共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhu Z Hotchkiss SA Boobis AR Edwards RJ 《Biochemical and biophysical research communications》2002,297(1):65-70
The complement and level of expression of P450 enzymes in male Fischer F344 rat whole skin and cultured keratinocytes were investigated using a panel of mono-specific antibodies. In whole skin microsomal fraction, immunoreactive bands corresponding to CYP2B12, CYP2C13, CYP2D1, CYP2D4, CYP2E1, CYP3A1, and CYP3A2 were detected whereas CYP1A1, CYP1A2, and CYP2C12 were absent. Skin levels were all between 0.1% and 4.7% of those found in liver, except for CYP2D4, which was not detected in liver. Keratinocytes were isolated from rat skin, cultured for up to 42 days, and changes in the levels of CYP3A1, CYP3A2, and CYP2E1 determined. Levels were low in isolated keratinocytes, but they increased markedly in culture, reaching a maximum at 10-14 days, where they were similar to those found in fresh skin. This suggests that primary keratinocytes grown in culture for 10-14 days may provide a useful experimental model to study P450-catalysed metabolism of xenobiotics in skin. 相似文献
2.
Enzymatic transformation of most chemical carcinogens is requisite to the formation of electrophiles that cause genotoxicity, and the cytochrome P450 (P450) enzymes are the most prominent enzymes involved in such activation reactions. During the past 15 years the human P450 enzymes have been extensively characterized. Considerable evidence exists that the variation in activity of these enzymes can have important consequences in the actions of drugs. Other studies have been concerned with the activation of procarcinogens by human P450s. Assignments of roles of particular P450s in the metabolism of chemical carcinogens are discussed, along with the current state of evidence for relationships of particular P450s with human cancer. 相似文献
3.
Skatole, a derivative of tryptophan, is produced in the hind-gut of pigs and is metabolised via hepatic cytochrome P4502E1 (CYP2E1). Excessive accumulation of skatole together with androstenone, a metabolite of testosterone, in adipose tissue in some pigs is a major cause of 'boar taint' and is associated with defective expression of CYP2E1. This phenomenon is not understood because factors regulating CYP2E1 expression in pig liver have not yet been characterised. Therefore effects of skatole and androstenone on CYP2E1 expression were studied using isolated pig hepatocytes as a model system. Skatole induced CYP2E1 protein expression to the same degree as did acetone, a known CYP2E1 inducer. Induction by skatole was maximum between 20 and 28 h and a half-maximum effect was obtained at a skatole concentration of 0.2 mM. Induction of CYP2E1 by skatole was protein-synthesis dependent. Androstenone antagonised the effect of skatole on CYP2E1 expression but did not affect the CYP2E1 protein level when added alone. These results suggest that defective expression of CYP2E1 in some pigs is due to excessive concentrations of androstenone which prevent CYP2E1 induction by its substrate skatole. As a result, skatole metabolism is reduced and skatole is accumulated in adipose tissue. 相似文献
4.
M. Vessal M.O. Choun M.J. Bissell D.M. Bissell 《Biochimica et Biophysica Acta (BBA)/General Subjects》1980,633(2):201-210
Cultured adult rat hepatocytes incubated in media containing fructose exhibit increased levels of cytochrome P-450, relative to cells incubated with equimolar glucose, and the effect of fructose is proportional to its concentration between 2 and 10 mM. For investigating the mechanism of the effect of fructose on cytochrome P-450 in cultured cells, [U-14C]fructose or [U-14C]-glucose were added to the incubation medium, and their uptake and utilization were compared. While the uptake kinetics of the two hexoses were similar, the rate of phosphorylation of fructose was more than 10-fold that of glucose. Similarly, the appearance of fructose carbon in metabolic pools, as well as its conversion to CO2 and cellular glycerolipid, was increased. The latter finding suggested that fructose might alter cytochrome P-450 by stimulating glycerolipid synthesis, since the stability of the cytochrome is lipid-dependent. However, the changes in glycerolipid formation failed to parallel changes in the level of cytochrome P-450 in fructose-treated cells. Moreover, the relative distribution of 14C into specific lipids was similar for both hexoses, suggesting that an increased carbon flux in cells incubated with fructose did not directly impose a qualitative change in cellular lipid synthesis. We conclude that the fructose-mediated alteration of cytochrome P-450 in cultured rat hepatocytes reflects a process other than increased incorporation of fructose carbon into metabolic pools. 相似文献
5.
