首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphogenetic effects of t,t-farnesol, Law-Williams juvenile hormone analogue, dichlorofarnesenic acid ethyl ester (DFAEE), and a syntetic racemic or isomeric mixture of C18 juvenile hormone (JH), when applied topically to pharate pupae and adults of D. melanogaster have been studied. Of these various agents tested, only DFAEE and JH affected adult development and eclosion and the pharate pupae were the most sensitive to these agents. The racemic mixture of JH induced the secretion, in the abdomen, of a supernumerary cuticle indistinguishable from that of the pupa; it, in addition, retarded the synthesis of brown eye pigments, general body pigmentation, and affected the differentiation of various internal organs and cuticular structures of the abdomen. By comparing the effects of JH with those of Minute (M) and bobbed (bb) mutations on the adult development, it is suggested that JH, by retarding genetic translation mimics M or bb.  相似文献   

2.
The changes in trehalase activity and its localization in the midgut of the silkworm, Bombyx mori, were studied during larval-pupal-adult development. Trehalase activity in larval midgut epithelium increased with the larval growth, reached a maximum level at the middle of the fifth instar, and then decreased gradually. Trehalase activity in larval midgut was found in the epithelial tissue but not in the digestive juice or the midgut contents.The trehalase activity in the whole midgut started to rise at the onset of spinning and increased abruptly at larval-pupal ecdysis to reach an extremely high level 3 days later. This high activity was maintained throughout the subsequent pharate adult development and dropped suddenly at emergence. The midgut trehalase activity during pupal-adult development was mainly found in the midgut contents but scarcely any in the epithelium.Subcellular distribution of midgut trehalase depended upon larval-pupal-adult development. The activity was concentrated in a precipitate fraction of the epithelium until the middle of the fifth instar. During larval-pupal development, however, the activity increased in the soluble fraction with a concomitant decrease in the precipitate fraction. Almost all the trehalase activity in pupal and pharate adult midgut was recovered in the soluble fraction of the midgut contents. The data are discussed from a viewpoint of the histolysis.  相似文献   

3.
Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. JH titer decreases in the last instar larvae allowing pupation and metamorphosis to progress. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again “competent” to synthesize JH, which plays an essential role orchestrating reproductive maturation. 20-hydroxyecdysone (20E) prepares the pupae for ecdysis, and would be an ideal candidate to direct a developmental program in the CA of the pharate adult mosquito. In this study, we provide evidence that 20E acts as an age-linked hormonal signal, directing CA activation in the mosquito pupae. Stimulation of the inactive brain-corpora allata-corpora cardiaca complex (Br-CA-CC) of the early pupa (24 h before adult eclosion or −24 h) in vitro with 20E resulted in a remarkable increase in JH biosynthesis, as well as increase in the activity of juvenile hormone acid methyltransferase (JHAMT). Addition of methyl farnesoate but not farnesoic acid also stimulated JH synthesis by the Br-CA-CC of the −24 h pupae, proving that epoxidase activity is present, but not JHAMT activity. Separation of the CA-CC complex from the brain (denervation) in the −24 h pupae also activated JH synthesis. Our results suggest that an increase in 20E titer might override an inhibitory effect of the brain on JH synthesis, phenocopying denervation. All together these findings provide compelling evidence that 20E acts as a developmental signal that ensures proper reactivation of JH synthesis in the mosquito pupae.  相似文献   

