首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD1d molecules are structurally similar to MHC class I, but present lipid antigens as opposed to peptides. Here, we show that MHC class I molecules physically associate with (and regulate the functional expression of) mouse CD1d on the surface of cells. Low pH (3.0) acid stripping of MHC class I molecules resulted in increased surface expression of murine CD1d on antigen presenting cells as well as augmented CD1d-mediated antigen presentation to NKT cells. Consistent with the above results, TAP1-/- mice were found to have a higher percentage of type I NKT cells as compared to wild type mice. Moreover, bone marrow-derived dendritic cells from TAP1-/- mice showed increased antigen presentation by CD1d compared to wild type mice. Together, these results suggest that MHC class I molecules can regulate NKT cell function, in part, by masking CD1d.  相似文献   

2.
B cells require MHC class II (MHC II)-restricted cognate help and CD40 engagement by CD4(+) T follicular helper (T(FH)) cells to form germinal centers and long-lasting Ab responses. Invariant NKT (iNKT) cells are innate-like lymphocytes that jumpstart the adaptive immune response when activated by the CD1d-restricted lipid α-galactosylceramide (αGalCer). We previously observed that immunization of mice lacking CD4(+) T cells (MHC II(-/-)) elicits specific IgG responses only when protein Ags are mixed with αGalCer. In this study, we investigated the mechanisms underpinning this observation. We find that induction of Ag-specific Ab responses in MHC II(-/-) mice upon immunization with protein Ags mixed with αGalCer requires CD1d expression and CD40 engagement on B cells, suggesting that iNKT cells provide CD1d-restricted cognate help for B cells. Remarkably, splenic iNKT cells from immunized MHC II(-/-) mice display a typical CXCR5(hi)programmed death-1(hi)ICOS(hi)Bcl-6(hi) T(FH) phenotype and induce germinal centers. The specific IgG response induced in MHC II(-/-) mice has shorter duration than that developing in CD4-competent animals, suggesting that iNKT(FH) cells preferentially induce transient rather than long-lived Ab responses. Together, these results suggest that iNKT cells can be co-opted into the follicular helper function, yet iNKT(FH) and CD4(+) T(FH) cells display distinct helper features, consistent with the notion that these two cell subsets play nonredundant functions throughout immune responses.  相似文献   

3.
Biochemical analysis has suggested that self GPI anchors are the main natural ligand associated with mouse CD1d molecules. A recent study reported that Valpha14+ NK T cells responded to self as well as foreign (parasite-derived) GPIs in a CD1d-dependent manner. It further reported that the IgG response to the Plasmodium berghei malarial circumsporozoite (CS) protein was severely impaired in CD1d-deficient mice, leading to a model whereby NK T cells, upon recognition of CD1d molecules presenting the CS-derived GPI anchor, provide help for B cells secreting anti-CS Abs. We tested this model by comparing the anti-CS Ab responses of wild-type, CD1d-deficient, and MHC class II-deficient mice. We found that the IgG response to the CS protein was solely MHC class II-dependent. Furthermore, by measuring the response of a broad panel of CD1d-autoreactive T cells to GPI-deficient CD1d-expressing cells, we found that GPIs were not required for autoreactive responses.  相似文献   

4.
Murine Valpha14(inv)T cells (NKT cells), restricted by the CD1d1 MHC 1b molecules, are a distinctive subset of T cells endowed with pleiotropic functions. CD1d1-restricted NKT cells infiltrate the granulomas induced by the s.c. injection of mycobacterial phosphatidylinositoldimannoside (PIM(2)) but not of its deacylated derivative. NKT cells are detectable as early as 6 hours following the injection. Although the molecular structure of PIM(2) meets the requirements for presentation by CD1d1, Ab blocking and adoptive transfer experiments of wild-type NKT cells into CD1d1(-/-) mice show that CD1d1 expression is not required for the early recruitment of NKT cells to the injection site. This conclusion was confirmed by the finding that IL-12Rbeta(-/-) and CD40(-/-) mice were able to recruit NKT cells after PIM(2) challenge. Moreover, the injection of alpha-galactosylceramide, an NKT cell ligand that is recognized in the context of CD1d1, promoted only a minor recruitment of NKT cells. By contrast, injection of beta-galactosylceramide, a synthetic glycolipid that binds to CD1d1 but does not activate the CD1d/TCR pathway, resulted in the development of large granulomas rich in NKT cells. Finally, local injection of TNF-alpha mimics the effect of glycolipids. It is concluded that NKT cells migrate to and accumulate at inflammatory sites in the same way as other cells of the innate immune system and that migration to and accumulation at inflammatory sites are processes independent of the CD1d1 molecule.  相似文献   