Previous studies have demonstrated that the NADH‐dependent cytochrome b5 electron transfer pathway can support some cytochrome P450 monooxygenases in vitro in the absence of their normal redox partner, NADPH‐cytochrome P450 oxidoreductase. However, the ability of this pathway to support P450 activity in whole cells and in vivo remains unresolved. To address this question, liver microsomes and hepatocytes were prepared from hepatic cytochrome P450 oxidoreductase‐null mice and chlorzoxazone hydroxylation, a reaction catalyzed primarily by cytochrome P450 2E1, was evaluated. As expected, NADPH‐supported chlorzoxazone hydroxylation was absent in liver microsomes from oxidoreductase‐null mice, whereas NADH‐supported activity was about twofold higher than that found in normal (wild‐type) liver microsomes. This greater activity in oxidoreductase‐null microsomes could be attributed to the fourfold higher level of CYP2E1 and 1.4‐fold higher level of cytochrome b5. Chlorzoxazone hydroxylation in hepatocytes from oxidoreductase‐null mice was about 5% of that in hepatocytes from wild‐type mice and matched the results obtained with wild‐type microsomes, where activity obtained with NADH was about 5% of that obtained when both NADH and NADPH were included in the reaction mixture. These results argue that the cytochrome b5 electron transfer pathway can support a low but measurable level of CYP2E1 activity under physiological conditions. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:357–363, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20299 相似文献
6.
Christopher R. Barnett Peter R. Flatt Costas Ioannides 《Journal of biochemical and molecular toxicology》1994,9(2):63-69
The effects of long-term insulin-dependent diabetes on the enzymatic activities of hepatic cytochrome P450 isozymes were determined in rats rendered diabetic by the administration of streptozotocin and killed 4, 8, and 12 weeks following treatment. The O-dealkylations of ethoxy-resorufin and pentoxyresorufin were elevated in the diabetic animals throughout the study, the extent of increase being similar at all three time points. p-Nitrophenol hydroxylase activity was induced in the diabetic animals 4 weeks following treatment with streptozotocin, but the extent of increase became less pronounced with the progress of the disease. A modest increase in ethylmorphine N-demethylase activity was also observed but only in the diabetic animals killed 4 weeks after the induction of diabetes. Finally, lauric acid hydroxylase activity was elevated in the diabetic animals 4 weeks following streptozotocin administration but then declined rapidly with the duration of the disease. It is concluded that the duration of diabetes modulates the hepatic cytochrome P450 profile, with the effect being isoenzyme specific. Mechanisms that may account for these changes are discussed. 相似文献
7.
8.
M. Teresa Donato José V. Castell M. José Gómez-Lechón 《In vitro cellular & developmental biology. Animal》1994,30(12):825-832
Summary The stability and inducibility of several P450 activities (namely, P450 1A1, 2A1, 2B1/2, 2C11, and 3A1) were studied in rat
hepatocytes co-cultured with the MS epithelial cell line derived from monkey kidney. The results revealed that these monooxygenase
activities were systematically higher in co-cultures than in conventional hepatocyte cultures. Pure cultures showed a rapid
loss of monooxygenase activities, which were undetectable after 5 days. In contrast, all isozymes assayed were measurable
in co-cultured hepatocytes on Day 7 (about 15 to 40% of the initial activities of Day 0 of culture). The beneficial effects
of the co-culture system seemed to be more selective for certain cytochrome P450 isoforms, with P450 1A1 and 3A1 being the
best stabilized isozymes after 1 wk. A clear response to inducers was observed in co-cultures, each isozyme showing a different
induction pattern. 3-Methylcholanthrene produced a strong increase in P450 1A1 (7-ethoxyresorufin O-deethylase) activity and
a low increase in P450 2A1 (testosterone 7α-hydroxylation), whereas no changes were observed in the other activities. Phenobarbital treatment resulted in increases in
P450 2B1/2 (7-pentoxyresorufin O-depentylase and 16α- and 16β-hydroxylation of testosterone) activities, while minor effects were observed on P450 3A1 (testosterone 6β-hydroxylation) activity. Dexamethasone markedly increased P450 3A1 (testosterone 6β- and 15β-hydroxylation) activity and, to a lesser extent, P450 2B1/2 (16β-hydroxylation). 相似文献
9.
