首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
These studies examined the effect of cocaine on the analgesia produced by systemically and centrally administered opioid agonists. Cocaine (50 mg/kg, s.c.) increased the analgesic potency of systemic, ICV and IT morphine; and the ICV and IT analgesic effects of the delta selective peptide, [D-Pen2,D-Pen5]enkephalin (DPDPE). Cocaine also increased the analgesic potency of the mu selective ligand [D-Ala2,NMePhe4,Gly-ol5]enkephalin (DAGO) administered ICV. However, cocaine did not alter the ED50 for IT DAGO. GC-MS studies indicated that brain cocaine concentration was approximately 3.0 micrograms/g wet weight 45 min following s.c. administration. These results suggest that cocaine-induced increases in opioid analgesic potency are mediated at brain mu and delta receptors and spinal mu receptors. Furthermore, there might be functional differences between spinal and supraspinal sites at which DAGO produces analgesia.  相似文献   

2.
A Dray  L Nunan  W Wire 《Life sciences》1985,36(14):1353-1358
beta-Funaltrexamine (beta-FNA) was tested in the spinal cord and supraspinally against inhibition of reflex bladder contractions produced in the anesthetized rat by the opioid-receptor selective agonists [D-Ala2, MePhe4, Gly (ol)5]enkephalin (DAGO, mu-agonist) and [D-Pen2, D-Pen5] enkephalin (DPDPE, delta-agonist). All agents were microinjected either intracerebroventricularly (i.c.v.) or intrathecally (i.t.). beta-FNA (1-8 micrograms) produced long-lasting antagonism of both DAGO and DPDPE. Complete recovery from its effects was only observed some 24-32 h later. Higher doses of beta-FNA (4 and 8 micrograms i.t.) produced short-lived agonistic activity though the selectivity of this was not determined. It was concluded that beta-FNA was a potent, long-lasting antagonist at central opioid receptors in vivo but was unselective for the mu and delta opioid receptor.  相似文献   

3.
Anticonvulsant effects of mu (DAGO) and delta (DPDPE) enkephalins in rats   总被引:1,自引:1,他引:1  
The effects of highly selective mu and delta opioid peptide agonists were determined in two rat models of experimentally-induced convulsions, the flurothyl threshold test and the maximal electroshock test. Intracerebroventricular injections of the mu selective enkephalin DAGO (0.3-2.2 nmol) resulted in a dose-related protection in both seizure models. Pretreatment with a low dose of naloxone (29 nmol) or the irreversible mu antagonist beta-FNA (21 nmol), but not the delta opioid antagonist ICI 154,129 (50 nmol), antagonized the anticonvulsant actions of DAGO. Intracerebroventricular injections of the delta selective enkephalin DPDPE (70-140 nmol) also resulted in seizure protection. These effects were selectively antagonized by the delta antagonist ICI 174,864 (2.8 nmol), but not by pretreatment with beta-FNA. Thus, using agonists and antagonists highly selective for mu and delta opioid receptors, anticonvulsant actions of enkephalin have been described against chemically- and electrically-induced convulsions in rats.  相似文献   

4.
Phorbol ester suppression of opioid analgesia in rats   总被引:3,自引:0,他引:3  
L J Zhang  X J Wang  J S Han 《Life sciences》1990,47(19):1775-1782
Protein kinase C (PKC) has been shown to be an important substrate in intracellular signal transduction. Very little is known concerning its possible role in mediating opiate-induced analgesia. In the present study, 12-O-tetradecanoylphorbol 13-acetate (TPA), a selective activator of PKC, was injected intrathecally (ith) to assess its influence on the analgesia induced by intrathecal injection of the mu opioid agonist PL017, the delta agonist DPDPE and the kappa agonist 66A-078. Radiant heat-induced tail flick latency (TFL) was taken as an index of nociception. TPA in the dose of 25-50 ng, which did not affect the baseline TFL, produced a marked suppression of opioid antinociception, with a higher potency in blocking mu and delta than the kappa effect. In addition, mu and delta agonists induced remarkable decreases in spinal cyclic AMP (cAMP) content whereas the kappa effect was weak. The results suggest a cross-talk between the PKC system and the signal transduction pathway subserving opioid analgesia.  相似文献   

