首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The polypeptides PDGF, TGF alpha, and EGF have previously been shown by others to stimulate proliferation of fibroblasts and keratinocytes in the process of wound healing. Here we demonstrate that extracellular ATP, ADP or AMPPNP caused synergistic enhancement of DNA synthesis in 3T6 mouse fibroblasts and BALB/MK keratinocytes when combined with any of the above polypeptides. TGF beta showed synergistic stimulation with ATP in fibroblasts but it inhibited keratinocytes. ATP acted as a mitogen for NIE-115 neuroblastoma cultures. In 3T6 cells, ATP stimulated thymidine incorporation in combination with carbachol or norepinephrine. The effect of carbachol was sensitive to atropine. We suggest that extracellular ATP and ADP may play a physiological role in wound healing and as a mitogenic neurotransmitter in the nervous system.  相似文献   

2.
In HEK 293 cells stably expressing type 1 parathyroid (PTH) receptors, PTH stimulated release of intracellular Ca(2+) stores in only 27% of cells, whereas 96% of cells responded to carbachol. However, in almost all cells PTH potentiated the response to carbachol by about 3-fold. Responses to carbachol did not desensitize, but only the first challenge in Ca(2+)-free medium caused an increase in [Ca(2+)](i), indicating that the carbachol-sensitive Ca(2+) stores had been emptied. Subsequent addition of PTH also failed to increase [Ca(2+)](i), but when it was followed by carbachol there was a substantial increase in [Ca(2+)](i). A similar potentiation was observed between ATP and PTH but not between carbachol and ATP. Intracellular heparin inhibited responses to carbachol and PTH, and pretreatment with ATP and carbachol abolished responses to PTH, suggesting that the effects of PTH involve inositol trisphosphate (IP(3)) receptors. PTH neither stimulated detectable IP(3) formation nor affected the amount formed in response to ATP or carbachol. PTH stimulated cyclic AMP formation, but this was not the means whereby PTH potentiated Ca(2+) signals. We suggest that PTH may regulate Ca(2+) mobilization by facilitating translocation of Ca(2+) between discrete intracellular stores and that it thereby regulates the size of the Ca(2+) pool available to receptors linked to IP(3) formation.  相似文献   

3.
Abstract: Administration of carbachol, noradrenaline, and bradykinin induced Egr-1 mRNA expression within 1 h in mouse neuroblastoma × rat gliomahybrid NG108–15 cells. With specific receptor antagonists, the Egr-1 inductions by carbachol and noradrenaline were shown to be mediated via cholinergic muscarinic and α2-adrenergic receptors, respectively. At their saturation levels for Egr-1 induction, the two agonists had additive effects when added together, but no prolongation of the effect on Egr-1 induction was observed. Addition of carbachol or noradrenaline 6 h after primary stimulation with carbachol or noradrenaline did not result in secondary Egr-1 induction, probably because of receptor desensitization. On the other hand, bradykinin consistently had an additive effect on Egr-1 induction, irrespective of the time of its addition, suggesting that the signal pathways for Egr-1 induction by carbachol or noradrenaline and by bradykinin are different. Treatment of cells with pertussis toxin or cholera toxin strongly inhibited Egr-1 induction by carbachol or noradrenaline but only partially inhibited the induction by bradykinin. Thus, the signals transduced in NG108–15 cells by different neurotransmitter receptors appear to have different effects on Egr-1 induction, depending on the times of stimulation and the combinations of receptors stimulated.  相似文献   

4.
Astrocyte-enriched cultures prepared from the newborn rat cortex incorporated [3H]myo-inositol into intracellular free inositol and inositol lipid pools. Noradrenaline and carbachol stimulated the turnover of these pools resulting in an increased accumulation of intracellular [3H]inositol phosphates. The effects of noradrenaline and carbachol were dose-dependent and blocked by specific alpha 1-adrenergic and muscarinic cholinergic receptor antagonists, respectively. The increase in [3H]inositol phosphate accumulation caused by these receptor antagonists was virtually unchanged when cultures were incubated in Ca2+-free medium, but was abolished when EGTA was also present in the Ca2+-free medium. Cultures of meningeal fibroblasts, the major cell type contaminating the astrocyte cultures, also accumulated [3H]myo-inositol, but no increased accumulation of [3H]inositol phosphates was found in response to either noradrenaline or carbachol.  相似文献   