Brian Gemzik Denise Greenway Cheryl Nevins Andrew Parkinson 《Journal of biochemical and molecular toxicology》1992,7(1):43-52
We recently reported that antibody against purified P450 3A1 (P450p) recognizes two electrophoretically distinct proteins (50 and 51 kDa) in liver microsomes from male and female rats, as determined by Western immunoblotting. Depending on the source of the liver microsomes, the 51-kDa protein corresponded to 3A1 and/or 3A2 which could not be resolved by sodium dodecyl sulfate (SDS)polyacrylamide gel electrophoresis. The other protein (50 kDa) appears to be another member of the P450 IIIA gene family. Both proteins were markedly intensified in liver microsomes from male or female rats treated with pregnenolone-16α-carbonitrile, dexamethasone, troleandomycin, or chlordane. In contrast, treatment of male or female rats with phenobarbital intensified only the 51-kDa protein. Treatment of male rats with Aroclor 1254 induced the 51-kDa protein, but suppressed the 50-kDa form. In addition to their changes in response to inducers, the 50- and 51-kDa proteins also differed in their developmental expression. For example, the 50-kDa protein was not expressed until weaning (3 weeks), whereas the 51-kDa protein was expressed even in 1-week-old rats. At puberty (between weeks 5 and 6), the levels of the 50-kDa and 51-kDa proteins markedly declined in female but not in male rats, which introduced a large sex difference (male > female) in the levels of both proteins. Changes in the level of the 51-kDa protein were paralleled by changes in the rate of testosterone 2β, 6β-, and 15β-hydroxylation. In male rats, the marked increase in the levels of the 50-kDa protein between weeks 2 and 3 coincided with a three- to four fold increase in the rate of testosterone 2β-, 6β-, and 15β-hydroxylation, which suggests that the 50-kDa protein catalyzes the same pathways of testosterone oxidation as the 51-kDa protein. However, this developmental increase in testosterone oxidation may have resulted from an activation of the 51-kDa 3A protein. These results indicate that the two electrophoretically distinct proteins recognized by antibody against P450 3A1 are regulated in a similar but not identical manner, and suggest that the 51-kDa 3A protein is the major microsomal enzyme responsible for catalyzing the 2β-, 6β-, and 15β-hydroxylation of testosterone. 相似文献
10.
P. Kremers L. Roelandt N. Stouvenakers G. Goffinet J. P. Thome 《Cell biology and toxicology》1994,10(2):117-125
Anin vitro experimental model, fetal rat hepatocytes in culture, was metabolically characterized. Several enzymatic activities were expressed in these hepatocytes, namely, testosterone hydroxylations. Hepatocytes cultured up to 3 weeks in the presence of dexamethasone and phenobarbital still expressed some drug-metabolizing enzyme activities (e.g., ECOD). The enzymatic activities were measured both directly on monolayers during culture and on the corresponding harvested and homogenized cells. The results correlate perfectly with each other. The on cell procedure allows us to repeat the assay or to measure several activities on the same cells at different time intervals. The presence of dexamethasone in the culture medium allows the expression and the induction of several cytochrome P450 isoenzymes, namely, those hydroxylating testosterone. This makes the model particularly attractive for induction experiments as well as for metabolic or toxicological studies needing longer treatments.Abbreviations BA
benzanthracene
- CLO
clofibric acid
- DEXA
dexamethasone
- DMSO
dimethylsulfoxide
- ECOD
ethoxycoumarin-O-dethylase
- PB
phenobarbital
- RER
rough endoplasmic reticulum 相似文献
11.
Orellana M Varela N Guajardo V Araya J Rodrigo R 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2002,131(2):161-166
Cytochrome P450-dependent oxidation of lauric acid, p-nitrophenol and ethanol by liver microsomal fractions were studied in control rats and in animals given either ethanol, red wine, or alcohol-free red wine for 10 weeks. Ethanol increased the total cytochrome P450 and the isoenzyme 2E1 content, as well as the p-nitrophenol hydroxylation and ethanol oxidation. These effects of ethanol treatment were attenuated by red wine administration. Red wine increased the total antioxidant capacity of plasma, whereas the alcohol-free red wine decreased the cytochrome P450 content and decreased the oxidation of lauric acid, p-nitrophenol and ethanol to values lower than control. It is concluded that red wine administration attenuates the ethanol-induced enhancement in liver microsomal parameters dependent on cytochrome P450 2E1 activity, an affect that seems to be accomplished by the non-alcoholic constituents of red wine known to have antioxidant properties. 相似文献
12.