5.
F Porreca  F C Tortella 《Life sciences》1987,41(23):2511-2516
Agonist, and antagonist effects of the proposed kappa opioid agonist, U50,488H (U50) have been studied in an experimental model of seizure activity (flurothyl-induced seizure threshold) (ST) and in the central modulation of spontaneous, volume-induced micturition contractions (bladder motility) (BM) in rats. Intracerebroventricular (i.c.v.) administration of U50 (at the doses tested) did not produce any agonist effect in either ST or in BM. In contrast, i.c.v. administration of [D-Ala2, NMPhe4, Gly-ol]enkephalin (DAGO) or etorphine, agonists with activity at mu opioid receptors, produced an elevation of ST and inhibition of BM. The elevation in ST produced by etorphine (0.004 nmol) was prevented by prior treatment with U50. In contrast, the approximately equieffective elevation in ST resulting from DAGO was not affected by U50 pretreatment. Similarly, pretreatment of rats with U50 antagonized the approximately equieffective BM effects of etorphine, but not those of DAGO. As both DAGO and etorphine are thought to exert their effects via the opiate mu receptor, the results may be consistent with the view that subpopulations of mu receptors exist within the central nervous system; these sites may be differentially associated with the kappa receptor.  相似文献   

6.
《Peptides》1987,8(4):625-632
The agonist, and opioid antagonist, effects of intracerebroventricularly (ICV) given D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr-NH2 (CTP), a cyclic analogue of somatostatin octapeptide, were evaluated using the micturition reflex of the anesthetized rat as the endpoint. Antagonist effects were evaluated against equieffective doses of selective mu [D-Ala2,NMPhe4,Gly-ol]enkephalin (DAGO) and delta [D-Pen2,D-Pen5] enkephalin (DPDPE) opioid agonists. At low ICV doses, CTP preferentially antagonized DPDPE rather than DAGO; increasing the dose of CTP further effectively antagonized both mu and delta agonists, while even higher doses showed an agonist effect alone which was not blocked by adrenergic, cholinergic or opioid antagonists. Selective opioid antagonist doses of CTP failed to block the inhibition of the micturition reflex produced by pentobarbital. Possible residual somatostatin like properties of CTP were tested by using somatostatin as a possible antagonist of equieffective doses of DPDPE and DAGO; somatostatin did not antagonize these agonists. Repeated exposure to CTP resulted in the development of acute tolerance to the agonist effect, and also prevented the inhibition of the reflex by high doses of somatostatin, with the converse experiment showing a similar pattern; thus, repeated somatostatin resulted in tolerance and subsequent cross-tolerance to the agonist effects of CTP. In animals tolerant to somatostatin, CTP nevertheless behaved as an opioid antagonist. The present results indicate that CTP possesses opioid antagonist properties in vivo which are pharmacological in nature but nevertheless retains residual somatostatin-like activity at higher doses.  相似文献   

7.
The present study investigated the effects of a striatal lesion induced by kainic acid on the striatal modulation of dopamine (DA) release by mu- and delta-opioid peptides. The effects of [D-Pen2,D-Pen5]-enkephalin (DPDPE) and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAGO), two highly selective delta- and mu-opioid agonists, respectively, were studied by microdialysis in anesthetized rats. In control animals both opioid peptides, administered locally, significantly increased extracellular DA levels. The effects of DPDPE were also observed in animals whose striatum had been previously lesioned with kainic acid. In contrast to the effects of the delta agonist, the significant increase induced by DAGO was no longer observed in lesioned animals. These results suggest that delta-opioid receptors modulating the striatal DA release, in contrast to mu receptors, are not located on neurons that may be lesioned by kainic acid.  相似文献   

8.
Superfusion of slices from the dorsal half of the lumbar enlargement of rat spinal cord with Krebs-Henseleit medium supplemented with 30 microM bacitracin allowed the collection of substance P-like immunoreactive material (SPLI), which was released at a rate of approximately 10 pg/4 min. Tissue depolarization by an excess of K+ (30-60 mM) or veratridine (50 microM) induced a marked increase in SPLI outflow, provided that Ca2+ was present in the superfusing fluid. K+- or veratridine-induced SPLI overflow could be modulated in opposite directions by mu and delta opioid receptor agonists. Thus, the two preferential mu agonists Tyr-D-Ala-Gly-MePhe-Gly-ol (DAGO; 10 microM) and Tyr-D-Ala-Gly-MePhe-Met(O)5-OH (FK-33824; 0.1 microM) enhanced SPLI overflow from depolarized tissues, whereas the selective delta agonists Tyr-D-Thr-Gly-Phe-Leu-Thr (deltakephalin; 3 microM) and [2-D-penicillamine, 5-D-penicillamine]enkephalin (50 microM) reduced it. The effect of DAGO was antagonized by a low concentration (1 microM) of naloxone but not by the selective delta antagonist ICI-154129 (50 microM). In contrast, the latter drug prevented the inhibitory influence of delta agonists on K+-induced SPLI release. Complementary experiments with morphine (10 microM) and [2-D-alanine, 5-D-leucine]enkephalinamide (3 microM), in combination with 1 microM naloxone or 50 microM ICI-154129 for the selective blockade of mu or delta receptors, respectively, confirmed that the stimulation of mu receptors increased, whereas the stimulation of delta receptors reduced, SPLI overflow. The results suggest that, at the spinal level, and antinociceptive action of delta but not mu agonists might involve a presynaptic inhibition of substance P-containing primary afferent fibers.  相似文献   

