首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical effects of a muscle are related in part to the size of the muscle and to its location relative to the joint it crosses. For more than a century, researchers have expressed muscle size by its 'physiological cross-sectional area' (PCSA). Researchers mathematically calculating muscle and joint forces typically use some expression of a muscle's PCSA to constrain the solution to one which is reasonable (i.e. a solution in which small muscles may not have large forces, and large muscles have large forces when expected or when there is significant electromyographic activity). It is obvious that muscle mass (and therefore any expression of PCSA) varies significantly from person to person, even in individuals of similar weight and height. Since it is not practical to predict the PCSA of each muscle in a living subject's limb or trunk, it is important to generally understand the sensitivity of muscle force solutions to possible variations in PCSA. We used nonlinear optimization techniques to predict 47 muscle forces and hip contact forces in a living subject. The PCSA (volume/muscle fiber length) of each of 47 lower limb muscle elements from two cadaver specimens and the 47 PCSA's reported by pierrynowski were input into an optimization algorithm to create three solution sets. The three solutions were qualitatively similar but at times a predicted muscle force could vary as much as two to eight times. In contrast, the joint force solutions were within 11% of each other and, therefore, much less variable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
 In this paper maximal performance posture control of the human arm is investigated by means of model simulations. Recent experiments (F.C.T. van der Helm, submitted, 2000) have shown that the reflexive feedback during postural control varies with the bandwidth of the applied force disturbances. This paper focusses on the influence of the frequency content of force disturbances on the reflexive feedback gains by means of optimization. The arm is modelled by a non-linear musculo-skeletal model with two degrees of freedom and six muscles. To facilitate the optimization of the model parameters, the arm model is linearized. A performance criterion is minimized for stochastic force disturbances in a two-step procedure: (1) optimization of static muscle activations using an additional energy criterion to obtain a unique and energy-efficient solution; and (2) optimization of reflex gains using an additional control effort criterion to obtain a unique solution. The optimization reveals that for the given task and posture, the shoulder muscles have the largest contribution, whereas the bi-articular muscles have a relatively small contribution to the behaviour. The dynamics at the endpoint level are estimated so that a comparison can be made with the experiments. Compared to the experiments, the intrinsic damping of the model is relatively large (about 150%), whereas the intrinsic stiffness is relatively small (about 60%). These differences can be attributed to unmodelled mechanical effects of cross-bridges in Hill-type muscle models. The optimized reflex gains show remarkable similarities with the values found in the experiments, implying that humans can adjust their reflexive feedback gains in an optimal way, weighting the performance and energy. The approach in this paper could be useful in the study of various posture tasks, for example in the prediction of the relation between the control parameters of various musculo-skeletal models and different experimental variables. Received: 24 January 2000 / Accepted in revised form: 7 July 2000  相似文献   

3.
Estimating forces in muscles and joints during locomotion requires formulations consistent with available methods of solving the indeterminate problem. Direct comparisons of results between differing optimization methods proposed in the literature have been difficult owing to widely varying model formulations, algorithms, input data, and other factors. We present an application of a new optimization program which includes linear and nonlinear techniques allowing a variety of cost functions and greater flexibility in problem formulation. Unified solution methods such as the one demonstrated here, offer direct evaluations of such factors as optimization criteria and constraints. This unified method demonstrates that nonlinear formulations (of the sort reported) allow more synergistic activity and in contrast to linear formulations, allow antagonistic activity. Concurrence of EMG activity and predicted forces is better with nonlinear predictions than linear predictions. The prediction of synergistic and antagonistic activity expectedly leads to higher joint force predictions. Relaxation of the requirement that muscles resolve the entire intersegmental moment maintains muscle synergism in the nonlinear formulation while relieving muscle antagonism and reducing the predicted joint contact force. Such unified methods allow more possibilities for exploring new optimization formulations, and in comparing the solutions to previously reported formulations.  相似文献   