An immobilized system was developed to detect interactions of human cytochromes P450 (P450) with the accessory proteins NADPH-P450 reductase and cytochrome b(5) (b(5)) using an enzyme-linked affinity approach. Purified enzymes were first bound to wells of a polystyrene plate, and biotinylated partner enzymes were added and bound. A streptavidin-peroxidase complex was added, and protein-protein binding was monitored by measuring peroxidase activity of the bound biotinylated proteins. In a model study, we examined protein-protein interactions of Pseudomonas putida putidaredoxin (Pdx) and putidaredoxin reductase (PdR). A linear relationship (r(2)=0.96) was observed for binding of PdR-biotin to immobilized Pdx compared with binding of Pdx-biotin to immobilized PdR (the estimated K(d) value for the Pdx.PdR complex was 0.054muM). Human P450 2A6 interacted strongly with NADPH-P450 reductase; the K(d) values (with the reductase) ranged between 0.005 and 0.1muM for P450s 2C19, 2D6, and 3A4. Relatively weak interaction was found between holo-b(5) or apo-b(5) (devoid of heme) with NADPH-P450 reductase. Among the rat, rabbit, and human P450 1A2 enzymes, the rat enzyme showed the tightest interaction with b(5), although no increases in 7-ethoxyresorufin O-deethylation activities were observed with any of the P450 1A2 enzymes. Human P450s 2A6, 2D6, 2E1, and 3A4 interacted well with b(5), with P450 3A4 yielding the lowest K(d) values followed by P450s 2A6 and 2D6. No appreciable increases in interaction between human P450s with b(5) or NADPH-P450 reductase were observed when typical substrates for the P450s were included. We also found that NADPH-P450 reductase did not cause changes in the P450.substrate K(d) values estimated from substrate-induced UV-visible spectral changes with rabbit P450 1A2 or human P450 2A6, 2D6, or 3A4. Collectively, the results show direct and tight interactions between P450 enzymes and the accessory proteins NADPH-P450 reductase and b(5), with different affinities, and that ligand binding to mammalian P450s did not lead to increased interaction between P450s and the reductase. 相似文献
13.
14.
Porter TD 《Journal of biochemical and molecular toxicology》2002,16(6):311-316
Cytochrome b(5), a 17-kDa hemeprotein associated primarily with the endoplasmic reticulum of eukaryotic cells, has long been known to augment some cytochrome P450 monooxygenase reactions, but the mechanism of stimulation has remained controversial. Studies in recent years have clarified this issue by delineating three pathways by which cytochrome b(5) augments P450 reactions: direct electron transfer of both required electrons from NADH-cytochrome b(5) reductase to P450, in a pathway separate and independent of NADPH-cytochrome P450 reductase; transfer of the second electron to oxyferrous P450 from either cytochrome b(5) reductase or cytochrome P450 reductase; and allosteric stimulation of P450 without electron transfer. Evidence now indicates that each of these pathways is likely to operate in vivo. 相似文献
15.
M. Reza Anari Roland W. Burton Sashi Gopaul Frank S. Abbott 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2000,742(2):867
A sensitive negative ion chemical ionization (NCI) gas chromatographic–mass spectrometric (GC–MS) method was modified for the quantitation of valproic acid (VPA) metabolites generated from in vitro cDNA-expressed human microsomal cytochrome P450 incubations. The use of the inherent soft ionization nature of electron-capture NCI to achieve high sensitivity enabled us to conduct kinetic studies using small amounts of recombinant human P450 enzymes. The assay is based on the selective ion monitoring of the intense [M−181] fragments of pentafluorobenzyl (PFB) esters in the NCI mode, and has the following features: (1) a micro-extraction procedure to isolate VPA metabolites from small incubation volumes (100 μl); (2) a second step derivatization with tert.-butyldimethylsilylating reagents to enhance sensitivity for hydroxylated metabolites; (3) a short run-time (<30 min) while maintaining full separation of 15 VPA metabolites by using a narrow-bore non-polar DB-1 column plus a new temperature gradient; and (4) good reproducibility and accuracy (intra- and inter-assay RSDs <15%, bias <15%) by using seven deuterated derivatives of analytes as internal standards. The derivatives of mono- and diunsaturated metabolites, like the parent drug, produced abundant [M−181]− ions while the hydroxylated metabolites gave an ion at m/z of 273, corresponding to the [M−181]− ion of the tert.-butyldimethylsilyl ethers. In conclusion, the GC–NCI-MS analysis of valproate metabolites provided us with a high resolution and sensitivity necessary to conduct metabolic and kinetic studies of valproic acid in small volume samples typical of the in vitro cDNA-expressed micro-incubation enzymatic systems. 相似文献
16.