9.
It is known that under some conditions the administration of opioid agonists will stimulate food intake. However, the lack of receptor selectivity of some of the agonists which produce this effect leaves open the question of which receptor types are actually involved. In the experiments presented here, rats were given intracerebroventricular injections of Dynorphin 1-17 (DYN), [D-ala2MePhe4,-Gly-ol5]enkephalin (DAGO), and [D-ser2, leu5]enkephalin-thr6 (DSLET); these peptides are thought to be selective agonists at kappa, mu and delta opioid receptors, respectively. All three peptides stimulated food intake in non-deprived rats at doses in the 3-10 nmol range; water intake was also increased in some cases. Generally, DYN stimulated feeding at a lower dose than DAGO or DSLET and the magnitude of the effect tended to be greater. On the other hand, DAGO more consistently increased water intake. In some cases, DYN also caused episodes of "barrel-rolling" and postural abnormalities, whereas DAGO had sedative and/or cataleptic effects. These results are interpreted as an involvement of more than one opioid receptor types in the regulation of appetite, possibly with separate opioid systems contributing to food and water intake.  相似文献   

10.
Differences in binding properties of mu and delta opioid receptors were investigated using DAGO (Tyr-D-Ala-Gly-MePhe-Gly-ol) and DTLET (Tyr-D-Thr-Gly-Phe-Leu-Thr), which occur, respectively, as the most selective mu and delta radioligands available. At high concentration, each agonist is able to interact with its nonspecific sites. Competition experiments indicated that a two-site competitive model was adequate to explain the interactions of DAGO and DTLET with [3H]DTLET and [3H]DAGO binding sites, respectively. The weak cross-reactivity (congruent to 10%) of DTLET for mu sites was taken into account in these experiments. On the other hand, DAGO and DTLET exhibit differential binding kinetics. Thus, at 35 degrees C, the lifetime of DTLET within its receptor site is about 14 times longer than that of the mu agonist. Sodium and manganese ions decrease the maximal number of high affinity mu and delta sites, but the sensitivity of mu receptors is three times higher towards Na+ and 20-fold higher towards Mn2+ than that of delta receptors. GTP reduces similarly the mu and delta binding whereas only the DAGO binding was modified by the nonhydrolyzable analogue guanylylimidodiphosphate [GMP-P(NH)P]. However, in the presence of Na+ ions, GMP-P(NH)P inhibits the DTLET binding in a concentration-dependent manner. The effects of Na+ and GMP-P(NH)P could be explained by a sequential transformation of delta receptors to low-affinity states. This model predicts that Na+, by lowering the affinity of a fraction of sites, produces a decrease in the maximal number of high-affinity delta receptors and that GMP-P(NH)P enhances the Na+ effect. Moreover, the binding kinetic to this high-affinity state was also modified by Na+ and nucleotides. All of these data support the existence of two independent mu and delta binding sites, the properties of which are differentially regulated by these endogenous effectors.  相似文献   

11.
Opioid receptors of the frog (Rana esculenta) brain are characterized mainly by their relatively high ethylketocyclazocine (EKC) binding properties and by their low affinity to mu and delta ligands when D-Ala2-(Me)Phe4-Gly5-ol enkephalin (DAGO) and D-Ala2-Leu5-enkephalin (DALE) is used. In competition experiments it has been established that EKC and N-cyclopropylmethyl-norazidomorphine (CAM), which are non-selective kappa-ligands, have relatively high affinity to frog brain as well as the kappa 2 (which is DALE sensitive subpopulation of the kappa receptor) ligands etorphine and Metenkephalin-Arg6-Phe7 (1.). The kappa 2 subtype in frog brain resembles more to the mu subtype than to the delta subtype of opioid receptors, but it differs from the mu subtype in displaying low affinity toward beta-endorphin and DAGO.  相似文献   

