首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
It has been demonstrated that during winter hibernation (body temperature 2-4 degrees C), the heart rate in ground squirrels is equal to 100 10-12 beats/min. At the initial stage of the arousal, while body temperature remains still low (9-10 degrees C), the heart rate may increase up to 160-200 beats/min. At this stage, practically all electrophysiological parameters of the heart correspond to those in active animals. These results may indicate the ability of "cold" heart in arousing ground squirrels to operate as a normothermic organ and reveal certain role of the heart in body warming. Significant increase of the intensity of protein synthesis in cardiomyocytes together with periodic changes in protein composition of their membranes were found during arousal which may account for regulation of the level of metabolism in cells and for adaptation of the latter to different temperatures.  相似文献   

2.
The functional (synthetic) activity of blood lymphocytes and bone marrow haemopoietic cells in ground squirrels during the annual cycle as well as in hibernating and awaken animals in winter have been studied by fluorescent microspectrometry. The effect of ionizing radiation on animals in different functional states of the hibernation-arousal bout was investigated too. It was shown that the synthetic activity (parameter alpha) in blood lymphocytes was minimal in hibernating state in winter and maximal in active euthermic spring animals, then slightly decreased in June and more considerably decreased in the prehibernating autumn period. In awake animals in winter, the values of parameter alpha reached the same values as in summer. The changes of parameter alpha in bone marrow haemopoietic cells were essentially the same: the minimal values were observed in the prehibernation autumn period and in awake animals in winter the alpha values were slightly higher than in active euthermic animals in summer. The maximal synthetic activity in bone marrow haemopoietic cells in active euthermic spring animals is due mainly to cells in G1-G2 phases of the cell cycle. The decrease of the synthetic activity in summer is a result of the cell transition from G2 to mitosis and transition of a part of cells to G0 When investigating the hibernation-arousal bout in ground squirrels in winter, during arousal, we found two stages considerably differing in both the values of parameter alpha in bone marrow haemopoietic cells and the number of blood cells. The synthetic activity and the total number of blood and bone marrow cells in ground squirrels irradiated in the state of deep hibernation did not differ significantly from the state of non-irradiated hibernating animals. The negative effect of radiation appeared upon the arousal of these animals but it was expressed to a lesser degree in comparison with the animals irradiated in the active state. It was found that the acute irradiation of animals during arousal from hibernation in the second stage caused the most pronounced functional inactivation and cell death. The physiological state of ground squirrels subjected to ionizing irradiation at different phases of the hibernation-arousal bout plays a determining role in the changes of the qualitative and quantitative characteristics of blood system cells. Thus, the hypometabolic state of ground squirrels in hibernation is a factor of protection from the action of ionizing radiation on the organism and the immune system.  相似文献   

3.
Synaptosomes were isolated from Yakutian ground squirrel brain cortex of summer and winter hibernating animals in active and torpor states. Synaptosomal membrane cholesterol and phospholipids were determined. The seasonal changes of synaptosomal lipid composition were found. Synaptosomes isolated from hibernating Yakutian ground squirrel brain cortex maintained the cholesterol sphingomyelin, phosphatidylethanolamine, lysophosphatidylcholine, cardiolipin, phosphatidylinositol and phosphatidylserine contents 2.5, 1.8, 2.6, 1.8, 1.6, and 1.3 times less, respectively, and the content of phosphatidylcholine twice as much as the one in summer season. The synaptosomal membrane lipid composition of summer animals was shown to be markedly different from that as hibernating ground squirrels and non-hibernating rodents. It is believed that phenotypic changes of synaptosomal membrane lipid composition in summer Yakutian ground squirrel are the important preparation step for hibernation. The phosphatidylethanolamine content was increased in torpor state compared with winter-active state and the molar ratio of cholesterol/phospholipids in synaptosomal membrane of winter torpor ground squirrels was lower than that in active winter and summer animals. These events were supposed to lead to increase of the synaptosomal membrane fluidity during torpor. Synaptosomes isolated from torpor animals have larger sizes and contain a greater number of synaptic vesicles on the synaptosomal profile area. The synaptosomal membrane lipid composition and synaptosome morphology were involved in phenotypic adaptation of Yakutian ground squirrel to hibernation.  相似文献   

