首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dacus tryoni has exceptional powers of acclimation for an insect. Thresholds for cold-torpor change up to a maximum of 0.5°C per 1°C change of acclimation temperature—an order of adaptation approaching the best in vertebrate poikilotherms. Developmental acclimation can take place quickly; the critical period for this process corresponds to the last sixth of development in the puparium. Post-teneral flies have a constant torpor threshold if maintained in the temperature regime of their developmental period. If changed to another regime their threshold changes at a logarithmically declining rate towards the value that would be caused by developmental acclimation in that regime. The rate of post-teneral acclimation depends upon both the current threshold and on the prevailing temperature but there is a maximum limit to the rate of cold-acclimation that can be induced. Post-teneral acclimation to cold can therefore be slow but this is no handicap in the field as it is induced at maximal rates by temperatures up to 13°C above the lowest attainable threshold. Acclimatization for winter conditions therefore starts 2 to 3 months before they occur. Changes in threshold and maintenance of constant thresholds in both constant and fluctuating conditions can be predicted by the same acclimation model, provided a modification is made to account for the fact that cold-acclimation at certain temperatures is faster when these are experienced intermittently than when they are experienced constantly.  相似文献   

2.
Activity thresholds were measured in nine anholocyclic clones of the peach‐potato aphid Myzus persicae collected along a latitudinal cline of its European distribution from Sweden to Spain. The effects of collection origin and intra‐ and intergenerational acclimation on these thresholds were investigated. Low‐temperature (10°C) acclimation for one generation depressed the movement threshold and chill coma temperatures, with the largest reduction in movement threshold recorded for clone UK 1 (8.8–2.5°C) and in chill coma for UK 2 (4.8–2.0°C). High‐temperature (25°C) acclimation for one generation increased the heat movement threshold and heat coma temperature with the largest increase in the movement threshold (40.1–41.1°C) and heat coma (41.4–42.3°C) recorded for clone Swed 1. There was no further intergenerational acclimation over three generations. High‐temperature activity thresholds were less plastic than low‐temperature thresholds, and, consequently, thermal activity ranges were expanded following low‐temperature acclimation. No constant affect of acclimation was observed on chill coma recovery, although clonal differences were observed with Swed 1 and 3 requiring some of the longest complete recovery times. There was no relationship between latitude and activity thresholds with the exception of heat coma data where Scandinavian clones Swed 2 and 3 consistently displayed some of the lowest heat coma temperatures (e.g. 41.3°C for both clones at 20°C) and Mediterranean clones Span 1, 2 and 3 displayed some of the highest (e.g. 42.1, 41.9 and 42.5°C, respectively, at 20°C). These data suggest that clonal mixing could occur over a large scale across Europe, limiting local adaptation to areas where conditions enable long‐term persistence of populations, e.g. adaptation to higher temperatures in the Mediterranean region. It is suggested that aphid thermal tolerance could be governed more by clonal type than the latitudinal origin.  相似文献   

3.
Dacus tryoni, which overwinters in conditions of wide diurnal fluctuations in temperature, is capable of rapid acclimatization with respect to thresholds for torpor and flight but ability for metabolic compensation is apparently lacking. The rate of reacclimatization on abrupt transfer to lower temperatures is quicker the less the temperature drops and extrapolation of this relationship suggests a time of the order of 1 min for a drop as small as 1°C. This explains why continuous reacclimatization appears to take place during gradual cooling, even when this is as fast as 1°C/min. The insect can rapidly produce its maximum response to extensive drops of temperature as long as the latter falls gradually at a rate no faster than 1°C/min. Acclimatization in nature is therefore ‘immediate’. Reacclimatization to higher temperatures (deacclimatization to cold) depends upon the temperature that the insects are raised to and thus is slower the smaller the rise and understandably is not accomplished more rapidly by a gradual transition.  相似文献   