5.
The influence of adenosine 5'-triphosphate on gastric acid secretion stimulated by histamine, carbachol, dibutyryl-cAMP and the phosphodiesterase inhibitors 8-phenyl-theophylline and rolipram in isolated rabbit gastric glands was studied. Changes oi gastric acid secretion were measured by the aminopyrine accumulation method. Histamine-stimulated acid secretion was significantly inhibited by ATP 1 mM, whereas the secretory responses elicited by carbachol, dibutyryl-cAMP, 8-phenyl-theophylline or rolipram were not. Assays with indomethacin, a well known prostaglandin synthesis inhibitor, showed that this agent significantly reduced the inhibitory effect of ATP on histamine responses. The results indicate that the antisecretory effect of ATP was specific for histamine and that it was mediated, at least in part, via stimulation of endogenous prostaglandin production.  相似文献   

6.
The effects of extracellular ATP on intracellular free calcium concentration [( Ca2+]i), phosphatidylinositol (PtdIns) turnover, amylase release and Ca2+-activated membrane currents were examined in isolated rat parotid acinar cells and contrasted with the effects of receptor agonists known to activate phospholipase C. ATP was more effective than muscarinic and alpha-adrenergic agonists and substance P as a stimulus for elevating [Ca2+]i (as measured with quin2). The ATP effect was selectively antagonized by pretreating parotid cells with the impermeant anion-exchange blocker 4,4'-di-isothiocyano-2,2'-stilbenedisulphonate (DIDS), which also inhibited binding of [alpha-32P]ATP to parotid cells. By elevating [Ca2+]i, ATP and the muscarinic agonist carbachol both activated Ca2+-sensitive membrane currents, which were measured by whole-cell and cell-attached patch-clamp recordings. However, there were marked contrasts between the effects of ATP and the receptor agonists linked to phospholipase C, as follows. (1) Although the combination of maximally effective concentrations of carbachol, substance P and phenylephrine had no greater effect on [Ca2+]i than did carbachol alone, there was some additivity between maximal ATP and carbachol effects. (2) Intracellular dialysis with guanosine 5'-[beta-thio]diphosphate did not block activation of ion channels by ATP, but did block channel activation by the muscarinic agonist carbachol. This suggests that a G-protein is involved in the muscarinic response, but not in the response to ATP. (3) Despite its pronounced effect on [Ca2+]i, ATP had little effect on PtdIns turnover in these cells, in contrast with the effects of carbachol and other Ca2+-mobilizing agents. (4) Although ATP was able to stimulate amylase release from parotid acinar cells, the stimulation was only 33 +/- 9% of that obtained with phospholipase C-linked receptor agonists. These differences suggest that ATP increases [Ca2+]i through specific activation of a pathway which is distinct from that shared by the classical phospholipase C-linked receptor agonists.  相似文献   

7.
《Life sciences》1997,61(1):PL21-PL26
Contractile responses induced by carbachol on the detrusor muscle and by noradrenaline on the isolated urethra were compared between ovariectomized rats pretreated with estradiol (50 μg/animal s.c. twice daily for five days), untreated ovariectomized rats and intact animals. In the detrusor muscle, contractions induced by 30μM carbachol, when normalized with respect to KCl 100 mM-induced contraction, were similar for the three groups. Furthermore, contractions induced by 100 μM noradrenaline in the isolated urethra were not significatively different between groups. However, the pD2 value for noradrenaline was greater in urethral tissue from ovariectomized rats compared with ovariectomized -estrogen treated and control rats. A similar result was found for pD2 values for carbachol-induced contractions on the detrusor muscle. These results suggest that ovariectomy increases the sensitivity of the urinary bladder and urethra to the contractile effects of carbachol and noradrenaline, respectively and that this effect is reversed by in vivo estrogen pretreatment.  相似文献   