4.
Juvenile hormones (JHs) are synthesized by the corpora allata (CA) and play a key role in insect development. A decrease of JH titer in the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again “competent” to synthesize JH, which would play an essential role orchestrating reproductive maturation. In the present study, we provide evidence that ecdysis triggering hormone (ETH), a key endocrine factor involved in ecdysis control, acts as an allatotropic regulator of JH biosynthesis, controlling the exact timing of CA activation in the pharate adult mosquito. Analysis of the expression of Aedes aegypti ETH receptors (AeaETHRs) revealed that they are present in the CA and the corpora cardiaca (CC), and their expression peaks 4 h before eclosion. In vitro stimulation of the pupal CA glands with ETH resulted in an increase in JH synthesis. Consistent with this finding, silencing AeaETHRs by RNA interference (RNAi) in pupa resulted in reduced JH synthesis by the CA of one day-old adult females. Stimulation with ETH resulted in increases in the activity of juvenile hormone acid methyltransferase (JHAMT), a key JH biosynthetic enzyme. Furthermore, inhibition of IP3R-operated mobilization of endoplasmic reticulum Ca2+ stores prevented the ETH-dependent increases of JH biosynthesis and JHAMT activity. All together these findings provide compelling evidence that ETH acts as a regulatory peptide that ensures proper developmental timing of JH synthesis in pharate adult mosquitoes.  相似文献   

5.
Adult organ-specific stem cells are essential for organ homeostasis and repair in adult vertebrates. The intestine is one of the best-studied organs in this regard. The intestinal epithelium undergoes constant self-renewal throughout adult life across vertebrates through the proliferation and subsequent differentiation of the adult stem cells. This self-renewal system is established late during development, around birth, in mammals when endogenous thyroid hormone (T3) levels are high. Amphibian metamorphosis resembles mammalian postembryonic development around birth and is totally dependent upon the presence of high levels of T3. During this process, the tadpole intestine, predominantly a monolayer of larval epithelial cells, undergoes drastic transformation. The larval epithelial cells undergo apoptosis and concurrently, adult epithelial stem/progenitor cells develop de novo, rapidly proliferate, and then differentiate to establish a trough-crest axis of the epithelial fold, resembling the crypt-villus axis in the adult mammalian intestine. We and others have studied the T3-dependent remodeling of the intestine in Xenopus laevis. Here we will highlight some of the recent findings on the origin of the adult intestinal stem cells. We will discuss observations suggesting that liganded T3 receptor (TR) regulates cell autonomous formation of adult intestinal progenitor cells and that T3 action in the connective tissue is important for the establishment of the stem cell niche. We will further review evidence suggesting similar T3-dependent formation of adult intestinal stem cells in other vertebrates.  相似文献   

6.

Background and Aims

Amphibian intestinal remodeling, where thyroid hormone (T3) induces some larval epithelial cells to become adult stem cells analogous to the mammalian intestinal ones, serves as a unique model for studying how the adult stem cells are formed. To clarify its molecular mechanisms, we here investigated roles of non-canonical Wnt signaling in the larval-to-adult intestinal remodeling during Xenopus laevis metamorphosis.

Methods/Findings

Our quantitative RT-PCR (qRT-PCR) and immunohistochemical analyses indicated that the expressions of Wnt5a and its receptors, frizzled 2 (Fzd2) and receptor tyrosine kinase-like orphan receptor 2 (Ror2) are up-regulated by T3 and are spatiotemporally correlated with adult epithelial development in the X. laevis intestine. Notably, changes in morphology of larval absorptive epithelial cells expressing Ror2 coincide well with formation of the adult stem cells during metamorphosis. In addition, by using organ cultures of the tadpole intestine, we have experimentally shown that addition of exogenous Wnt5a protein to the culture medium causes morphological changes in the larval epithelium expressing Ror2 even in the absence of T3. In contrast, in the presence of T3 where the adult stem cells are formed in vitro, inhibition of endogenous Wnt5a by an anti-Wnt5a antibody suppressed the epithelial morphological changes, leading to the failure of stem cell formation.