5.
CD1d and nonclassical MHC molecules differ markedly from classical MHC ligands in their ability to promote the selection and differentiation of developing T cells. Whereas classical MHC-restricted T cells have a predominantly naive phenotype and a broad TCR repertoire, most other T cells have a memory and/or NKT phenotype with a restricted repertoire. Because the nonclassical ligands selecting these memory-type cells are expressed by bone marrow-derived cells, it has been suggested that the development of large repertoires of naive-type cells was dependent on the classical MHC expression pattern in the thymus cortex, high on epithelial cells and low on cortical thymocytes. We redirected CD1d expression using the classical MHC II Ealpha promoter. pEalpha-CD1d mice lacked memory-type NKT cells, but, surprisingly, they did not acquire the reciprocal ability to select a diverse population of naive CD1d-restricted cells. These findings suggest that, whereas the development of NKT cells is dependent on the pattern of CD1d expression, the absence of a broad, naive CD1d-restricted T cell repertoire may reflect intrinsic limitations of the pool of TCR genes or lipid Ags.  相似文献   

6.
Dendritic cells (DC) are key regulators of T cell immunity and tolerance. NKT cells are well-known enhancers of Th differentiation and regulatory T cell function. However, the nature of the DC directing T and NKT cell activation and polarization as well as the role of the respective CD1d Ags presented is still unclear. In this study, we show that peptide-specific CD4(+)IL-10(+) T cell-mediated full experimental autoimmune encephalomyelitis (EAE) protection by TNF-treated semimatured DCs was dependent on NKT cells recognizing an endogenous CD1d ligand. NKT cell activation by TNF-matured DCs induced high serum levels of IL-4 and IL-13 which are absent in NKT cell-deficient mice, whereas LPS plus anti-CD40-treated fully mature DCs induce serum IFN-gamma. In the absence of IL-4Ralpha chain signaling or NKT cells, no complete EAE protection was achieved by TNF-DCs, whereas transfer of NKT cells into Jalpha281(-/-) mice restored it. However, activation of NKT cells alone was not sufficient for EAE protection and early serum Th2 deviation. Simultaneous activation of NKT cells and CD4(+) T cells by the same DC was required for EAE protection. Blocking experiments demonstrated that NKT cells recognize an endogenous glycolipid presented on CD1d on the injected DC. Together, this indicates that concomitant and interdependent presentation of MHC II/self-peptide and CD1d/self-isoglobotrihexosylceramide to T and NKT cells by the same partially or fully matured DC determines protective and nonprotective immune responses in EAE.  相似文献   

7.
Following inoculation of Ag into the anterior chamber (a.c.), systemic tolerance develops that is mediated in part by Ag-specific efferent CD8(+) T regulatory (Tr) cells. This model of tolerance is called a.c.-associated immune deviation. The generation of the efferent CD8(+) Tr cell in a.c.-associated immune deviation is dependent on IL-10-producing, CD1d-restricted, invariant Valpha14(+) NKT (iNKT) cells. The iNKT cell subpopulations are either CD4(+) or CD4(-)CD8(-) double negative. This report identifies the subpopulation of iNKT cells that is important for induction of the efferent Tr cell. Because MHC class II(-/-) (class II(-/-)) mice generate efferent Tr cells following a.c. inoculation, we conclude that conventional CD4(+) T cells are not needed for the development of efferent CD8(+) T cells. Furthermore, Ab depletion of CD4(+) cells in both wild-type mice (remove both conventional and CD4(+) NKT cells) and class II(-/-) mice (remove CD4(+) NKT cells) abrogated the generation of Tr cells. We conclude that CD4(+) NKT cells, but not the class II molecule or conventional CD4(+) T cells, are required for generation of efferent CD8(+) Tr cells following Ag introduction into the eye. Understanding the mechanisms that lead to the generation of efferent CD8(+) Tr cells may lead to novel immunotherapy for immune inflammatory diseases.  相似文献   