8.
Isolated cytochrome c oxidases of P. denitrificans and bovine heart were reconstituted in liposomes and the kinetics of cytochrome c oxidation were measured in the presence and absence of nucleotides either inside or outside of proteoliposomes, and after photolabelling with 8-azido-ATP. Intraliposomal ATP increases and ADP decreases the kinetics of ferrocytochrome c oxidation of the bovine but not of the Paracoccus enzyme. Extra-liposomal ATP and ADP increase the Km for cytochrome c of both enzymes, but ATP acts at lower concentrations than ADP. The increase of the Km for cytochrome c is obtained in coupled as well as in uncoupled proteoliposomes. Photolabelling with 8-azido-ATP of the reconstituted Paracoccus enzyme also increases the Km for cytochrome c which is completely prevented if ATP but not if ADP is present during illumination as was found with reconstituted cytochrome c oxidase from bovine heart. The data suggest a specific interaction of ATP and ADP with nuclear-coded subunits of bovine heart cytochrome c oxidase from the matrix side, because the effects are not found with the Paracoccus enzyme, which lacks these subunits.  相似文献   

9.
Simultaneous exposure of explants of the hypothalamo-neurohypophyseal system (HNS) to ATP and the α(1)-adrenergic receptor (α(1)-R) agonist, phenylephrine (ATP+PE) induces a synergistic stimulation of vasopressin and oxytocin (VP/OT) release that is sustained for hours. The current studies confirm that the synergism is dependent upon activation of α(1)-R by demonstrating that an α(1)-R antagonist prevents the response. The role of the α(1)A, B, and D-adrenergic receptor subtypes in the synergistic effect of ATP+PE on intracellular calcium ([Ca(2+)](i)) in supraoptic nucleus (SON) neurons and VP/OT release from neural lobe was evaluated. The increase in [Ca(2+)](i) induced by PE in SON predominantly reflects release from intracellular stores and is mediated by activation of the α(1)A adrenergic receptor subtype. The α(1)A subtype is also required for the sustained elevation in [Ca(2+)](i) induced by ATP+PE. In contrast, although synergistic stimulation of VP/OT release was eliminated by removal of PE and was blunted by benoxathian, an α(1)-R antagonist that is not subtype selective, no single α(1)-R subtype selective antagonist prevented sustained stimulation of VP/OT release by ATP+PE. Thus, sustained activation of α(1)-R is essential for the synergistic VP and OT response to ATP+PE, but multiple α(1)-R subtypes can support the response. Redundancy amongst the α(1)-R subunits in supporting this response is consistent with the predicted importance of the response for sustaining the elevated VP release required to prevent cardiovascular collapse during hemorrhage and sepsis.  相似文献   

10.
In order to asses the possibility that degeneration release of noradrenaline influences the survival of critical skin flaps, we studied the effect of various antiadrenergic drugs on skin-flap levels of noradrenaline, ATP, and cyclic AMP. Reserpine treatment depleted the skin flaps of noradrenaline and counteracted the fall in ATP and the cyclic AMP accumulation. Guanethidine had similar but less pronounced effects. Propranolol did not affect noradrenaline levels or depletion rate, but reduced the metabolic stimulation, as assessed by cyclic AMP levels in the flap. Phentolamine had no effect on basal noradrenaline levels, but tended to accelerate its disappearance and reduce lactate accumulation, a measure of hypoxia. All these drugs are known to increase skin-flap survival. It is suggested that they do so by, respectively, depleting the flap of its content of noradrenaline prior to operation or preventing the vasoconstriction and metabolic stimulation caused by released noradrenaline.  相似文献   