4.
This paper examined the feasibility of using different optimization criteria in inverse dynamic optimization to predict antagonistic muscle forces and joint reaction forces during isokinetic flexion/extension and isometric extension exercises of the knee. Both quadriceps and hamstrings muscle groups were included in this study. The knee joint motion included flexion/extension, varus/valgus, and internal/external rotations. Four linear, nonlinear, and physiological optimization criteria were utilized in the optimization procedure. All optimization criteria adopted in this paper were shown to be able to predict antagonistic muscle contraction during flexion and extension of the knee. The predicted muscle forces were compared in temporal patterns with EMG activities (averaged data measured from five subjects). Joint reaction forces were predicted to be similar using all optimization criteria. In comparison with previous studies, these results suggested that the kinematic information involved in the inverse dynamic optimization plays an important role in prediction of the recruitment of antagonistic muscles rather than the selection of a particular optimization criterion. Therefore, it might be concluded that a properly formulated inverse dynamic optimization procedure should describe the knee joint rotation in three orthogonal planes.  相似文献   

5.
Mathematical optimization of specific cost functions has been used in theoretical models to calculate individual muscle forces. Measurements of individual muscle forces and force sharing among individual muscles show an intensity-dependent, non-linear behavior. It has been demonstrated that the force sharing between the cat Gastrocnemius, Plantaris and Soleus shows distinct loops that change orientation systematically depending on the intensity of the movement. The purpose of this study was to prove whether or not static, non-linear optimization could inherently predict force sharing loops between agonistic muscles. Using joint moment data from a step cycle of cat locomotion, the forces in three cat ankle plantar flexors (Gastrocnemius, Plantaris and Soleus) were calculated using two popular optimization algorithms and two musculo-skeletal models. The two musculo-skeletal models included a one-degree-of-freedom model that considered the ankle joint exclusively and a two-degree-of-freedom model that included the ankle and the knee joint. The main conclusion of this study was that solutions of the one-degree-of-freedom model do not guarantee force-sharing loops, but the two-degree-of-freedom model predicts force-sharing loops independent of the specific values of the input parameters for the muscles and the musculo-skeletal geometry. The predicted force-sharing loops were found to be a direct result of the loops formed by the knee and ankle moments in a moment-moment graph.  相似文献   

6.
It has been widely claimed that linear models of the neuromuscular apparatus give very inaccurate approximations of human arm reaching movements. The present paper examines this claim by quantifying the contributions of the various non-linear effects of muscle force generation on the accuracy of linear approximation. We performed computer simulations of a model of a two-joint arm with six monarticular and biarticular muscles. The global actions of individual muscles resulted in a linear dependence of the joint torques on the joint angles and angular velocities, despite the great non-linearity of the muscle properties. The effect of time delay in force generation is much more important for model accuracy than all the non-linear effects, while ignoring this time delay in linear approximation results in large errors. Thus, the viscosity coefficients are rather underestimated and some of them can even be paradoxically estimated to be negative. Similarly, our computation showed that ignoring the time delay resulted in large errors in the estimation of the hand equilibrium trajectory. This could explain why experimentally estimated hand equilibrium trajectories may be complex, even during a simple reaching movement. The hand equilibrium trajectory estimated by a linear model becomes simple when the time delay is taken into account, and it is close to that actually used in the non-linear model. The results therefore provide a theoretical basis for estimating the hand equilibrium trajectory during arm reaching movements and hence for estimating the time course of the motor control signals associated with this trajectory, as set out in the equilibrium point hypothesis. Received: 17 February 1999 / Accepted in revised form: 22 October 1999  相似文献   

7.
It is well known that static, non-linear minimization of the sum of the stress in muscles to a certain power cannot predict cocontraction of pairs of one-joint antagonistic muscles. In this report, we prove that for a single joint either all agonistic muscles cocontract or all are silent. For two-joint muscles, we show that lengthening and shortening of muscles corresponds closely to zero force and non-zero force states, respectively. This gives a new physiological interpretation of situations in which cocontraction of pairs of two-joint antagonistic muscles is predicted by these static non-linear optimization approaches.  相似文献   