4.
Golden-mantled ground squirrels (Spermophilus lateralis) undergo seasonal hibernation during which core body temperature (T(b)) values are maintained 1-2 degrees C above ambient temperature. Hibernation is not continuous. Squirrels arouse at approximately 7-day intervals, during which T(b) increases to 37 degrees C for approximately 16 h; thereafter, they return to hibernation and sustain low T(b)s until the next arousal. Over the course of the hibernation season, arousals consume 60-80% of a squirrel's winter energy budget, but their functional significance is unknown and disputed. Host-defense mechanisms appear to be downregulated during the hibernation season and preclude normal immune responses. These experiments assessed immune function during hibernation and subsequent periodic arousals. The acute-phase response to bacterial lipopolysaccharide (LPS) was arrested during hibernation and fully restored on arousal to normothermia. LPS injection (ip) resulted in a 1-1.5 degrees C fever in normothermic animals that was sustained for > 8 h. LPS was without effect in hibernating squirrels, neither inducing fever nor provoking arousal, but a fever did develop several days later, when squirrels next aroused from hibernation; the duration of this arousal was increased sixfold above baseline values. Intracerebroventricular infusions of prostaglandin E(2) provoked arousal from hibernation and induced fever, suggesting that neural signaling pathways that mediate febrile responses are functional during hibernation. Periodic arousals may activate a dormant immune system, which can then combat pathogens that may have been introduced immediately before or during hibernation.  相似文献   

5.
The data indicating the absence of seasonal changes in the isoform composition and functional properties of actin and thin filament associated proteins from skeletal muscles of hibernating ground squirrels were obtained. Taking into account the data obtained earlier by the authors on significant qualitative and quantitative changes in isoform composition and functional properties of the other contractile protein, myosin, it is concluded that the suppression of contractile capacity of the executive apparatus of skeletal muscles of animals upon hibernation and its repair upon arousal are determined by the above adaptive changes in myosin.  相似文献   

6.
Respiration of liver mitochondria of ground squirrels changes with physiological state. The inhibition of respiration at the level of dehydrogenases occurs during hibernation which is spontaneously removed during arousal. The main mechanism causing a decrease in respiration during hibernation seems to be the inhibition of succinate oxidation, induced by oxaloacetic acid. This is evidenced by the removal of the inhibition by glutamic and isocitric acids. A close correlation between the changes of K+ transport in mitochondria and of the physiological state of hibernator is observed. During hibernation the K+ transport rate decreases 3 times and during arousal it increases 1.5-fold in comparison with the active animals. The K+ content in mitochondria of hibernating and active ground squirrels is the same, whereas during arousal it increases 2-fold.  相似文献   

7.
G F Zhegunov 《Tsitologiia》1988,30(2):157-162
A significant increase in protein synthesis correlating with ultrastructural dynamics of cardiomyocyte organelle convertions has been demonstrated in cardiomyocytes of ground squirrel during arousal from hibernation. In hibernating ground squirrels, the ultrastructure of protein-synthesizing organelles and of the cardiomyocyte nucleus points out to the readiness of cells to active synthesis of proteins. In the perinuclear area of cardiomyocytes abundant ribosomes, elements of endoplasmic reticulum and Golgi complex, mitochondria and high-energy substrates--glycogen and lipid inclusions--are seen. The cardiomyocyte nuclei are large, with highly convoluted borders and abundant pores, their nucleolar structure is granular, the chromatin is mainly diffuse. The potency of cardiomyocyte protein-synthesizing system of hibernating ground squirrels is realized every time at periodical arousals during hibernation. The role of cyclic changes of protein synthesis rate in adaptation of cells of hibernating mammals to functioning at various temperatures is discussed.  相似文献   