8.
Although CD1d and MHC class Ia share similar overall structure, they have distinct levels and patterns of surface expression. While the expression of CD1d1 is known to be essential for the development of NKT cells, the contribution of CD1d1 to the development of CD8(+) T cells appears to be inconsequential. To investigate whether CD1d tissue distribution and expression levels confer differential capacity in selecting these two T cell subsets, we analyzed CD8 and NKT cell compartments in K(b)-CD1d-transgenic mice that lack endogenous MHC class Ia and CD1d, respectively. We found that MHC class Ia-like expression pattern and tissue distribution are not sufficient for CD1d to rescue the development of CD8(+) T cells, suggesting that unique structural features of CD1d preclude its active participation in selection of CD8(+) T cells. Conversely, cell type-specific CD1d surface density is important for the selection of NKT cells, as the NKT cell compartment was only partially rescued by the K(b)-CD1d transgene. We have previously demonstrated that increased CD1d expression on dendritic cells enhanced negative selection of NKT cells. In this study, we show that cell type-specific expression levels of CD1d establish a narrow window between positive and negative selection, suggesting that the distinct CD1d expression pattern may be selected evolutionarily to ensure optimal output of NKT cells.  相似文献   

9.
Glycosylphosphatidylinositol (GPI) anchors and glycoinositolphospholipids (GIPLs) from parasitic protozoa have been shown to exert a wide variety of effects on cells of the host innate immune system. However, the receptor(s) that are triggered by these protozoan glycolipids has not been identified. Here we present evidence that Trypanosoma cruzi-derived GPI anchors and GIPLs trigger CD25 expression on Chinese hamster ovary-K1 cells transfected with CD14 and Toll-like receptor-2 (TLR-2), but not wild-type (TLR-2-deficient) Chinese hamster ovary cells. The protozoan-derived GPI anchors and GIPLs containing alkylacylglycerol and saturated fatty acid chains or ceramide were found to be active in a concentration range of 100 nM to 1 microM. More importantly, the GPI anchors purified from T. cruzi trypomastigotes, which contain a longer glycan core and unsaturated fatty acids in the sn-2 position of the alkylacylglycerolipid component, triggered TLR-2 at subnanomolar concentrations. We performed experiments with macrophages from TLR-2 knockout and TLR-4 knockout mice, and found that TLR-2 expression appears to be essential for induction of IL-12, TNF-alpha, and NO by GPI anchors derived from T. cruzi trypomastigotes. Thus, highly purified GPI anchors from T. cruzi parasites are potent activators of TLR-2 from both mouse and human origin. The activation of TLR-2 may initiate host innate defense mechanisms and inflammatory response during protozoan infection, and may provide new strategies for immune intervention during protozoan infections.  相似文献   

10.
NKT cells are typically defined as CD1d-dependent T cells that carry an invariant TCR alpha-chain and produce high levels of cytokines. Traditionally, these cells were defined as NK1.1+ T cells, although only a few mouse strains express the NK1.1 molecule. A popular alternative marker for NKT cells has been DX5, an Ab that detects the CD49b integrin, expressed by most NK cells and a subset of T cells that resemble NKT cells. Interpretation of studies using DX5 as an NKT cell marker depends on how well DX5 defines NKT cells. Using a range of DX5 and other anti-CD49b Abs, we reveal major differences in reactivity depending on which Ab and which fluorochrome are used. The brightest, PE-conjugated reagents revealed that while most CD1d-dependent NKT cells expressed CD49b, they represented only a minority of CD49b+ T cells. Furthermore, CD49b+ T cell numbers were near normal in CD1d-/- mice that are completely deficient for NKT cells. CD1d tetramer- CD49b+ T cells differ from NKT cells by their activation and memory marker expression, tissue distribution, and CD4/CD8 coreceptor profile. Interestingly, both NKT cells and CD1d tetramer- CD49b+ T cells produce cytokines, but the latter are clearly biased toward Th1-type cytokines, in contrast to NKT cells that produce both Th1 and Th2 cytokines. Finally, we demonstrate that expression of CD49b by NKT cells does not dramatically alter with age, contrasting with earlier reports proposing DX5 as a maturation marker for NKT cells. In summary, our data demonstrate that DX5/CD49b is a poor marker for identifying CD1d-dependent NKT cells.  相似文献   