11.
Whereas carbachol, noradrenaline, serotonin and memantine stimulated inositol phosphates production and calcium mobilization in 3-5 day old rabbit retinal cultures, only carbachol and noradrenaline were effective when 25-30 day old cultures were used. The older retinal cultures contain only Müller cells which shows that the memantine and serotonin effects on the 3-5 day old cultures are specifically associated with neurones. While the carbachol, noradrenaline and serotonin effects were respectively blocked by atropine, prazosin and ketanserin, none of these substances influenced the memantine responses. In all areas of the rat brain which were analysed, the effectiveness of memantine, noradrenaline and carbachol on the stimulation of inositol phosphates production was similar. However, in the rabbit retina, as opposed to the rat brain slices, carbachol had a more pronounced influence than noradrenaline in stimulating inositol phosphates production. Chick retina exposed to N-methyl-D-aspartate, quisqualate, glutamate or kainic acid resulted in cytopathological damage to cell bodies in the outer nuclear layer. The N-methyl-D-aspartate effect was nullified by memantine and MK-801 but not by kynurenic acid. In contrast the kainic acid-induced damage was specifically antagonized by kynurenic acid. The present results show that memantine influences the metabolism of inositol phosphates in neurones but not glial (Müller) cells and appears to counteract the N-methyl-D-aspartate induced cytopathological damage. How these two effects of memantine are interrelated and whether they are involved in the described beneficial therapeutic observations of memantine (as in dementia) remains to be established.  相似文献   

12.
Abstract: Muscarinic cholinergic and α1-adrenoceptor-mediated stimulation of phosphoinositide hydrolysis in rat cerebral cortex were compared by measuring carbachol- and noradrenaline-induced accumulation of various intermediates of the phosphoinositide cycle. Unlike carbachol, noradrenaline in the presence of guanosine 5'- O -(3-thiotriphosphate) did not stimulate phospholipase C activity in brain cortical membranes. In cortical slices, the efficacy of noradrenaline to stimulate accumulation of 3H-inositol phosphates and [32P]phosphatidic acid was 2.5 to threefold that of carbachol. However, noradrenaline was less effective than carbachol in stimulating accumulation of [3H]CDP-diacylglycerol and resynthesis of phosphatidylinositol. This was not due to calcium inhibition of CTP:phosphatidate cytidyltransferase or to different lithium requirements for carbachol- and noradrenaline-stimulated accumulation of [3H]CDP-diacylglycerol. The noradrenaline-induced unbalance of the phosphoinositide cycle, which was most apparent at relatively high concentrations of calcium (2.5 m M ) in the incubation buffer, was qualitatively reproduced with ionomycin. The use of the α1a-subtype-selective adrenoceptor antagonists WB4101 and 5-methylurapidil revealed a single α1a-like component mediating the effects of noradrenaline. Our results suggest that the primary mechanism for phospholipase C activation by brain α1 adrenoceptors involves an increase in intracellular calcium concentration.  相似文献   

13.
Metoclopramide (N-(diethylaminoethyl)-2-methoxy-4-amino-5-chlorobenzamide) (Mcp) at concentrations of 0.1 and 1.0 muM partially and significantly reduced the relaxations induced by adenosine 5'-triphosphate (ATP), adenosine diphosphate (ADP), and adenosine, was without effect on theophylline ethylenediamine whilst significantly potentiating noradrenaline on the atropine-pretreated (0.1 muM) taenia coli, rabbit ileum, and rat duodenum. Mcp (1.0 muM) decreased the inhibitory effects of ATP, ADP, and adenosine on peristalsis induced in the isolated guinea-pig ileum by a constant increase in intraluminal pressure, did not affect inhibition due to theophylline ethylenediamine, whilst it potentiated inhibition of peristalsis due to noradrenaline. It is proposed that this effect of Mcp may be a specific antagonistic action on receptors sensitive to the putative purinergic transmitter, ATP and ADP, and may be partly responsible for its observed facilitatatory action on peristalsis.  相似文献   