8.
Hibernating animals represent a suitable model for investigating the structural effects of drastic changes in cell activity under physiological conditions. In this study we investigated by means of electron microscopy and morphometrical analysis the fine structural counterpart of functional rest in hepatocytes of the hibernating dormouse, Muscardinus avellanarius, in comparison with arousing and euthermic dormice. Our observations demonstrate that during hibernation several structural constituents of the hepatocyte undergo modifications. In particular, during deep hibernation, the total cell and cytoplasm area significantly reduced, as well as the total and percent glycogen and residual body area, and the Golgi apparatus almost disappeared. Upon arousal, the amount of glycogen was minimal, whereas total cell and cytoplasm area significantly increased towards the euthermic value as well as total and percent residual body area. In comparison with the euthermic condition, the total and percent cell lipid area significantly increased in early hibernation, reduced in deep hibernation and almost disappeared during arousal. Taken together, our findings give quantitative ultrastructural support to the marked reduction found in hepatocyte functional activities during hibernation. Such a reduced activity involves profound rearrangement of the euthermic cell structure, which is rapidly resumed upon arousal.  相似文献   

9.
Dieter Volkmann 《Planta》1981,151(2):180-188
The peripheral secretion tissue of the root cap of Lepidium sativum L. was investigated by electronmicroscopy and freeze-fracturing in order to study structural changes of membranes involved in the secretion process of polysaccharide slime. Exocytosis of slime-transporting vesicles occurs chiefly in the distal region of the anticlinal cell walls. The protoplasmic fracture face (PF) of the plasmalemma of this region is characterized by a high number of homogenously distributed intramembranous particles (IMPs) interrupted by areas nearly free of IMPs. Near such areas slime-transporting vesicles are found to be underlying the plasma membrane. It can be concluded that areas poor in particles are prospective sites for membrane fusion. During the formation of slime-transporting vesicles, the number of IMPs undergoes a striking change in the PF of dictyosome membranes and their derivatives. It is high in dictyosome cisternae and remarkably lower in the budding region at the periphery of the cisternae. Slime-transporting vesicles are as poor in IMPs as the areas of the plasmalemma. Microvesicles rich in IMPs are observed in the surroundings of dictyosomes. The results indicate that in the plasmalemma and in membranes of the Golgi apparatus special classes of proteins — recognizable as IMPs — are displaced laterally into adjacent membrane regions. Since the exoplasmic fracture face (EF) of these membranes is principally poor in particles, it can be concluded that membrane fusion occurs in areas characterized by a high quantity of lipid molecules. It is obvious that the Golgi apparatus regulates the molecular composition of the plasma membrane by selection of specific membrane components. The drastic membrane transformation during the formation of slime-transporting vesicles in the Golgi apparatus causes the enrichment of dictyosome membranes by IMPs, whereas the plasma membrane probably is enriched by lipids. The structural differentiations in both the plasma membrane and in Golgi membranes are discussed in relation to membrane transformation, membrane flow, membrane fusion, and recycling of membrane constituents.Abbreviations PF protoplasmic fracture face - EF exoplasmic fracture face - IMP intramembranous particle  相似文献   

10.
Hibernating animals transiently reduce renal function during their hypothermic periods (torpor), while completely restoring it during their periodical rewarming to euthermia (arousal). Moreover, structural integrity of the kidney is preserved throughout the hibernation. Nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) is a crucial vasodilatory mediator and a protective factor in the kidney. We investigated renal NOS expression in hibernating European ground squirrels after 1 day and 7 days of torpor (torpor short, TS, and torpor long, TL, respectively), at 1.5 and at 10 h of rewarming (arousal short, AS, and arousal long, AL, respectively), and in continuously euthermic animals after hibernation (EU). For that purpose, we performed NOS activity assay, immunohistochemistry and real-time PCR analysis. Immunohistochemistry revealed a decreased glomerular eNOS expression in hibernating animals (TS, TL, AS, and AL) compared to non-hibernating animals (EU, p < 0.05), whereas no difference was found in the expression of interstitial eNOS. Expression of iNOS and nNOS did not differ between all groups. The reduced glomerular eNOS was associated with a significantly lower eNOS mRNA levels and NOS activity of whole kidney during torpor and arousal (TS, TL, AS, and AL) compared to EU. In all methods used, torpid and aroused squirrels did not differ. These results demonstrate differential regulation of eNOS in glomeruli and interstitium of hibernating animals, which is unaffected during arousal. The differential regulation of eNOS may serve to reduce ultrafiltration without jeopardizing tubular structures during hibernation.  相似文献   