11.
CD1 molecules belong to non-polymorphic MHC class I-like proteins and present lipid antigens to T cells. Five different CD1 genes (CD1a-e) have been identified and classified into two groups. Group 1 include CD1a-c and present pathogenic lipid antigens to αβ T cells reminiscence of peptide antigen presentation by MHC-I molecules. CD1d is the only member of Group 2 and presents foreign and self lipid antigens to a specialized subset of αβ T cells, NKT cells. NKT cells are involved in diverse immune responses through prompt and massive production of cytokines. CD1d-dependent NKT cells are categorized upon the usage of their T cell receptors. A major subtype of NKT cells (type I) is invariant NKT cells which utilize invariant Vα14-Jα18 TCR alpha chain in mouse. The remaining NKT cells (type II) utilize diverse TCR alpha chains. Engineered CD1d molecules with modified intracellular trafficking produce either type I or type II NKT cell-defects suggesting the lipid antigens for each subtypes of NKT cells are processed/generated in different intracellular compartments. Since the usage of TCR by a T cell is the result of antigen-driven selection, the intracellular metabolic pathways of lipid antigen are a key in forming the functional NKT cell repertoire. [BMB Reports 2014; 47(5): 241-248]  相似文献   

12.
CD1 molecules can present microbial lipid Ag to T cells, suggesting that they participate in host defense against pathogens. In this study, we examined the role of CD1d in resistance to infection with the Lyme disease spirochete, Borrelia burgdorferi (Bb), an organism with proinflammatory lipid Ag. Bb infection of CD1d-deficient (CD1d(-/-)) mouse strains normally resistant to this pathogen resulted in arthritis. Pathology correlated with an increased prevalence of spirochete DNA in tissues and enhanced production of Bb-specific IgG, including IgG to Ag rapidly down-modulated on spirochetes in vivo. CD1d(-/-) mice exhibited high-titer Bb-specific IgG2a, an isotype commonly induced in disease-susceptible mice but not in the disease-resistant control mice in this study. These results show that CD1d deficiency impairs host resistance to a spirochete pathogen, and are the first example of a mutation that imparts Bb-resistant mice with the Ab and disease profile of a susceptible mouse strain.  相似文献   

13.
In this study we show that like MHC class I and class II molecules, cell surface CD1d expression on APC is regulated and affects T cell activation under physiological conditions. Although IFN-gamma alone is sufficient for optimum expression of MHC, CD1d requires two signals, one provided by IFN-gamma and a second mediated by microbial products or by the proinflammatory cytokine TNF. IFN-gamma-dependent CD1d up-regulation occurs on macrophages following infection with live bacteria or exposure to microbial products in vitro and in vivo. APC expressing higher CD1d levels more efficiently activate NKT cell hybridomas and primary NKT cells independently of whether the CD1d-restricted TCR recognizes foreign or self-lipid Ags. Our findings support a model in which CD1d induction regulates NKT cell activation.  相似文献   

14.
The myocarditic (H3) variant of Coxsackievirus B3 (CVB3) causes severe myocarditis in BALB/c mice and BALB/c mice lacking the invariant J alpha 281 gene, but minimal disease in BALB/c CD1d(-/-) animals. This indicates that CD1d expression is important in this disease but does not involve the invariant NKT cell often associated with CD1d-restricted immunity. The H3 variant of the virus increases CD1d expression in vitro in neonatal cardiac myocytes whereas a nonmyocarditic (H310A1) variant does not. V gamma 4(+) T cells show increased activation in both H3-infected BALB/c and J alpha 281(-/-) mice compared with CD1d(-/-) animals. The activated BALB/c V gamma 4(+) T cells from H3-infected mice kill H3-infected BALB/c myocytes and cytotoxicity is blocked with anti-CD1d but not with anti-MHC class I (K(d)/D(d)) or class II (IA/IE) mAbs. In contrast, H3 virus-infected CD1d(-/-) myocytes are not killed. These studies demonstrate that CD1d expression is essential for pathogenicity of CVB3-induced myocarditis, that CD1d expression is increased early after infection in vivo in CD1d(+) mice infected with the myocarditic but not with the nonmyocarditic CVB3 variant, and that V gamma 4(+) T cells, which are known to promote myocarditis susceptibility, appear to recognize CD1d expressed by CVB3-infected myocytes.  相似文献   