4.
Thermal plasticity can help organisms coping with climate change. In this study, we analyse how laboratory populations of the ectotherm species Drosophila subobscura, originally from two distinct latitudes and evolving for several generations in a stable thermal environment (18 °C), respond plastically to new thermal challenges. We measured adult performance (fecundity traits as a fitness proxy) of the experimental populations when exposed to five thermal regimes, three with the same temperature during development and adulthood (15-15 °C, 18-18 °C, 25-25 °C), and two where flies developed at 18 °C and were exposed, during adulthood, to either 15 °C or 25 °C. Here, we test whether (1) flies undergo stress at the two more extreme temperatures; (2) development at a given temperature enhances adult performance at such temperature (i.e. acclimation), and (3) populations with different biogeographical history show plasticity differences. Our findings show (1) an optimal performance at 18 °C only if flies were subjected to the same temperature as juveniles and adults; (2) the occurrence of developmental acclimation at lower temperatures; (3) detrimental effects of higher developmental temperature on adult performance; and (4) a minor impact of historical background on thermal response. Our study indicates that thermal plasticity during development may have a limited role in helping adults cope with warmer - though not colder - temperatures, with a potential negative impact on population persistence under climate change. It also emphasizes the importance of analysing the impact of temperature on all stages of the life cycle to better characterize the thermal limits.  相似文献   

5.
Acclimation to environmental change can impose both costs and benefits to organisms. In this study we explored to what extent locomotor behaviour of Drosophila melanogaster is influenced by developmental temperature and adult temperature in both the laboratory and the field. Following development at 15, 25, or 31 °C, adult flies were tested for locomotor activity at all developmental temperatures in the laboratory before and after exposure to a cold shock and in the field for their ability to locate resources after a cold shock. Both test (15, 25, and 31 °C) and developmental temperatures strongly affected locomoter activity, with flies developed at 25 °C having the highest activity at all three test temperatures before the cold shock. After the cold shock flies developed at 15 °C had higher activity compared with flies developed at 25 and 31 °C when tested at 15 and 25 °C, and flies developed at 25 °C had the highest activity when tested at 31 °C. Furthermore, flies developed at 31 °C showed longer recovery times following the cold shock at test temperatures of 15 and 25 °C. However, flies acclimated at 15 °C during development did not recover faster at 15 and 25 °C compared with flies developed at 25 °C. There were no significant correlations between recovery time and locomotor activity at any of the test temperatures. Flies developed at 15 °C and exposed to a cold shock before release in the field were much more successful in locating a resource at low field temperatures compared with flies developed at 25 and 31 °C. Our results provide support for both the beneficial acclimation hypothesis and the optimal developmental temperature hypothesis, but the results are highly context dependent and change with the temperature experienced by the individual during its lifetime.  相似文献   

6.
Summary Male and femalePsammodromus hispanicus from southern Europe were acclimated to four seasonal conditions of photoperiod and night time temperature. During the dark period, the lizards' body temperatures fell to ambient air temperature but during the light period the lizards were allowed to thermoregulate behaviourally and at such times the lizards' mean body temperature varied from 29.0°C to 32.6°C. The resting metabolic rate of these lizards was measured in 5°C steps from 5°C to 30°C or 35°C. Sexual condition had little effect on resting metabolic rate, but at low temperatures lizards acclimated to winter or spring seasonal conditions had lower resting metabolic rates than those acclimated to summer or autumn conditions. At temperatures above 20°C seasonal acclimation had no effect on resting metabolic rate. It is considered that the reduction in low temperature metabolic rate in spring and winter is induced by low night time temperatures and serves to conserve energy during those seasons when lizards must spend long periods at low temperature without being able to feed.  相似文献   