Significance

Our findings strongly suggest that the adult stem cells originate from the larval absorptive cells expressing Ror2, which require Wnt5a/Ror2 signaling for their dedifferentiation accompanied by changes in cell morphology.  相似文献   

7.
8.
The degree of inhibition of larval-pupal ecdysis of Indian meal moths, Plodia interpunctella, by juvenile hormone (JH) treatment depended upon the dosage of hormone and time of treatment. During the last larval instar, the timing aspect operated independently of dosage and had two essential components for effectiveness, (a) early initiation of exposure and (b) maintenance of exposure. The effects of JH treatments could be reversed by removing the insects from the JH diet. In vitro tests with wing disks indicated that JH reversibly inhibited disk development only during the early part of the last larval instar, a time when disks are insensitive to β-ecdysone. After disks acquire full sensitivity to β-ecdysone, they lose their ability to respond to JH.  相似文献   

9.

Background

The intestinal epithelium undergoes constant self-renewal throughout adult life across vertebrates. This is accomplished through the proliferation and subsequent differentiation of the adult stem cells. This self-renewal system is established in the so-called postembryonic developmental period in mammals when endogenous thyroid hormone (T3) levels are high.

Methodology/Principal Findings

The T3-dependent metamorphosis in anurans like Xenopus laevis resembles the mammalian postembryonic development and offers a unique opportunity to study how the adult stem cells are developed. The tadpole intestine is predominantly a monolayer of larval epithelial cells. During metamorphosis, the larval epithelial cells undergo apoptosis and, concurrently, adult epithelial stem/progenitor cells develop de novo, rapidly proliferate, and then differentiate to establish a trough-crest axis of the epithelial fold, resembling the crypt-villus axis in the adult mammalian intestine. The leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a well-established stem cell marker in the adult mouse intestinal crypt. Here we have cloned and analyzed the spatiotemporal expression profile of LGR5 gene during frog metamorphosis. We show that the two duplicated LGR5 genes in Xenopus laevis and the LGR5 gene in Xenopus tropicalis are highly homologous to the LGR5 in other vertebrates. The expression of LGR5 is induced in the limb, tail, and intestine by T3 during metamorphosis. More importantly, LGR5 mRNA is localized to the developing adult epithelial stem cells of the intestine.

Conclusions/Significance

These results suggest that LGR5-expressing cells are the stem/progenitor cells of the adult intestine and that LGR5 plays a role in the development and/or maintenance of the adult intestinal stem cells during postembryonic development in vertebrates.  相似文献   

10.
At the initiation of metamorphosis when exposed to ecdysteroid in the absence of juvenile hormone (JH), the lepidopteran epidermis changes its commitment from one for larval differentiation to one for pupal differentiation. Changes in mRNA populations during this change both in vivo and in vitro were followed by a one-dimensional SDS-gel electrophoretic analysis of translation products made in a mRNA-dependent rabbit reticulocyte lysate system. The larval epidermal cell was found to lose its translatable mRNAs for larval cuticular proteins and the larval-specific pigment insecticyanin during the change in commitment; these never reappeared. For Class I cuticular proteins and for insecticyanin, this loss occurred during the exposure to ecdysteroid, each with a differing time course. By contrast, Class II cuticular mRNAs first increased during this time, then also disappeared by the time the cells were pupally committed. In vitro these mRNAs appeared in only trace amounts in response to 20-hydroxyecdysone (20-HE). The pupally committed cell (late in the wandering stage) contained mRNAs for three low-molecular-weight proteins which were precipitable with the pupal cuticular antiserum. The remainder of the pupal cuticular mRNAs were not translatable until the third day after wandering, a time when pupal cuticle is being deposited in response to a molting surge of ecdysteroid. The pupally committed cell also had at least one new noncuticular mRNA which coded for a 34K protein and which was absent from both larval and pupal epidermal cells making cuticle. Since its appearance in response to 20-HE in vitro is repressed by JH, it is called a pupal commitment-specific protein. Thus, during the change of commitment 20-HE inactivates larval-specific genes irreversibly in a sequential cascade of events. The activation of most pupal-specific genes then requires a subsequent exposure to more ecdysteroid.  相似文献   