14.
Severalsecretagogues induce mucin secretion in epithelial monolayers, asdetermined by measuring released granule contents. To assess whetherdifferent agonists act on the same granule pool, capacitance changes inintact monolayers of the goblet cell line HT29-Cl.16E were measured bya novel impedance method. Apical ATP (purinergic agonist) andbasolateral carbachol (cholinergic agonist) induce rapid exocytosiswith maximal capacitance changes within 3 min. The maximal levels ofexocytosis that can be induced by optimal concentrations of eitheragonist are the same and produce a 30-40% increase in totalmonolayer capacitance. When ATP and carbachol are appliedsimultaneously, the magnitude of exocytosis is unchanged from thesingle-secretagogue level. The recovery of capacitance to baseline(endocytosis) is significantly faster after ATP stimulation than aftercarbachol stimulation. When ATP and carbachol are applied sequentiallyat doses that give maximal exocytosis, the magnitude of the capacitanceincrease produced by the second secretagogue is less than or equal tothat of the capacitance decrease during the recovery period. Together,these data suggest that purinergic and cholinergic agonists act on the same granule pool.  相似文献   

15.
The microtubule-based motor molecule cytoplasmic dynein has been proposed to be regulated by a variety of mechanisms, including phosphorylation and specific interaction with the organelle-associated complex, dynactin. In this study, we examined whether the intermediate chain subunits of cytoplasmic dynein are involved in modulation of ATP hydrolysis, and thereby affect motility. Treatment of testis cytoplasmic dynein under hypertonic salt conditions resulted in separation of the intermediate chains from the remainder of the dynein molecule, and led to a 4-fold enhancement of ATP hydrolysis. This result suggests that the accessory subunits act as negative regulators of dynein heavy chain activity. Comparison of ATPase activities of dyneins with differing intermediate chain isoforms showed significant differences in basal ATP hydrolysis rates, with testis dynein 7-fold more active than dynein from brain. Removal of the intermediate chain subunits led to an equalization of ATPase activity between brain and testis dyneins, suggesting that the accessory subunits are responsible for the observed differences in tissue activity. Finally, our preparative procedures have allowed for the identification and purification of a 1:1 complex of dynein with dynactin. As this interaction is presumed to be mediated by the dynein intermediate chain subunits, we now have defined experimental conditions for further exploration of dynein enzymatic and motility regulation.  相似文献   

16.
The involvement of subunit 6 (a) in the interface between yeast ATP synthase monomers has been highlighted. Based on the formation of a disulfide bond and using the unique cysteine 23 as target, we show that two subunits 6 are close in the inner mitochondrial membrane and in the solubilized supramolecular forms of the yeast ATP synthase. In a null mutant devoid of supernumerary subunits e and g that are involved in the stabilization of ATP synthase dimers, ATP synthase monomers are close enough in the inner mitochondrial membrane to make a disulfide bridge between their subunits 6, and this proximity is maintained in detergent extract containing this enzyme. The cross-linking of cysteine 23 located in the N-terminal part of the first transmembrane helix of subunit 6 suggests that this membrane-spanning segment is in contact with its counterpart belonging to the ATP synthase monomer that faces it and participates in the monomer-monomer interface.  相似文献   

17.
Chloroplast ATP synthase synthesizes ATP by utilizing a proton gradient as an energy supply, which is generated by photosynthetic electron transport. The activity of the chloroplast ATP synthase is regulated in several specific ways to avoid futile hydrolysis of ATP under various physiological conditions. Several regulatory signals such as Delta mu H(+), tight binding of ADP and its release, thiol modulation, and inhibition by the intrinsic inhibitory subunit epsilon are sensed by this complex. In this review, we describe the function of two regulatory subunits, gamma and epsilon, of ATP synthase based on their possible conformational changes and discuss the evolutionary origin of these regulation systems.  相似文献   