7.
Environmental stress generally disturbs cellular homeostasis. Researchers have hypothesized that chilling injury is linked to a shortage of ATP. However, previous studies conducted on insects exposed to nonfreezing low temperatures presented conflicting results. In this study, we investigated the mitochondrial bioenergetics of Drosophila melanogaster flies exposed to chronic cold stress (4 °C). We assessed mitochondrial oxygen consumption while monitoring the rate of ATP synthesis at various times (0, 1, 2, and 3 days) during prolonged cold stress and at two assay temperatures (25 and 4 °C). We compared organelle responses between cold-susceptible and cold-acclimated phenotypes. Continuous exposure to low temperature provoked temporal declines in the rates of mitochondrial respiration and ATP synthesis. Respiratory control ratios (RCRs) suggested that mitochondria were not critically uncoupled. Nevertheless, after 3 days of continuous cold stress, a sharp decline in the mitochondrial ATP synthesis rate was observed in control flies when they were assayed at low temperature. This change was associated with reduced survival capacity in control flies. In contrast, cold-acclimated flies exhibited high survival and maintained higher rates of mitochondrial ATP synthesis and coupling (i.e., higher RCRs). Adaptive changes due to cold acclimation observed in the whole organism were thus manifested in isolated mitochondria. Our observations suggest that cold tolerance is linked to the ability to maintain bioenergetics capacity under cold stress.  相似文献   

8.
In the present study, the combined effects of temperature and diet on development and survival of a crab spider, Misumenops tricuspidatus (Fabricius) (Araneae: Thomisidae) in laboratory conditions were investigated. The experiments were carried out at five constant temperatures ranging from 15°C to 35°C on two kinds of diets, fruit flies (Drosophila melanogaster) and a mixed diet of fruit flies and dung flies. It was found that development rate of eggs increased with successive temperature increments, reaching a maximum at 30°C, then declined at 32°C and that eggs survived well between 20°C and 30°C (>70%), but no eggs survived to hatching at 35°C regardless of whether the spiders were fed on single or mixed diet. Juveniles completed development on both diets at all constant temperatures tested, but survival was low at the extreme temperatures. Juvenile development times decreased over successive temperature increments up to 30°C, then increased at 32°C. Females developed faster than males. Diet also influenced development time, survival and number of moults to reach maturity. Juveniles raised on the mixed diet composed of fruit flies and dung flies developed faster, survived better, and required fewer moults to reach maturity than on a diet composed of only fruit flies. Plots of development rates (reciprocal of mean development times) and survival rates (expressed as percentages) against constant temperatures indicated that M. tricuspidatus is well adapted to low temperatures, but detrimentally affected by high temperatures. Using linear regression, the lower development threshold (LDT) and the sum of effective temperatures (SET) for all life stages of M. tricuspidatus on each diet were estimated. LDT and SET varied among developmental stages and between diets.  相似文献   

9.
In the Maritime Antarctic and High Arctic, soil microhabitat temperatures throughout the year typically range between ?10 and +5 °C. However, on occasion, they can exceed 20 °C, and these instances are likely to increase and intensify as a result of climate warming. Remaining active under both cool and warm conditions is therefore important for polar terrestrial invertebrates if they are to forage, reproduce and maximise their fitness. In the current study, lower and upper thermal activity thresholds were investigated in the polar Collembola, Megaphorura arctica and Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus. Specifically, the effect of acclimation on these traits was explored. Sub-zero activity was exhibited in all three species, at temperatures as low as ?4.6 °C in A. antarcticus. At high temperatures, all three species had capacity for activity above 30 °C and were most active at 25 °C. This indicates a comparable spread of temperatures across which activity can occur to that seen in temperate and tropical species, but with the activity window shifted towards lower temperatures. In all three species following one month acclimation at ?2 °C, chill coma (=the temperature at which movement and activity cease) and the critical thermal minimum (=low temperature at which coordination is no longer shown) occurred at lower temperatures than for individuals maintained at +4 °C (except for the CTmin of M. arctica). Individuals acclimated at +9 °C conversely showed little change in their chill coma or CTmin. A similar trend was demonstrated for the heat coma and critical thermal maximum (CTmax) of all species. Following one month at ?2 °C, the heat coma and CTmax were reduced as compared with +4 °C reared individuals, whereas the heat coma and CTmax of individuals acclimated at +9 °C showed little adjustment. The data obtained suggest these invertebrates are able to take maximum advantage of the short growing season and have some capacity, in spite of limited plasticity at high temperatures, to cope with climate change.  相似文献   