8.
Feldman (1966) has proposed that a muscle endowed with its spinal reflex system behaves as a non-linear spring with an adjustable resting length. In contrast, because of the length-tension properties of muscles, many researchers have modeled them as non-linear springs with adjustable stiffness. Here we test the merits of each approach: Initially, it is proven that the adjustable stiffness model predicts that isometric muscle force and stiffness are linearly related. We show that this prediction is not supported by data on the static stiffness-force characteristics of reflexive muscles, where stiffness grows non-linearly with force. Therefore, an intact muscle-reflex system does not behave as a non-linear spring with an adjustable stiffness. However, when the same muscle is devoid of its reflexes, the data shows that stiffness grows linearly with force. We aim to understand the functional advantage of the non-linear stiffness-force relationship present in the reflexive muscle. Control of an inverted pendulum with a pair of antagonist muscles is considered. Using an active-state muscle model we describe force development in an areflexive muscle. From the data on the relationship of stiffness and force in the intact muscle we derive the length-tension properties of a reflexive muscle. It is shown that a muscle under the control of its spinal reflexes resembles a non-linear spring with an adjustable resting length. This provides independent evidence in support of the Feldman hypothesis of an adjustable resting length as the control parameter of a reflexive muscle, but it disagrees with his particular formulation. In order to maintain stability of the single joint system, we prove that a necessary condition is that muscle stiffness must grow at least linearly with force at isometric conditions. This shows that co-contraction of antagonist muscles may actually destabilize the limb if the slope of this stiffness-force relationship is less than an amount specified by the change in the moment arm of the muscle as a function of joint configuration. In a reflexive muscle where stiffness grows faster than linearly with force, co-contraction will always lead to an increase in stiffness. Furthermore, with the reflexive muscles, the same level of joint stiffness can be produced by much smaller muscle forces because of the non-linear stiffness-force relationship. This allows the joint to remain stable at a fraction of the metabolic energy cost associated with maintaining stability with areflexive muscles.This work was supported in part by grant no. 1R01 NS 24926 from the NIH (Michael Arbib, PI). R.S. was supported by an IBM Graduate Fellowship in Computer Science  相似文献   

9.
There are different opinions in the literature on whether the cost functions: the sum of muscle stresses squared and the sum of muscle stresses cubed, can reasonably predict muscle forces in humans. One potential reason for the discrepancy in the results could be that different authors use different sets of model parameters which could substantially affect forces predicted by optimization-based models. In this study, the sensitivity of the optimal solution obtained by minimizing the above cost functions for a planar three degrees-of-freedom (DOF) model of the leg with nine muscles was investigated analytically for the quadratic function and numerically for the cubic function. Analytical results revealed that, generally, the non-zero optimal force of each muscle depends in a very complex non-linear way on moments at all three joints and moment arms and physiological cross-sectional areas (PCSAs) of all muscles. Deviations of the model parameters (moment arms and PCSAs) from their nominal values within a physiologically feasible range affected not only the magnitude of the forces predicted by both criteria, but also the number of non-zero forces in the optimal solution and the combination of muscles with non-zero predicted forces. Muscle force magnitudes calculated by both criteria were similar. They could change several times as model parameters changed, whereas patterns of muscle forces were typically not as sensitive. It is concluded that different opinions in the literature about the behavior of optimization-based models can be potentially explained by differences in employed model parameters.  相似文献   

10.
A lot of non-linear objective criteria are applied for solving the indeterminate problems formulated for different biomechanical models--most of them can be covered by the expression [formula in text]. It might be noted, however, that most of the suggested criteria are not applicable if considerable antagonistic co-contractions exist. This could be an effect of treating the agonistic muscles and their respective antagonists in one and the same manner in the objective function. Using a completely inverse approach (the muscle forces are supposed to be known quantities) and a simple 1DOF model (actuated by three agonistic muscles and one corresponding antagonist) it has been shown which values of the weight factors c(i) may predict different levels of muscle forces from the two antagonistic groups. Three hypothetical border variants for magnitudes of the muscle forces are considered (flexor muscles are only active, extensor muscles are only active, considerable co-contraction of flexors and extensors exists). The main conclusions are: the signs of c(i) at agonistic muscles have to be opposite to the c(i) signs at their antagonists; the signs of the weight factors depend on the direction of the net external joint moment; the closer c(i) to zero, the bigger force will be predicted in the ith muscle.  相似文献   

11.
We have previously shown that the costal and crural parts of the diaphragm have different actions on the rib cage (RC) and that the tension developed in one part is not transmitted perfectly to the other. Thus the diaphragm can be modeled pneumatically or electrically as two generators or pumps in series between the lung and abdomen. As such, the force developed by diaphragmatic contraction is the sum of the forces developed in each part, whereas the volume displaced is the same for each part and equal to the total volume displaced. The costal part of the diaphragm is in series with the intercostal and accessory (IA) muscles between the lung and RC, whereas the crural part is in parallel. The volume displaced by simultaneous contraction of the crural part and IA is the sum of volumes displaced by each part. The action of pleural and abdominal pressure [acting through the area of apposition (Aap) of the diaphragm to RC] can be modelled as a summing junction between IA and RC. With hyperinflation the costal part acts more and more in parallel with both IA and the crural part, whereas Aap diminishes, so that the ability to develop large forces decreases independently of the muscles' force-length relationships. The model also predicts that the factors determining the length of the costal and crural parts are different. Finally, the parallel and serial arrangement of the inspiratory musculature allows for increases in maximum power, maximum force, and maximum velocity by appropriate recruitment of the various muscle groups.  相似文献   