11.
《Insect Biochemistry》1987,17(7):933-937
Corpora allata (CA) of last instar larvae of Manduca sexta switch from juvenile hormone (JH) to JH acid secretion just before the onset of wandering behavior. JH acid secretion peaked during the prepupal period and ceased prior to pupal ecdysis. HMG-CoA reductase activity also peaked during the prepupal period and then declined. However, substantial enzyme activity was present in pupal and pharate adult glands. Removal of the brain at the wandering stage caused a reduction in JH acid secretion by prepupal CA. The profile of HMG-CoA activity in CA of debrained larvae resembled that of sham-operated larvae except that the prepupal peak was smaller than in control larvae. Addition of brain extracts to CA maintained in vitro neither stimulated not inhibited JH acid secretion and HMG-CoA reductase activity. It is suggested that the brain regulates CA activity in post-wandering stages via intact nerves.  相似文献   

12.
Summary In social insects the expression of caste-specific characters is controlled by juvenile hormone (JH) during definite sensitive periods in preimaginal development. For a number of stingless bee species the existence of such a JH-sensitive period has already been demonstrated. Queen development can be induced by topical JH applications during the cocoon spinning phase of the last larval instar. Neither JH titers nor rates of JH synthesis were known so far for this subfamily of eusocial bees distinguished by a pronounced caste dimorphism. As the pantropically distributed stingless bees with approximately 400 recent species are the largest group of social bees, JH synthesis was studied in one of the species that can be kept under laboratory conditions. An in vitro radiochemical assay was used to measure stage- and caste-specific activities of the corpora allata (CA). For the first time in a eusocial hymenopteran species it was demonstrated how the endocrine system is reacting to trophogenic stimuli capable to induce caste differentiation during larval development. Generally JH synthesis in queen CA was found to be 30–80% higher than in workers during the penultimate and last larval instar, but a strong and distinct caste-specific modulation of JH synthesis was only observed right before the onset of a JH-sensitive period in the cocoon spinning phase of the fifth instar.  相似文献   

13.
Corneal epithelial differentiation (primary stroma production) is dependent on the underlying extracellular matrix (ECM), for if the developing epithelium is enzymatically removed from the embryo, it fails to produce stroma in vitro unless it is cultured on collagenous ECM. We have previously shown that the stimulatory effect is mediated across Nucleopore filters in direct proportion to the surface area created by epithelial cell processes traversing the filter to contact ECM. Since collagenous ECM is insoluble under physiological conditions, transfilter stimulation of stroma production is probably due to an interaction of the epithelial cell surface with “inducer” ECM (killed lens capsule or purified collagen). We grew 5-day-old corneal epithelia on Nucleopore filters atop [3H]proline-labeled lens capsules and used both autoradiography and scintillation counting to show that radioactive collagen does not enter the epithelial cells in detectable amounts. We also show here that the stimulatory effect of collagen on collagen synthesis is not dependent on trapping of serum or binding of conditioned medium factors by ECM. Finally, we demonstrate that the stimulatory effect is reduced by removal of transfilter ECM after 6–12 hr in vitro. By 18–24 hr, however, cultured epithelium is less dependent on the substratum, probably because it has produced its own ECM. We conclude that: (1) the contact mediated collagen-cell surface interaction under study here requires the continuous presence of collagen in vivo and in vitro for maintenance of “stimulated” epithelial stroma synthesis; (2) the collagenous “inducer” interacts directly with epithelium rather than indirectly via trapped intermediates; (3) collagen acts at the epithelial cell surface without entering the cells.  相似文献   