10.
Thermoregulation, energetics and patterns of torpor in the pygmy mouse lemur, Microcebus myoxinus, were investigated under natural conditions of photoperiod and temperature in the Kirindy/CFPF Forest in western Madagascar. M. myoxinus entered torpor spontaneously during the cool dry season. Torpor only occurred on a daily basis and torpor bout duration was on average 9.6 h, and ranged from 4.6 h to 19.2 h. Metabolic rates during torpor were reduced to about 86% of the normothermic value. Minimum body temperature during daily torpor was 6.8 °C at an ambient temperature of 6.3 °C. Entry into torpor occurred randomly between 2000 and 0620 hours, whereas arousals from torpor were clustered around 1300 hours within a narrow time window of less than 4 h. Arousal from torpor was a two-step process with a first passive climb of body temperature to a mean of 27 °C, carried by the daily increase of ambient temperature when oxygen consumption remained more or less constant, followed by a second active increase of oxygen consumption to further raise the body temperature to normothermic values. In conclusion, daily body temperature rhythms in M. myoxinus further reduce the energetic costs of daily torpor seen in other species: they extend to unusually low body temperatures and consequently low metabolic rates in torpor, and they employ passive warming to reduce the energetic costs of arousal. Thus, these energy-conserving adaptations may represent an important energetic aid to the pygmy mouse lemur and help to promote their individual fitness. Accepted: 2 November 1999  相似文献   

11.
Previous studies have suggested that Australian long-eared bats (Nyctophilus) differ from northern-hemisphere bats with respect to their thermal physiology and patterns of torpor. To determine whether this is a general trait of Australian bats, we characterised the temporal organisation of torpor and quantified metabolic rates and body temperatures of normothermic and torpid Australian bats (Nyctophilus geoffroyi, 7 g and N. gouldi, 10 g) over a range of air temperatures and in different seasons. The basal metabolic rate of normothermic bats was 1.36 ± 0.17 ml g−1 h−1 (N. geoffroyi) and 1.22 ± 0.13 ml g−1 h−1 (N. gouldi), about 65% of that predicted by allometric equations, and the corresponding body temperature was about 36 °C. Below an air temperature of about 25 °C bats usually remained normothermic for only brief periods and typically entered torpor. Arousal from torpor usually occurred shortly after the beginning of the dark phase and torpor re-entry occurred almost always during the dark phase after normothermic periods of only 111 ± 48 min (N. geoffroyi) and 115 ± 66 min (N. gouldi). At air temperatures below 10 °C, bats remained torpid for more than 1 day. Bats that were measured overnight had steady-state torpor metabolic rates representing only 2.7% (N. geoffroyi) and 4.2% (N. gouldi) of the basal metabolic rate, and their body temperatures fell to minima of 1.4 and 2.3 °C, respectively. In contrast, bats measured entirely during the day, as in previous studies, had torpor metabolic rates that were up to ten times higher than those measured overnight. The steady-state torpor metabolic rate of thermoconforming torpid bats showed an exponential relationship with body temperature (r 2 = 0.94), suggesting that temperature effects are important for reduction of metabolic rate below basal levels. However, the 75% reduction of metabolic rate between basal metabolic rate and torpor metabolic rate at a body temperature of 29.3 °C suggests that metabolic inhibition also plays an important role. Torpor metabolic rate showed little or no seasonal change. Our study suggests that Australian Nyctophilus bats have a low basal metabolic rate and that their patterns of torpor are similar to those measured in bats from the northern hemisphere. The low basal metabolic rate and the high proclivity of these bats for using torpor suggest that they are constrained by limited energy availability and that heterothermy plays a key role in their natural biology. Accepted: 22 November 1999  相似文献   