12.
1. Meptazinol is an interesting opioid-producing naloxone-reversible analgesia with few cardiovascular and respiratory effects. Recent studies indicate that mu 1 opioid receptors mediate meptazinol analgesia. Using a computerized autoradiographic subtraction technique, we have examined the regional distribution of meptazinol-sensitive [3H][D-Ala2,MePhe4,Gly(ol)5]enkephalin (DAGO) binding and compared this with the distribution of mu 1 binding determined by competition with low [D-Ala2,D-Leu5]enkephalin (DADL) concentrations. 2. Meptazinol and DADL lowered [3H]DAGO to similar extents in most brain regions studied. The greatest levels of inhibition were observed in the periaqueductal gray, interpeduncular nucleus, thalamus, hypothalamus, and hippocampus. Low levels of inhibition were found in the temporal and frontal cortex. The correlation between the inhibition of [3H]DAGO binding by meptazinol and that by DADL was high (r = 0.83), consistent with the binding of meptazinol to mu 1 sites.  相似文献   

13.
[3H]ET (etorphine), which is considered either as an "universal" ligand or a mu agonist, interacts with identical affinities KD = 0.33-0.38 nM to hybrid cells and rabbit cerebellum, pure delta and mu-enriched opioid receptor preparations, respectively. In rat brain tissue, [3H]ET binding is inhibited by DAGO (Tyr-D-Ala-Gly-(Me)-Phe-Gly-ol), a mu selective agonist, in a competitive manner without apparent modification of the maximal number of sites. Furthermore, even at a DAGO concentration (300 nM) which should be sufficient to block [3H]ET interaction with mu sites, no variation in the total capacity of the tritiated ligand is observed. In contrast, DTLET (Tyr-D-Thr-Gly-Phe-Leu-Thr), a delta-preferential agonist, blocks [3H]ET binding in rat brain at a concentration able to saturate delta-sites. At higher concentrations, where DTLET cross reacts with mu-sites, this ligand exhibits similar properties to those of DAGO. These data are very different from those obtained with [3H]EKC (ethylketocyclazocine), another "universal" ligand, the binding properties of which are easily explained by the occurrence in rat brain tissue of independent sites exhibiting pharmacological profiles of mu, delta and kappa sites. Our results underline the possible misinterpretation of binding data obtained by using [3H] etorphine as a non selective ligand.  相似文献   

14.
We report the synthesis and binding properties of specific photoaffinity ligands for mu and delta opioid receptor subtypes. These ligands are derived from DAGO: Tyr-D-Ala-Gly-NMePhe-Gly-ol, a mu selective probe and DTLET: Tyr-D-Thr-Gly-Phe-Leu-Thr, a delta selective probe by modifying the Phe 4 residue. These modifications are: i) a nitro group on the para position of Phe ring as Phe(4 NO2) or Nip, ii) an azido group as Phe(4 N3) or AZ. Pharmacological responses on mouse vas deferens (delta sites) and guinea pig ileum (mu sites), as well as competition experiments with [3H] DAGO and [3H] DTLET on crude rat brain membranes have been performed. The nitro group on the phenyl ring of the Phe residue preserves the affinity and selectivity of each probe: NipDAGO for the mu sites, NipDTLET for the delta ones. However the nitro probes do not appear to be photoactivable by u.v. irradiation. Likewise, azidation of the phenyl ring of the Phe residue does not change the receptor selectivity of each probe, but AZDAGO has less affinity than its parent molecule DAGO, while AZDTLET has more affinity than DTLET. These compounds are photoactivable and provide an efficient tool to characterize and isolate the different receptor subtypes, especially the delta site.  相似文献   