12.
13.
The leopard frog (Rana pipiens) is an excellent jumper that can reach high take-off velocities and accelerations. It is diurnal, using long, explosive jumps to capture prey and escape predators. The marine toad (Bufo marinus) is a cryptic, nocturnal toad, typically using short, slow hops, or sometimes walking, to patrol its feeding area. Typical of frogs with these different locomotor styles, Rana has relatively long hindlimbs and large (by mass) hindlimb extensor muscles compared to Bufo. We studied the isometric contractile properties of their extensor muscles and found differences that correlate with their different hopping performances. At the hip (semimembranosus, SM), knee (peroneus, Per) and ankle (plantaris longus, PL), we found that Rana's muscles tended to produce greater maximum isometric force relative to body mass, although the difference was significant only for PL. This suggests that differences in force capability at the ankle may be more important than at other joints to produce divergent hopping performances. Maximum isometric force scaled with body mass so that the smaller Rana has relatively larger muscles and force differences between species may reflect size differences only. In addition, Rana's muscles exhibited greater passive resistance to elongation, implying more elastic tissue is present, which may amplify force at take-off due to elastic recoil. Rana's muscles also achieved a higher percentage of maximum force at lower stimulus inputs (frequencies and durations) than in Bufo, perhaps amplifying the differences in force available for limb extension during natural stimulation. Twitch contraction and relaxation times tended to be faster in Rana, although variation was great, so that differences were significant only for Per. Fatigability also tended to be greater in Rana muscles, although, again, values reached significance in only one muscle (PL). Thus, in addition to biomechanical effects, differences in hopping performance may also be determined by diverse physiological properties of the muscles.  相似文献   

14.
Absence of desmin in skeletal muscle was found to induce an increase in passive stiffness. The present study aimed at developing rheological models of passive muscle to explain this stiffening. Models were elaborated by using experimental data depicting muscle viscoelastic behaviour. The experimental protocol included stepwise extension tests applied on control and desmin knockout soleus muscles from mice. Linear and non-linear models were composed of elastic and viscous elements. They were constructed with the aim at taking the presence or absence of desmin into account by simulating desmin as an elastic element. Furthermore, associated adaptation of connective tissues in absence of desmin was modelled as an additional elastic element. Differences in passive behaviour induced by absence of desmin were predicted by using a linear model and a non-linear one. The non-linear model was selected because: (1) it is able to predict experimental viscoelastic kinetics accounting for the increase in passive stiffness in muscles lacking desmin, (2) its design is consistent with morphological data, and (3) stiffness characteristics of its elements are in accordance with the literature. Finally, this modelling approach demonstrates that both absence of desmin and adaptation of connective tissue are required to explain the increase in passive stiffness in desmin knockout muscles.  相似文献   

15.
The present model of the motoneuronal (MN) pool – muscle complex (MNPMC) is deterministic and designed for steady isometric muscle activation. Time-dependent quantities are treated as time-averages. The character of the model is continuous in the sense that the motor unit (MU) population is described by a continuous density function. In contrast to most already published models, the wiring (synaptic weight) between the input fibers to the MNPMC and the MNs (about which no detailed data are known) is deduced, whereas the input–force relation is given. As suggested by experimental data, this relation is assumed to be linear during MU recruitment, but the model allows other, nonlinear relations. The input to the MN pool is defined as the number of action potentials per second in all input fibers, and the excitatory postsynaptic potential (EPSP) conductance in MNs evoked by the input is assumed to be proportional to the input. A single compartment model with a homogeneous membrane is used for a MN. The MNs start firing after passing a constant voltage threshold. The synaptic current–frequency relation is described by a linear function and the frequency–force transformation of a MU by an exponential function. The sum of the MU contraction forces is the muscle force, and the activation of the MUs obeys the size principle. The model parameters were determined a priori, i.e., the model was not used for their estimation. The analysis of the model reveals special features of the activation curve which we define as the relation between the input normalized by the threshold input of the MN pool and the force normalized by the maximal muscle force. This curve for any muscle turned out to be completely determined by the activation factor, the slope of the linear part of the activation curve (during MU recruitment). This factor determines quantitatively the relation between MU recruitment and rate modulation. This property of the model (the only known model with this property) allows a quantification of the recruitment gain (Kernell and Hultborn 1990). The interest of the activation factor is illustrated using two human muscles, namely the first dorsal interosseus muscle, a small muscle with a relatively small force at the end of recruitment, and the medial gastrocnemius muscle, a strong muscle with a relatively large force at the end of recruitment. It is concluded that the present model allows us to reproduce the main features of muscle activation in the steady state. Its analytical character facilitates a deeper understanding of these features. Received: 24 November 1997 / Accepted in revised form: 30 November 1998  相似文献   