11.
The Na,K-ATPase activity in microsomal fraction isolated from kidneys of winter hibernating ground squirrels was found to be 1.8–2.0-fold lower than that in active animals in summer. This is partially connected with a decrease in Na,K-ATPase protein content in these preparations (by 25%). Using antibodies to different isoforms of Na,K-ATPase α-subunit and analysis of enzyme inhibition by ouabain, it was found that the decrease in Na,K-ATPase activity during hibernation is not connected with change in isoenzyme composition. Seasonal changes of Na,K-ATPase a-subunit phosphory- lation level by endogenous protein kinases were not found. Proteins which could be potential regulators of Na,K-ATPase activity were not found among phosphorylated proteins of the microsomes. Analysis of the composition and properties of the lipid phase of microsomes showed that the total level of unsaturation of fatty acids and the lipid/protein ratio are not changed significantly during hibernation, whereas the cholesterol content in preparations from kidneys of hibernating ground squirrels is approximately twice higher than that in preparations from kidneys of active animals. However, using spin and fluorescent probes it was shown that this difference in cholesterol content does not affect the integral membrane micro-viscosity of microsomes. Using the cross-linking agent cupric phenanthroline, it was shown that Na,K-ATPase in mem- branes of microsomes from kidneys of hibernating ground squirrels is present in more aggregated state in comparison with membranes of microsomes from kidneys of active animals. We suggest that the decrease in Na,K-ATPase activity in kidneys of ground squirrels during hibernation is mainly connected with the aggregation of proteins in plasma membrane.  相似文献   

12.
13.
Summary Chronological changes in renal glomerular morphology and plasma renin activity were investigated during active and hibernating periods in the golden-mantled ground squirrel Spermophilus lateralis. The objective of this study was to determine whether the glomerular endothelium, visceral epithelium (podocytes), basement membrane, mesangial cells, proximal convoluted tubule cells and plasma renin activity exhibit measurable sequential differences between as well as within active and hibernating states at various time points. Limitations in the size of the experimental population prevented an evaluation of changes in these parameters during other important periods such as periodic arousal between hibernation bouts. In this study, glomerular endothelial pore number and epithelial filtration slit number significantly decreased by early hibernation when compared to those during summer activity, and then they increased back toward summer levels by late hibernation. In contrast, podocytic pedicel width along the glomerular basement membrane increased from summer activity to early hibernation, before significantly decreasing again by late hibernation. Mesangial cell and proximal convoluted tubule cell activity appeared increased during hibernation as compared to summer activity, whereas the width of the glomerular basement membrane showed no significant alterations throughout. Plasma renin activity significantly increased during early hibernation and mid-hibernation when compared to summer levels but had decreased by late hibernation toward summer values. The glomerular and plasma renin activity changes observed in this study clearly illustrate the drastic structural and functional adjustments which hibernating species make during torpor and also correlate well with the reported decrease in renal perfusion pressure and urine formation during hibernation. The observed morphological changes during hibernation do not appear to be temperature-dependent, because significant alterations in most of the parameters studied occurred during this period despite the fact that cold-room temperatures were kept constant throughout. The chronological approach to this study and its morphometric evaluation represent a pilot attempt at accurately documenting these changes during two critical states in the hibernator's cycle and may eventually lead to the characterization of these changes during the entire circannual cycle.  相似文献   

14.
The capability of bats to have heart rates fewer than 10 beats/min during hibernation and greater than 700 beats/min during flight surprises biologists and cardiologists. Cardioacceleration of hibernating bats is considered to be a function of their intracardiac nervous system. In the present study we investigated the morphology of the heart innervation of ten M. daubentoni and four E. serotinus bats during their natural hibernation in order to determine which intracardiac structures may be involved in cardioacceleration during their short-term (in av. 15-30 min) arousal from hibernation. The primary conclusions were as follows: (1) The innervation pattern of bats differs from many mammals in that bats have: (a) a subepicardiac nerve plexus which is vastly developed and contains a large number of intrinsic ganglia on both atria and ventricles, and (b) very small diameter axons within the unmyelinated nerve fibres, from 0.15 to 0.7 microm. (2) During hibernation an intercellular space of the sinoatrial node of M. daubentoni bats was in part filled with a cottony substance which can presumably be considered to be a temporary barrier between the conductive cardiomyocytes and nerve fibres. (3) In the hibernating bats, the acetylcholine vesicles were aggregated in the synaptic bulbs away from the presynaptic membrane. Possibly, the aggregation of the acetylcholine vesicles is capable of modifying cholinergic influences on the heart activity of hibernating bats. (4) The dense cores of catecholamine synaptic vesicles within, adrenergic axon terminals were seldomly observed in hibernating bats. Therefore, catecholamines probably do not play a crucial role in the cardioacceleration of hibernating bats.  相似文献   