15.
B A Gosnell  M Grace  A S Levine 《Life sciences》1987,40(15):1459-1467
beta-Chlornaltrexamine (beta-CNA) is a non-equilibrium opioid receptor antagonist which alkylates and inactivates opioid receptors. Because opioid peptides are thought to contribute to the regulation of food intake, we examined the effects of intracerebroventricular (icv) injections of beta-CNA on the food intake and body weight of male rats. We also tested the ability of beta-CNA to block food intake stimulated by selective agonists of kappa, mu and delta opioid receptors: dynorphin A2 (DYN), Tyr-D-Ala-Gly-(Me)Phe-Gly-ol (DAGO), and [(D-Ser2,Leu5]-enkephalin-Thr6 (DSLET). Treatment with beta-CNA caused a long-term (2-4 days) reduction in daily food intake and a concomitant reduction in body weight. An additional experiment indicated that the weight loss after beta-CNA treatment could be completely accounted for by the reduction in intake. beta-CNA treatment also abolished or greatly attenuated the feeding effects of DAGO, DSLET and DYN, even when these peptides were tested 26 hours after beta-CNA administration. The long duration of the effects of beta-CNA suggests that this compound will be a useful pharmacological tool in further study of the opioid feeding system.  相似文献   

16.
N A Sharif  J Hughes 《Peptides》1989,10(3):499-522
The opioid peptides, [3H]DAGO and [3H]DPDPE, bound to rat and guinea pig brain homogenates with a high, nanomolar affinity and to a high density of mu and delta receptors, respectively. [3H]DAGO binding to mu receptors was competitively inhibited by unlabelled opioids with the following rank order of potency: DAGO greater than morphine greater than DADLE greater than naloxone greater than etorphine much greater than U50488 much greater than DPDPE. In contrast, [3H]DPDPE binding to delta receptors was inhibited by compounds with the following rank order of potency: DPDPE greater than DADLE greater than etorphine greater than dynorphin(1-8) greater than naloxone much greater than U50488 much greater than DAGO. These profiles were consistent with specific labelling of the mu and delta opioid receptors, respectively. In vitro autoradiographic techniques coupled with computer-assisted image analyses revealed a discrete but differential anatomical localization of mu and delta receptors in the rat and guinea pig brain. In general, mu and delta receptor density in the rat exceeded that in the guinea pig brain and differed markedly from that of kappa receptors in these species. However, while mu receptors were distributed throughout the brain with "hotspots" in the fore-, mid- and hindbrain of the two rodents, the delta sites were relatively diffusely distributed, and were mainly concentrated in the forebrain with particularly high levels within the olfactory bulb (OB), n. accumbens and striatum. Notable regions of high density of mu receptors in the rat and guinea pig brain were the accessory olfactory bulb, striatal "patches" and "streaks," amygdaloid nuclei, ventral hippocampal subiculum and dentate gyrus, numerous thalamic nuclei, geniculate bodies, central grey, superior and inferior colliculi, solitary and pontine nuclei and s. nigra. Tissues of high delta receptor concentration included, OB (external plexiform layer), striatum, n. accumbens, amygdala and cortex (layers I-II and V-VI). Delta receptors in the guinea pig were, in general, similarly distributed to the rat, but in contrast to the latter, the hindbrain regions such as the thalamus, geniculate bodies, central grey and superior and inferior colliculi of the guinea pig were apparently more enriched than the rat. These patterns of mu and delta site distribution differed dramatically from that of the kappa opioid sites in these species studied with the peptide [125I]dynorphin(1-8).  相似文献   

17.
M Jia  P G Nelson 《Peptides》1987,8(3):559-563
mu, delta and kappa opioid receptor agonists, morphiceptin, Leu-enkephalin and dynorphin reduced monosynaptic EPSPs evoked in spinal cord neurons by stimulation of spinal cord neurons in a mouse cell culture system. The incidence of the cell pairs which responded to morphiceptin, Leu-enkephalin and dynorphin was 3%, 63% and 37% respectively. Statistical analysis showed the effect of Leu-enkephalin was presynaptic. When tested with Leu-enkephalin and dynorphin, 6 cell pairs responded to both Leu-enkephalin and dynorphin, 5 cell pairs only responded to Leu-enkephalin, none of the cell pairs responded only to dynorphin (n = 18). It is suggested that some cells have only delta receptors, but kappa receptors coexist with delta receptors. Opiate receptors of the mu type are rare on SC neurons.  相似文献   