12.
In some turtle species, temperature selection may be influenced by environmental conditions, including acclimation temperature and substrate quality. These factors may be particularly important for softshell turtles that are highly aquatic and often thermoregulate by burying in the substrate in shallow water microhabitats. We tested for effects of acclimation temperature (22 °C or 27 °C) and substrate type (sand or gravel) on the selected temperature and movement patterns of 20 juvenile spiny softhshell turtles (Apalone spinifera; Reptilia: Trionychidae) in an aquatic thermal gradient of 14–34 °C. Among 7–11 month old juvenile softshell turtles, acclimation temperature and substrate type did not influence temperature selection, nor alter activity and movement patterns. During thermal gradient tests, both 22- and 27 °C-acclimated turtles selected the warmest temperature (34 °C) available most frequently, regardless of substrate type (sand or gravel). Similarly, acclimation temperature and substrate type did not influence movement patterns of turtles, nor the number of chambers used in the gradient tests. These results suggest that juvenile Apalone spinifera are capable of detecting small temperature increments and prefer warm temperatures that may positively influence growth and metabolism, and that thermal factors more significantly influence aquatic thermoregulation in this species than does substrate type.  相似文献   

13.
Heleomyza borealis Boh. (Diptera, Heleomyzidae) overwinters as larvae in Arctic habitats, where they may experience winter temperatures below ? 15°C. The larvae freeze at c.? 7°C but in acclimation experiments 80% survived when exposed to ? 60°C. Of the larvae exposed to between ? 4 and ? 15°C, only 3% pupated. However, when cooled to ? 20°C this increased to 44%, with 4% emerging as adults. Larvae maintained at 5°C contained low levels of glycerol, sorbitol and trehalose, which did not increase with acclimation to low temperatures. However, levels of fructose increased from 6.1 μg mg?1 fw in control animals to 17 μg mg?1 fw when exposed to ? 2°C for 1 week. Larval body water (2.2 ± 0.1 g/g dw, mean ± SD, n = 100) and lipid content (0.22 ± 0.002 g/g fw, mean ± SE) showed no significant change during acclimation to low temperatures. Larvae maintained at a constant 5°C survived for over 18 months with little loss of body mass (from 7.5 ± 1.2 to 7.0 ± 1.2 mg fw, mean ± SD, n = 20), but none pupated. Heleomyza borealis larvae appear to feed and grow until they reach a body mass of about 7.5 mg and then become dormant. They remain in this state until they experience a low temperature stimulus (< ? 15°C) followed by a warm period (≈ 5°C). This ensures that the larvae pupate and adults emerge in early summer, allowing the maximum growing period before the following winter. Heleomyza borealis are adapted to survive long winters in a dormant larval state. They have a low metabolic rate, can conserve body water even at subzero temperatures but do not synthesize large quantities of cryoprotectants.  相似文献   

14.
The microclimate at Thermocline Cave (lat, 30° 45′S, long, 149° 43′E) was investigated by measuring air temperature and relative humidity at five stations on 18 occasions from September 1971 to December, 1973. The activity, body weight and roosting sites of the bat Miniopterus schreibersii blepotis in the cave were recorded on each visit. Relative humidity in the cave was generally high and paralleled temperature. The cave exhibited a range of temperatures from 9 to 19.5°C but bats selected roosting sites only in a part of this range. During the autumn when the bats arrived and were feeding, their body weights were low, and they roosted in a domed area at the rear of the cave with a temperature of 19.5°C. As they became less active and body weight increased they moved to cooler parts (9.5-11°C) towards the front of the cave and underwent periods of torpor, in one case lasting for at least 12 days. From July to September body weight decreased. The bats became more active in September and most had left the cave by October. It appears that M.s. blepotis can detect temperature differences of 1°C. They used this ability to select cold areas with stable high humidity in Thermocline Cave to under go periods of winter torpor.  相似文献   