15.
CD1d molecules present both self Ags and microbial lipids to NKT cells. Previous studies have established that CD1d lysosomal trafficking is required for presentation of autoantigens to murine invariant NKT cells. We show in this study that this is not necessary for autoantigen presentation by human CD1d, but significantly affects the presentation of exogenous Ags. Wild-type and tail-deleted CD1d molecules stimulated similar autoreactive responses by human NKT clones, whereas presentation of exogenous lipids by tail-deleted CD1d was highly inefficient. Chloroquine treatment markedly inhibited exogenous Ag presentation by wild-type CD1d transfectants, but did not affect NKT autoreactive responses. Conversely, APC expression of HLA-DRalphabeta and the invariant chain (Ii) was associated with faster internalization of CD1d into the endocytic system and enhanced CD1d-mediated presentation of exogenous Ags, but did not appear to augment NKT autoreactivity. Knockdown of the Ii by small interfering RNA resulted in reduced CD1d surface expression and slower internalization in HLA-DR+ APCs, but not HLA-DR- APCs, demonstrating a direct effect of MHC/Ii complexes on CD1d trafficking. CD1d-mediated presentation of exogenous Ags was much more efficient in immature dendritic cells, which actively recycle MHC class II molecules through the endocytic system, than in mature dendritic cells that have stabilized MHC class II expression at the cell surface, suggesting a physiological role for MHC/Ii complexes in modulating CD1d function. These results indicate that autoantigens and exogenous lipids are acquired by human CD1d at distinct cellular locations, and that Ii trafficking selectively regulates CD1d-mediated presentation of extracellular Ags.  相似文献   

16.
NKT cells are known to regulate effector T cell immunity during tolerance, autoimmunity, and antitumor immunity. Whether age-related changes in NKT cell number or function occur remains unclear. Here, we investigated whether young vs aged (3 vs 22 mo old) mice had different numbers of CD1d-restricted NKT cells and whether activation of NKT cells by CD1d in vivo contributed to age-related suppression of T cell immunity. Flow cytometric analyses of spleen and LN cells revealed a 2- to 3-fold increase in the number of CD1d tetramer-positive NKT cells in aged mice. To determine whether NKT cells from aged mice differentially regulated T cell immunity, we first examined whether depletion of NK/NKT cells affected the proliferative capacity of splenic T cells. Compared with those from young mice, intact T cell preparations from aged mice had impaired proliferative responses whereas NK/NKT-depleted preparations did not. To examine the specific contribution of NKT cells to age-related T cell dysfunction, Ag-specific delayed-type hypersensitivity and T cell proliferation were examined in young vs aged mice given anti-CD1d mAb systemically. Compared with young mice, aged mice given control IgG exhibited impaired Ag-specific delayed-type hypersensitivity and T cell proliferation, which could be significantly prevented by systemic anti-CD1d mAb treatment. The age-related impairments in T cell immunity correlated with an increase in the production of the immunosuppressive cytokine IL-10 by splenocytes that was likewise prevented by anti-CD1d mAb treatment. Together, our results suggest that CD1d activation of NKT cells contributes to suppression of effector T cell immunity in aged mice.  相似文献   

17.
CD1d function is regulated by microsomal triglyceride transfer protein   总被引:7,自引:0,他引:7  
CD1d is a major histocompatibility complex (MHC) class I-related molecule that functions in glycolipid antigen presentation to distinct subsets of T cells that express natural killer receptors and an invariant T-cell receptor-alpha chain (invariant NKT cells). The acquisition of glycolipid antigens by CD1d occurs, in part, in endosomes through the function of resident lipid transfer proteins, namely saposins. Here we show that microsomal triglyceride transfer protein (MTP), a protein that resides in the endoplasmic reticulum of hepatocytes and intestinal epithelial cells (IECs) and is essential for lipidation of apolipoprotein B, associates with CD1d in hepatocytes. Hepatocytes from animals in which Mttp (the gene encoding MTP) has been conditionally deleted, and IECs in which Mttp gene products have been silenced, are unable to activate invariant NKT cells. Conditional deletion of the Mttp gene in hepatocytes is associated with a redistribution of CD1d expression, and Mttp-deleted mice are resistant to immunopathologies associated with invariant NKT cell-mediated hepatitis and colitis. These studies indicate that the CD1d-regulating function of MTP in the endoplasmic reticulum is complementary to that of the saposins in endosomes in vivo.  相似文献   