细胞色素P450 (cytochrome P450, CYP450)超基因家族是由一些数量多而功能复杂的血红蛋白酶基因所组成,该代谢酶系作为一种几乎地球上所有需氧生物都存在的重要生存策略,可以调控多种内源物质及外源化合物的代谢,参与了众多重要的生命过程,代谢解毒作用是该酶系重要功能之一。细胞色素P450的代谢解毒作用受药物影响,机体通过改变基因表达量,实现增强代谢解毒,加快机体对于有害物质的代谢,从而使得机体对有害环境产生一定的适应性,进而使得机体产生耐药性或抗药性。本研究说明果蝇细胞色素P450介导的杀虫剂类药物代谢机制及代谢抗性的特点等方面的研究,对明确果蝇的抗药性机制研究具有参考意义。 相似文献
17.
18.
细胞色素P450酶系循环催化的新途径 总被引:1,自引:0,他引:1
细胞色素P45 0酶系的循环催化反应需要电子供体NADPH或NADH等辅助因子系统 ,因此它在实际应用中受到制约。用电极电解或锌粉作电子供体取代NADPH辅助因子可以获得与NADPH相似的底物转换率。此外 ,还讨论了P45 0的“定向进化”产生的突变体在无NADPH等辅助因子存在下 ,通过“过氧化物途径”使底物羟基化。 相似文献
19.
S-Adenosyl-l-methionine (SAM) is the principal biological methyl donor. Methionine adenosyltransferase (MAT) catalyzes the only reaction that generates SAM. Hepatocytes were treated with cycloleucine, an inhibitor of MAT, to evaluate whether hepatocytes enriched in cytochrome P450 2E1 (CYP2E1) were more sensitive to a decline in SAM. Cycloleucine decreased SAM and glutathione (GSH) levels and induced cytotoxicity in hepatocytes from pyrazole-treated rats (with an increased content of CYP2E1) to a greater extent as compared to hepatocytes from saline-treated rats. Apoptosis caused by cycloleucine in pyrazole hepatocytes appeared earlier and was more pronounced than control hepatocytes and could be prevented by incubation with SAM, glutathione reduced ethyl ester and antioxidants. The cytotoxicity was prevented by treating rats with chlormethiazole, a specific inhibitor of CYP2E1. Cycloleucine induced greater production of reactive oxygen species (ROS) in pyrazole hepatocytes than in control hepatocytes, and treatment with SAM, Trolox, and chlormethiazole lowered ROS formation. In conclusion, lowering of hepatic SAM levels produced greater toxicity and apoptosis in hepatocytes enriched in CYP2E1. This is due to elevated ROS production by CYP2E1 coupled to lower levels of hepatoprotective SAM and GSH. We speculate that such interactions e.g. induction of CYP2E1, decline in SAM and GSH may contribute to alcohol liver toxicity. 相似文献
20.
Marlène L.N. Dubuisson Bertrand de Wergifosse Pierre Kremers Jacqueline Marchand-Brynaert André Trouet Jean-François Rees 《Free radical research》2013,47(3):285-296
Coelenterazine (3,7-dihydro-2-(p-hydroxybenzyl)-6-(p-hydroxyphenyl)-8-benzylimidazolo[1,2-a]pyrazin-3-one) is a substrate for the bioluminescence reaction in many marine animals. Recent work showed that CLZn, its synthetic analogue CLZm, and their common oxidation product coelenteramine (CLM) have strong antioxidative properties in acellular lipid peroxidation systems as well as in rat hepatocytes subjected to tert-butyl hydroperoxide (t-BHP). Here, we analyzed the ability of CLZm and several imidazolopyrazinone (IMPZs) analogues to protect primary cultures of rat hepatocytes against a nitrofurantoin (NF)-induced oxidative stress. Comparison of protection capabilities with reference antioxidants yielded the following ranking: CLZm >>> BHT > Trolox C® > probucol > α-tocopherol. The comparison of CLZm with analogues lacking the phenol group in R1 revealed no differences although the presence of this phenol conferred superior protection against t-BHP. CLM, as well as its methoxylated analogue mCLM which lacks chain-breaking properties, were equally potent in preventing cellular damage caused by NF. mCLM and α-naphthoflavone, an inhibitor of cytochrome P450 (CYP450) IAI, similarly protected cells against NF-induced mortality and also equally inhibited EROD activity in methylcholanthrene-induced hepatocytes. The inhibition of EROD by CLZm and CLM was less pronounced. We suggest that the extent of protection conferred by IMPZs against NF-toxicity reflects both the occurrence of antioxidative properties detoxifying ROS produced within cells and inhibitory actions on CYP450 isoforms involved in the bioreduction of NF. 相似文献