18.
P Chidiac  J W Wells 《Biochemistry》1992,31(44):10908-10921
Muscarinic agonists and adenyl nucleotides are noncompetitive modulators of sites labeled by [35S]GTP gamma S in washed cardiac membranes from Syrian golden hamsters. Specific binding of the radioligand and its inhibition by either GTP gamma S or GDP reveals three states of affinity for guanyl nucleotides. In the absence of adenyl nucleotide, carbachol promotes an apparent interconversion of sites from higher to lower affinity for GDP; the effect recalls that of guanyl nucleotides on the binding of agonists to muscarinic receptors. In the presence of 0.1 mM ATP gamma S, the binding of [35S]GTP gamma S is increased at concentrations up to about 50 nM and decreased at higher concentrations. At a radioligand concentration of 160 pM, binding exhibits a bell-shaped dependence on the concentration of both ATP gamma S and AMP-PNP; with ADP and ATP, there is a second increase in bound [35S]GTP gamma S at the highest concentrations of adenyl nucleotide. ATP gamma S and AMP-PNP also modulate the effect of GDP, which itself emerges as a cooperative process: that is, binding of the radioligand in the presence of AMP-PNP exhibits a bell-shaped dependence on the concentration of GDP; moreover, the GDP-dependent increase in bound [35S]GTP gamma S is enhanced by carbachol. The interactions among GDP, GTP gamma S, and carbachol can be rationalized quantitatively in terms of a cooperative model involving two sites tentatively identified as G proteins. Both GTP gamma S and GDP exhibit negative homotropic cooperativity; carbachol enhances the homotropic cooperativity of GDP and induces or enhances positive heterotropic cooperativity between GDP and [35S]GTP gamma S. An analogous mechanism may underlie the guanyl nucleotide-dependent binding of agonists to muscarinic receptors. The data suggest that the binding properties of G proteins and their associated receptors reflect cooperative effects within heterooligomeric arrays; agonist-induced changes in cooperativity may facilitate the exchange of GTP for bound GDP and thereby constitute the mechanism of G protein activation in vivo.  相似文献   

19.
Development of an increasingly detailed understanding of the eucaryotic mitochondrial ATP synthase requires a detailed knowledge of the stoichiometry, structure and function of F(0) sector subunits in the contexts of the proton channel and the stator stalk. Still to be resolved are the precise locations and roles of other supernumerary subunits present in mitochondrial ATP synthase complexes, but not found in the bacterial or chloroplast enzymes. The highly developed system of molecular genetic manipulation available in the yeast Saccharomyces cerevisiae, a unicellular eucaryote, permits testing for gene function based on the effects of gene disruption or deletion. In addition, the genes encoding ATP synthase subunits can be manipulated to introduce specific amino acids at desired positions within a subunit, or to add epitope or affinity tags at the C-terminus, enabling questions of stoichiometry, structure and function to be addressed. Newly emerging technologies, such as fusions of subunits with GFP are being applied to probe the dynamic interactions within mitochondrial ATP synthase, between ATP synthase complexes, and between ATP synthase and other mitochondrial enzyme complexes.  相似文献   

20.
Herpesviral DNA packaging is a complex process resulting in unit-length genomes packed into preformed procapsids. This process is believed to be mediated by two packaging proteins, the terminase subunits. In the case of double-stranded DNA bacteriophages, the translocation of DNA was shown to be an energy-dependent process associated with an ATPase activity of the large terminase subunit. In the case of human cytomegalovirus it was not known which protein has the ability to hydrolyze ATP. In this study we expressed human cytomegalovirus terminase subunits, pUL89 and the carboxyl-terminal half of pUL56, as GST fusion proteins and purified these by affinity chromatography. ATPase assays demonstrated that the enzymatic activity is exclusively associated with pUL56. The characterization of the ATP hydrolysis showed that the enzymatic reaction is a fast process, whereas the spontaneous ATP decay followed slow kinetics. Interestingly, although pUL89 did not show any ATPase activity, it was capable of enhancing the UL56-associated ATP hydrolysis. Furthermore, a specific association of in vitro translated pUL89 with the carboxyl-terminal half of GST-UL56C was detected. This interaction was confirmed by co-immunoprecipitations of infected cells. Our results clearly demonstrated that (i) both terminase subunits interact with each other and (ii) the subunit pUL56 has an ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号