4M, practically no radioactivity was found, under blue or redlight, in aspartate, glutamate and fumarate. Radioactivity inalanine was greatly increased. Effects of higher concentrationof DSPD are explained as due to the inhibition of PEP carboxylaseactivity in Chlorella cells. 2) The percentage incorporation of 14C into aspartate and theother compounds mentioned above, under near infra-red illuminationwas significantly smaller than that under blue light and wasalmost equal to that under red light. These results along withthe effect of 5x10–6 M DSPD, exclude the possibility thatcyclic photophosphorylation is involved in the "blue light effect"mechanism. (Received December 12, 1969; )  相似文献   

18.
Cyclopenin (C17H14O3N2) and cyclopenol (C17H14O4N2), isolatedfrom an abberent strain of Penicillium cyclopium (NRRL 6233),significantly inhibited the growth of etiolated wheat (Triticumaestivum) coleoptile segments. The former inhibited at 10–3and 10–4 M, the latter at 10–3 M. Cyclopenin producedmalformation of the first set of trifoliate leaves in bean (Phaseolusvulgaris) at 10–2 M and necrosis and stunting in corn(Zea mays) at 10–2 M. Cyclopenol induced no apparent effectsin bean or corn plants. Neither compound changed the growthor morphology of tobacco (Nicotiana tabacum) plants. Cyclopenininduced intoxication, prostration and ataxia in day-old chicksat 500 mg/kg, but they recovered within 18 hours. Cyclopenolwas inactive against chicks when dosed at levels up to 500 mg/kg. (Received October 11, 1983; Accepted December 15, 1983)  相似文献   

19.
The activation of ribulose–1, 5-bisphosphate carb-oxylase/oxygenase(Rubisco, EC 4.1.1.39 [EC] ) from the floating angiosperm Spirodelapolyrhiza (L.) Schleid. (giant duckweed) grown at a photon irradianceof 200 or 400 mol photons m–2 s–1 was consistentlylow, in the range of 56–62%. Similarly low values wereobserved with four other emergent aquatic species growing underfull sun irradiance. Transference of Spirodela plants for short(minutes) or long (days) periods to the higher or lower irradianceincreased or decreased, respectively, the activation by onlyabout 15%. Activation was not greatly altered by exposure ofthe plants to full sun irradiance of >2000 mol photons m–2s–1 or CO2 concentrations in air of 0 and 1170 mol mor–1but darkness caused a slow decline to 20% activation. Transientoscillations were observed following a change in irradianceor CO2 concentration indicating that Rubisco was responsiveto environmental perturbations. The low Rubisco activation wasnot due to the tight binding of inhibitors such as carboxyarabinitol-1-phosphate.It is concluded that a substantial proportion of the Rubiscoprotein in these naturally-occurring species may not be usedfor CO2-fixation at any given moment. Key words: Rubisco  相似文献   

20.
The effect of four pyrimidine base analogues and their antidoteson S. oligorrhiza was studied. FUdR stopped cell division at concentrations of 4 10–7M and higher. This effect could be nullified by the additionof 4 10–6 M thymidine. Neither uridine nor uracil hadan antidotal effect on FUdR. FU (8 10–6 M or higher concentration) affected celldivision, frond elongation and differentiation, and could notbe counteracted by either thymidine or uracil. TU (8 10–4 M) rather specifically inhibited differentiationof frond tissues, while not preventing cell division or theinitiation of new generations. Uracil and uridine at about equimolarconcentrations completely counteracted the TU effect. AzU (10–3 M) suppressed cell division, frond elongationand frond differentiation. When thymidine (10–3 M) wasadded simultaneously with AzU only cell elongation and differentiationof fronds were inhibited, but cell division proceeded. 10–3M uracil (but not uridine) counteracted all effects of AzU. 1 Based on a portion of the senior author's Ph.D. Thesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号