15.
In hibernation season during torpor bouts, the spleen weight and the hemoglobin level, as well as the total and extracted protein contents in the spleen of the ground squirrel Spermophilus undulatus are increased when animals enter torpor and reach maximum values when the body temperature drops below 25°C. All these parameters return to the characteristic values of the euthermic animals during arousal, before the body temperature increases to 20°C. There were no significant differences in the numbers of splenocytes between ground squirrels in interbout euthermia and torpor. The minimum number of splenocytes was observed in animals that entered torpor when the core body temperature was approximately 18°C. The activity of ornithine decarboxylase, a key enzyme in polyamine synthesis, which is correlated with the functional and proliferative status of lymphoid tissue, was the same for the euthermic and summer ground squirrels and decreased monotonically during torpor. Upon arousal of the animals when body temperature was below 29°C, no resumption of the spleen ornithine decarboxylase activity was observed.  相似文献   

16.
In experiments on the arctic ground squirrel C. parryi, studies have been made on seasonal changes in the weight of testes, follicular diameter in the ovaries and the content of sex and gonadotropic hormones in the peripheral blood. Testicular involution and arrest of follicular development were observed in prehibernation period. During hibernation, follicular growth and the increase in the weight of testes take place. The level of LH decreases during hibernation. In sleeping animals, its level is higher as compared to that in active animals during short periods of arousal. The increase in LH level takes place both in males and females in April. FSH can not be detected in males during the first half of hibernation, appearing in the peripheral blood only in March and April. In females, FSH was found in the blood in October, being absent from November to January; beginning from February, it may be found both in sleeping and active animals. Testosterone was found in hibernating males and females, its level significantly increased in March in males, being approximately constant in hibernating females. Estradiol secretion was noted in hibernating females, whereas progesterone was found in the blood only in May.  相似文献   

17.
1. The mitotic index was found to be greatly reduced in the intestinal crypt cells of ground squirrel during bout of hibernation. The percentage of mitosis rose abruptly at least 2 hr after arousal. 2. An increase in the number of G2 cells was found in the intestinal tract of ground squirrel during bouts of hibernation. 3. The conclusion can be drawn that the cells are progressing steadily through the cell cycle. The cells accumulate at G2 in hibernation. 4. It was assumed that the block in G2 prevents the cells from possible damage in mitosis under hypothermia accompanying hibernation and, therefore, it represents an adaptive reaction.  相似文献   

18.
The role of the pineal gland in modulating the rhythmic bouts of hibernation in the golden-mantled ground squirrel (S. lateralis) was explored by comparing pineal melatonin content in hibernating animals with that of euthermic animals at the same time of year. Significant decreases in pineal melatonin content were found in hibernating versus euthermic animals. In addition, significantly lower values for pineal melatonin were observed in hibernating animals that were sacrificed in the late bout period, just prior to expected spontaneous arousal, as compared to hibernating animals that were sacrificed on the first day of their respective bouts. A strong correlation was evident between pineal melatonin content and the duration of the individual hibernation bout. These data suggest that pineal melatonin may be important in determining the duration of individual bouts of hibernation in this species.  相似文献   

19.
20.
Haemoglobin leakage and permeability for 86Rb and K ions during storage at normal and hypothermic conditions have been investigated in the erythrocytes of the ground squirrel Citellus undulatus in hibernating, arousing and awake animals, as well as in rats. During hibernation, stabilization of the barrier properties and a decrease in passive ionic permeability of erythrocyte membrane were observed. Preservation of ionic homeostasis of the erythrocytes in hibernating animals is favoured by activation of Na(+)-pump. By means of radioautography of electrophoregrams of the blood serum proteins, appearance of a rapidly labeling low-molecular protein was noted at the beginning of the baut and its disappearance before arousal. The data obtained are discussed in relation to the role of the blood plasma components in modification of erythrocyte membranes in hibernating animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号