14.
By means of the artificially induced heterochronic developmental deviations represented by local prothetelies and metathetelies it has been possible to investigate the individual developmental fates of ontogenetically different tissues, such as larval, pupal, and adult epidermal cells, in one and the same body and under the identical concentration of juvenile hormone (JH) in the haemolymph.In contrast to the widely accepted hormonal theories which claim that the kind of morphogenesis is determined by large, intermediate, and low titres of JH, the heterochronic character of the tissues never developed into a uniform population of homomorphic epidermal cells. Instead, in the presence of effective amounts of JH the heterochronic pattern has been fully preserved and carried on into the next developmental instar. Moreover, in the absence of the effective JH amounts the ontogenetically different tissues, such as larval and pupal epidermal cells, simultaneously undergo their respective morphogenetic developments, i.e. larval-pupal and pupal-adult morphogenesis in the same hormonal milieu. It is concluded that the selective factor in determination of the kind of morphogenetical changes is not an altered JH titre but the extant, previously attained degree of ontogenetic structural differentiation. It has been demonstrated that JH can temporarily and reversibly inhibit the morphogenetic progress at quite different ontogenetic levels but it cannot cause a ‘reversal of metamorphosis’ at any of these levels.Under specific experimental conditions the larval epidermal cells can undergo pupal and adult morphogenesis without secreting the pupal cuticle. However, the pupal morphogenetic interstage, whether with the cuticle or without the pupal cuticle, constitutes an obligatory developmental step. Further, it appears that an absence of JH may represent an important condition but not a real cause of insect metamorphosis, as presumed in some other hormonal concepts. Thus, chromosomal duplications or cellular divisions in the absence of JH have not committed the cells to morphogenesis unless provided by an additional stimulus of endogenous prothoracic gland hormone or exogenous ecdysterone. An important factor in understanding the hormonal control of insect morphogenesis is the critical timing of the respective morphogenetic steps. This corresponds closely with the duration of the pharate phases in insect development. Possible hormonal mechanisms concerned in the regulation of morphogenesis in endopterygote insects have been outlined.  相似文献   

15.
Parasitism of the tobacco hornworm, Manducasexta, by the braconid wasp Cotesiacongregata, induces developmental arrest of the host in the larval stage. During the final instar of the host, its juvenile hormone (JH) titer is elevated, preventing host metamorphosis. This study investigated the effects of hormonal manipulation of the host on the parasitoid’s emergence behavior. The second larval ecdysis of the wasps coincides with their emergence from the host, and application of the juvenile hormone analogue methoprene to day 4 fifth instar hosts either delayed or totally suppressed the subsequent emergence of the wasps. Effects of methoprene were dose-dependent and no parasitoids emerged following treatment of host larvae with doses >50 μg. Parasitoids which failed to emerge eventually succumbed as unecydsed pharate third instar larvae in the hemocoel of the host. Effects of host methoprene treatment on parasitoid metamorphosis were also assessed, and metamorphic disruption occurred at much lower dosages compared with doses necessary to suppress parasitoid emergence behavior. The inhibitory effect of methoprene on parasitoid emergence behavior appears to be mediated by effects of this hormone on the synthesis or release of ecdysis-triggering hormone (ETH) in the parasitoid, the proximate endocrine cue which triggers ecdysis behavior in free-living insects. ETH accumulated in the epitracheal Inka cells of parasitoids developing in methoprene-treated hosts, suggestive of a lack of hormone release. Thus, the hormonal modulation of parasitoid emergence behavior appears to be complex, involving a suite of hormones including JH, ecdysteroid, and peptide hormones.  相似文献   

16.
The adult mammalian intestine has long been used as a model to study adult stem cell function and tissue renewal as the intestinal epithelium is constantly undergoing self-renewal throughout adult life. This is accomplished through the proliferation and subsequent differentiation of the adult stem cells located in the crypt. The development of this self-renewal system is, however, poorly understood. A number of studies suggest that the formation/maturation of the adult intestine is conserved in vertebrates and depends on endogenous thyroid hormone (T3). In amphibians such as Xenopus laevis, the process takes place during metamorphosis, which is totally dependent upon T3 and resembles postembryonic development in mammals when T3 levels are also high. During metamorphosis, the larval epithelial cells in the tadpole intestine undergo apoptosis and concurrently, adult epithelial stem/progenitor cells are formed de novo, which subsequently lead to the formation of a trough-crest axis of the epithelial fold in the frog, resembling the crypt-villus axis in the adult mammalian intestine. Here we will review some recent molecular and genetic studies that support the conservation of the development of the adult intestinal stem cells in vertebrates. We will discuss the mechanisms by which T3 regulates this process via its nuclear receptors.  相似文献   

17.