15.
Acclimation in the thermal tolerance range of insects occurs when they are exposed to novel temperatures in the laboratory. In contrast to the large number of studies that have tested for the ability of insects to acclimate, relatively few have sought to determine the time-course for attainment and reversal of thermal acclimation. In this study the time required for the Mediterranean fruit fly, Ceratitis capitata Wiedemann, and the Natal fruit fly, Ceratitis rosa Karsch, to acclimate to a range of constant temperatures was tested by determining the chill-coma recovery time and heat knock-down time of flies that had been exposed to novel benign temperatures for different durations. The time required for reversal of acclimation for both Ceratitis species was also determined after flies had been returned to the control temperature. Acclimation to 31 °C for only one day significantly improved the heat knock-down time of C. capitata, but also led to slower recovery from chill-coma. Heat knock-down time indicated that acclimation was achieved after only one day in C. rosa, but it took three days for C. rosa to exhibit a significant acclimation response to a novel temperature of 33 °C when measured using chill-coma recovery time. Reversal of acclimation after return to initial temperature conditions was achieved after only one day in both C. capitata and C. rosa. Adult C. capitata held at 31.5 °C initially exhibited improved heat knock-down times but after 9 days the heat knock-down time of these flies had declined to levels not significantly different from that of control flies held at the baseline temperature of 24 °C. In both Ceratitis species, heat knock-down time declined with age whereas chill-coma recovery time increased with age, indicating an increased susceptibility to high and low temperatures, respectively.  相似文献   

16.
Acclimation refers to reversible, nongenetic changes in phenotype that are induced by specific environmental conditions. Acclimation is generally assumed to improve function in the environment that induces it (the beneficial acclimation hypothesis). In this study, we experimentally tested this assumption by measuring relative fitness of the bacterium Escherichia coli acclimated to different thermal environments. The beneficial acclimation hypothesis predicts that bacteria acclimated to the temperature of competition should have greater fitness than do bacteria acclimated to any other temperature. The benefit predicted by the hypothesis was found in only seven of 12 comparisons; in the other comparisons, either no statistically demonstrable benefit was observed or a detrimental effect of acclimation was demonstrated. For example, in a lineage evolutionarily adapted to 37°C, bacteria acclimated to 37°C have a higher fitness at 32°C than do bacteria acclimated to 32°C, a result exactly contrary to prediction; acclimation to 27°C or 40°C prior to competition at those temperatures confers no benefit over 37°C acclimated forms. Consequently, the beneficial acclimation hypothesis must be rejected as a general prediction of the inevitable result of phenotypic adjustments associated with new environments. However, the hypothesis is supported in many instances when the acclimation and competition temperatures coincide with the historical temperature at which the bacterial populations have evolved. For example, when the evolutionary temperature of the population was 37°C, bacteria acclimated to 37°C had superior fitness at 37°C to those acclimated to 32°C; similarly, bacteria evolutionarily adapted to 32°C had a higher fitness during competition at 32°C than they did when acclimated to 37°C. The more surprising results are that when the bacteria are acclimated to their historical evolutionary temperature, they are frequently competitively superior even at other temperatures. For example, bacteria that have evolved at either 20°C or 32°C and are acclimated to their respective evolutionary temperatures have a greater fitness at 37°C than when they are acclimated to 37°C. Thus, acclimation to evolutionary temperature may, as a correlated consequence, enhance performance not only in the evolutionary environment, but also in a variety of other thermal environments.  相似文献   

17.
Temperature thresholds for both cold-torpor and cold-survival in post-teneral D. tryoni can be predicted entirely on the basis of thermal history, regardless of age. There is a direct link between the torpor threshold of post-teneral flies of any age and the mean time that flies of any post-teneral age can survive at any one low temperature. Mean survival time at any one low temperature can therefore be predicted if the torpor threshold is first predicted by using the model of Meats which only requires data on thermal history.  相似文献   