18.
CD1 is an MHC class I-like molecule that has been conserved throughout mammalian evolution. Unlike MHC class I molecules, CD1 can present unique nonprotein antigens to T cells. The murine CD1 locus contains two highly homologous genes, CD1d1 and CD1d2. CD1d1 is essential for the development of a major subset of NK T cells that promptly secrete IL-4 following activation. However, the function of CD1d2 has not yet been demonstrated. In the present study, we examined the expression of CD1d2 in CD1d1-deficient (CD1d1 degrees) mice with the anti-CD1 Ab 3H3. Unlike CD1d1, which is expressed by all lymphocytes, CD1d2 can be detected only on the surface of thymocytes. To determine whether CD1d2 can select a unique subset of NK T cells, we compared the remnant population of NK T cells in CD1d1 degrees and CD1d1, CD1d2-double deficient (CD1d1 degrees CD1d2 degrees) mice. No significant difference in the number of NK T cells and cytokine secretion capacity can be detected between CD1d1 degrees and CD1d1 degrees CD1d2 degrees mice, indicating that CD1d2 cannot substitute for CD1d1 in NK T cell development. The inability of CD1d2 to select NK T cells is not due to the structural constraints of CD1d2 since CD1d2-transfected cells can be recognized by both NK T cell hybridomas and freshly isolated NK T cells. Given the structural similarities, it is possible that the low levels of surface expression and limited tissue distribution of CD1d2 may prevent it from functioning in the selection and expansion of NK T cells.  相似文献   

19.
CD1d is an MHC class I-like molecule that presents glycolipid Ags to types I and II NKT cells. The YxxI motif in the cytoplasmic tail of CD1d contributes to its intracellular localization to the endolysosomal compartment and is important for Ag presentation to type I NKT cells. In this study, we identified the (327-329)RRR motif in CD1d and showed that it is critical for the control of CD1d intracellular trafficking and Ag presentation. The replacement of the arginines in this motif with alanines resulted in the extensive accumulation of CD1d in lysosomes but did not affect the cell surface expression. The defect in its cellular localization was accompanied by defects in Ag presentation to both type I and type II NKT cells. These results demonstrated that the (327-329)RRR motif of CD1d is required for proper cellular distribution of CD1d and optimal Ag presentation to both type I and type II NKT cells.  相似文献   

20.
We investigated the negative effect of type I IFN (IFN-I) on the priming of specific CD8 T cell immunity. Priming of murine CD8 T cells is down-modulated if Ag is codelivered with IFN-I-inducing polyinosinic:polycytidylic acid (pI/C) that induces (NK cell- and T/B cell-independent) acute changes in the composition and surface phenotype of dendritic cells (DC). In wild-type but not IFN-I receptor-deficient mice, pI/C reduces the plasmacytoid DC but expands the CD8(+) conventional DC (cDC) population and up-regulates surface expression of activation-associated (CD69, BST2), MHC (class I/II), costimulator (CD40, CD80/CD86), and coinhibitor (PD-L1/L2) molecules by cDC. Naive T cells are efficiently primed in vitro by IFN-I-stimulated CD8 cDC (the key APC involved in CD8 T cell priming) although these DC produced less IL-12 p40 and IL-6. pI/C (IFN-I)-mediated down modulation of CD8 T cell priming in vivo was not observed in NKT cell-deficient CD1d(-/-) mice. CD8 cDC from pI/C-treated mice inefficiently stimulated IFN-gamma, IL-4, and IL-2 responses of NKT cells. In vitro, CD8 cDC that had activated NKT cells in the presence of IFN-I primed CD8 T cells that produced less IFN-gamma but more IL-10. The described immunosuppressive effect of IFN-I thus involves an NKT cell-mediated change in the phenotype of CD8 cDC that favors priming of IL-10-producing CD8 T cells. In the presence of IFN-I, NKT cells hence impair the competence of CD8 cDC to prime proinflammatory CD8 T cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号