18.
K Kujirai  S Fahn  J L Cadet 《Peptides》1991,12(4):779-785
The receptor autoradiographic distribution of opioid peptide receptors in spontaneously hypertensive rats (SHR) was compared to that of Sprague-Dawley (SD) rats, using the highly selective mu and delta opioid receptor ligands, [3H]DAGO (Tyr-D-Ala-Gly-NMe-Phe-Gly-ol) and [3H]DPDPE ([D-Pen2,D-Pen5]enkephalin), respectively. Although the distribution of these binding sites was similar in both strains, SHR showed significantly higher binding densities of mu receptors in 16 of 27 areas examined. These included the patch and matrix components of the caudate-putamen (CPu), olfactory tubercle, endopiriform nucleus, anterior cingulate cortex, ventral tegmental area lateroposteral thalamic nucleus and the ventral part of the dentate gyrus. In contrast, SHR had lower [3H]DAGO binding sites in the CA1 of the hippocampus. Conversely, SHR showed higher binding densities of delta receptors in 7 of 20 areas examined, including the CPu, CA2 and CA3 areas of the hippocampus and the central grey. High-to-low lateromedial gradients of striatal delta receptors were observed in both strains. Because opioid peptides are known to participate in locomotive behavior in rodents and in the control of blood pressure, the present results support a role of opioid peptidergic systems in the manifestation of hyperactivity and hypertension observed in SHR.  相似文献   

19.
Currently, opioid-based drugs are the most effective pain relievers that are widely used in the treatment of pain. However, the analgesic efficacy of opioids is significantly limited by the development of tolerance after repeated opioid administration. Glutamate receptors have been reported to critically participate in the development and maintenance of opioid tolerance, but the underlying mechanisms remain unclear. Using whole-cell voltage-clamp recordings in brainstem slices, the present study investigated chronic morphine-induced adaptations in glutamatergic synaptic transmission in neurons of the nucleus raphe magnus (NRM), a key supraspinal relay for pain modulation and opioid analgesia. Chronic morphine significantly increased glutamate synaptic transmission exclusively in one class of NRM cells that contains μ-opioid receptors in a morphine-tolerant state. The adenylyl cyclase activator forskolin and the cAMP analog 8-bromo-cAMP mimicked the chronic morphine effect in control neurons and their potency in enhancing the glutamate synaptic current was significantly increased in neurons from morphine-tolerant rats. MDL12330a, an adenylyl cyclase inhibitor, and H89, a protein kinase A (PKA) inhibitor, reversed the increase in glutamate synaptic transmission induced by chronic morphine. In addition, PMA, a phorbol ester activator of protein kinase C (PKC), also showed an increased potency in enhancing the glutamate synaptic current in these morphine-tolerant cells. The PKC inhibitor GF109203X attenuated the chronic morphine effect. Taken together, these results suggest that chronic morphine increases presynaptic glutamate release in μ receptor-containing NRM neurons in a morphine-tolerant state, and that the increased glutamate synaptic transmission appears to involve an upregulation of both the cAMP/PKA pathway and the PKC pathway. This glutamate-mediated activation of these NRM neurons that are thought to facilitate spinal pain transmission may contribute to the reduced opioid analgesia during opioid tolerance.  相似文献   

20.
The apparent affinity of naloxone at cerebral and spinal sites was estimated using selective mu [D-Ala2, Gly-o15]-enkephalin (DAGO) and delta [D-Pen2, D-Pen5]enkephalin] (DPDPE) opioid agonists in the mouse warm water tail-withdrawal test in vivo; the mu agonist morphine was employed as a reference compound. The approach was to determine the naloxone pA2 using a time-dependent method with both agonist and antagonist given intracerebroventricularly (i.c.v.) or intrathecally (i.th.); naloxone was always given 5 min before the agonist. Complete time-response curves were determined for each agonist at each site in the absence, and in the presence, of a single, fixed i.c.v. or i.th. dose of naloxone. From these i.c.v. or i.th. pairs of time-response curves, pairs of dose-response lines were constructed at various times; these lines showed decreasing displacement with time, indicative of the disappearance of naloxone. The graph of log (dose ratio-1) vs. time was linear with negative slope, in agreement with the time-dependent form of the equation for competitive antagonism. From this plot, the apparent pA2 and naloxone half-life was calculated at each site and against each agonist. The affinity of naloxone was not significantly different when compared between agonists after i.c.v. administration. A small difference was seen between the affinity of i.th. naloxone against DPDPE and DAGO; the i.th. naloxone pA2 against morphine, however, was not different than that for DPDPE and DAGO. The naloxone half-life varied between 6.6 and 16.9 min, values close to those previously reported for this compound. These results suggest that the agonists studied may produce their i.c.v. analgesic effects at the same receptor type or that alternatively, the naloxone pA2 may be fortuitously similar for mu and delta receptors in vivo. Additionally, while the affinity of naloxone appears different for the receptors activated by i.th. DAGO and DPDPE, further work may be necessary before firm conclusions regarding the nature of the spinal analgesic receptor(s) can be drawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号