Background

The thyroid hormone (T3)-induced formation of adult intestine during amphibian metamorphosis resembles the maturation of the mammalian intestine during postembryonic development, the period around birth when plasma T3 level peaks. This process involves de novo formation of adult intestinal stem cells as well as the removal of the larval epithelial cells through apoptosis. Earlier studies have revealed a number of cytological and molecular markers for the epithelial cells undergoing different changes during metamorphosis. However, the lack of established double labeling has made it difficult to ascertain the identities of the metamorphosing epithelial cells.

Results

Here, we carried out different double-staining with a number of cytological and molecular markers during T3-induced and natural metamorphosis in Xenopus laevis. Our studies demonstrated conclusively that the clusters of proliferating cells in the epithelium at the climax of metamorphosis are undifferentiated epithelial cells and express the well-known adult intestinal stem cell marker gene Lgr5. We further show that the adult stem cells and apoptotic larval epithelial cells are distinct epithelial cells during metamorphosis.

Conclusions

Our findings suggest that morphologically identical larval epithelial cells choose two alternative paths: programmed cell death or dedifferentiation to form adult stem cells, in response to T3 during metamorphosis with apoptosis occurring prior to the formation of the proliferating adult stem cell clusters (islets).
  相似文献   

18.
《Insect Biochemistry》1987,17(7):1003-1006
The titers of JH III were studied in the larval and pupal stages of the two female honey bee castes, the queen and the worker. Whereas the early larval stages, L3 and L4, had to be pooled, all the last instar larvae, pupae, and newly hatched adults, were titered individually. The queen stages produce two-fold higher JH III titers in comparison with the worker stages. Both have relatively high titers during the early larval instars, decreasing from an average of 450 pmol/g at L3 to about 20 pmol/g in the queen and 75 pmol/g at L3 to 5 pmol/g at L5 in the worker. Both castes build up another JH III peak at the end of their spinning phase when entering the pharate pupa stage, with about 200 pmol/g in the queen and 60 pmol/g in the worker. No JH III was found in the pupal stage; the queen only develops a new JH III titer in the late pupal stage.  相似文献   

19.
Changes in activity of the corpora allata (CA) during larval-pupal-adult development of the tobacco hornworm Manduca sexta were studied by transplantation assays, measurements of in vitro juvenile hormone (JH) and JH acid synthesis, and determination of JH acid methyltransferase (JHAMT) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activities. The data from these assays demonstrate that the CA cease to secrete JH by day 4 of the last larval instar (wandering stage). With regard to JH synthesis, they remain inactive throughout the prepupal, pupal, and most of the pharate adult periods. CA of females, but not of males, resume JH synthesis shortly before eclosion. The biochemical basis of the inactivation process is the loss of JHAMT activity. However, prepupal CA produce JH acids, as shown by enzyme and in vitro assays. Pupal and pharate adult CA do not synthesize JH acids although levels of HMG-CoA reductase activity seem to remain relatively high. Radiolabeled JH was recovered from hemolymph of allatectomized prepupae that had been injected with radiolabeled JH acid. These results provide further evidence that certain peripheral tissues (eg, imaginal discs) convert JH acid secreted by the prepupal CA to JH and, thus, that JH acid is a prohormone in the prepupal period. The CA change from hormone secretion to prohormone secretion during larval-prepupal transformation, a unique functional alteration in an endocrine gland.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号