18.
Notothenioid fishes of the Southern Ocean have evolved under cold and stable temperatures for millions of years. Due to rising temperatures in the Southern Ocean, investigating thermal limits and the capacities for inducing a temperature acclimation response in notothenioids has become of increasing interest. Here, we investigated effects of temperature acclimation on cardiorespiratory responses and cardiac and skeletal muscle energy metabolism in a benthic Antarctic notothenioid, Trematomus bernacchii. We acclimated specimens to ?1, 2 and 4.5 °C for 14 days and quantified heart rates and ventilation rates during an acute increase in temperature. Ventilation rates showed an effect of acclimation both at initial steady-state acclimation conditions and during an acute temperature increase, suggesting a partial thermal compensatory response. However, acclimation did not affect heart rates at steady-state acclimation conditions and the temperatures at which onset of cardiac arrhythmia occurred, suggesting lack of inducible thermal tolerance in cardiac performance. Citrate synthase (CS), lactate dehydrogenase (LDH) and 3-hydroxyacyl dehydrogenase activities in skeletal muscle tissues suggested acclimation-induced shifts in metabolic fuel preferences, and a marked increase in LDH activity with acclimation to 4.5 °C showed an increase in anaerobic metabolism. In heart tissue, CS and LDH activities decreased with acclimation to 4.5 °C, suggesting reduced cardiac ATP production. Overall, the data suggest a partial acclimatory response to temperature by T. bernacchii and support the hypothesis that reduced cardiac acclimatory capacity may play a role in limiting the thermal plasticity of T. bernacchii.  相似文献   

19.
《Cryobiology》2008,56(3):230-235
Rodent hibernators experience low core body temperature (as low as −2 °C) and reduced metabolic rates during hibernation. Concordant with energetic constraints, protein synthesis is negligible during torpor. To maintain pools of key regulatory proteins, proteolysis must be depressed as well. Ubiquitin-dependent proteolysis consists of two major steps: (1) ubiquitylation or tagging of a protein substrate by ubiquitin and (2) the protein substrate’s subsequent degradation by the 26S proteasome. Earlier, we demonstrated that the low temperatures typical of torpor virtually arrest proteolytic processing. Here, we demonstrate that in vitro ubiquitylation still continues at greater than 30% of maximal rates at temperatures as low as 0 °C. Continued ubiquitylation in the presence of severely depressed proteolysis may explain the previously observed 2- to 3-fold increase of ubiquitin conjugates during torpor. We determined if there is a qualitative change in the type of ubiquitylation e.g., monoubiquitylation vs polyubiquitylation that occurs during torpor. We found no bias for monoubiquitylation in any state of the torpor cycle. We further determined that substrate limitation of free ubiquitin is not limiting ubiquitylation during torpor. We conclude that while the cold temperatures of torpor may limit proteolysis in accordance with metabolic demands, continued ubiquitylation may result in increased ubiquitin conjugate concentrations that must be processed upon arousal.  相似文献   

20.
The responses of respiration and photosynthesis to temperature fluctuations in marine macroalgae have the potential to significantly affect coastal carbon fluxes and sequestration. In this study, the marine red macroalga Gracilaria lemaneiformis was cultured at three different temperatures (12, 19, and 26°C) and at high‐ and low‐nitrogen (N) availability, to investigate the acclimation potential of respiration and photosynthesis to temperature change. Measurements of respiratory and photosynthetic rates were made at five temperatures (7°C–33°C). An instantaneous change in temperature resulted in a change in the rates of respiration and photosynthesis, and the temperature sensitivities (i.e., the Q10 value) for both the metabolic processes were lower in 26°C‐grown algae than 12°C‐ or 19°C‐grown algae. Both respiration and photosynthesis acclimated to long‐term changes in temperature, irrespective of the N availability under which the algae were grown; respiration displayed strong acclimation, whereas photosynthesis only exhibited a partial acclimation response to changing growth temperatures. The ratio of respiration to gross photosynthesis was higher in 12°C‐grown algae, but displayed little difference between the algae grown at 19°C and 26°C. We propose that it is unlikely that respiration in G. lemaneiformis would increase significantly with global warming, although photosynthesis would increase at moderately elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号