16.
Static optimization is commonly employed in musculoskeletal modeling to estimate muscle and joint loading; however, the ability of this approach to predict antagonist muscle activity at the shoulder is poorly understood. Antagonist muscles, which contribute negatively to a net joint moment, are known to be important for maintaining glenohumeral joint stability. This study aimed to compare muscle and joint force predictions from a subject-specific neuromusculoskeletal model of the shoulder driven entirely by measured muscle electromyography (EMG) data with those from a musculoskeletal model employing static optimization. Four healthy adults performed six sub-maximal upper-limb contractions including shoulder abduction, adduction, flexion, extension, internal rotation and external rotation. EMG data were simultaneously measured from 16 shoulder muscles using surface and intramuscular electrodes, and joint motion evaluated using video motion analysis. Muscle and joint forces were calculated using both a calibrated EMG-driven neuromusculoskeletal modeling framework, and musculoskeletal model simulations that employed static optimization. The EMG-driven model predicted antagonistic muscle function for pectoralis major, latissimus dorsi and teres major during abduction and flexion; supraspinatus during adduction; middle deltoid during extension; and subscapularis, pectoralis major and latissimus dorsi during external rotation. In contrast, static optimization neural solutions showed little or no recruitment of these muscles, and preferentially activated agonistic prime movers with large moment arms. As a consequence, glenohumeral joint force calculations varied substantially between models. The findings suggest that static optimization may under-estimate the activity of muscle antagonists, and therefore, their contribution to glenohumeral joint stability.  相似文献   

17.
The aim of this paper was to compare the effect of different optimisation methods and different knee joint degrees of freedom (DOF) on muscle force predictions during a single legged hop. Nineteen subjects performed single-legged hopping manoeuvres and subject-specific musculoskeletal models were developed to predict muscle forces during the movement. Muscle forces were predicted using static optimisation (SO) and computed muscle control (CMC) methods using either 1 or 3 DOF knee joint models. All sagittal and transverse plane joint angles calculated using inverse kinematics or CMC in a 1 DOF or 3 DOF knee were well-matched (RMS error<3°). Biarticular muscles (hamstrings, rectus femoris and gastrocnemius) showed more differences in muscle force profiles when comparing between the different muscle prediction approaches where these muscles showed larger time delays for many of the comparisons. The muscle force magnitudes of vasti, gluteus maximus and gluteus medius were not greatly influenced by the choice of muscle force prediction method with low normalised root mean squared errors (<48%) observed in most comparisons. We conclude that SO and CMC can be used to predict lower-limb muscle co-contraction during hopping movements. However, care must be taken in interpreting the magnitude of force predicted in the biarticular muscles and the soleus, especially when using a 1 DOF knee. Despite this limitation, given that SO is a more robust and computationally efficient method for predicting muscle forces than CMC, we suggest that SO can be used in conjunction with musculoskeletal models that have a 1 or 3 DOF knee joint to study the relative differences and the role of muscles during hopping activities in future studies.  相似文献   

18.
Representation of realistic muscle geometries is needed for systematic biomechanical simulation of musculoskeletal systems. Most of the previous musculoskeletal models are based on multibody dynamics simulation with muscles simplified as one-dimensional (1D) line-segments without accounting for the large muscle attachment areas, spatial fibre alignment within muscles and contact and wrapping between muscles and surrounding tissues. In previous musculoskeletal models with three-dimensional (3D) muscles, contractions of muscles were among the inputs rather than calculated, which hampers the predictive capability of these models. To address these issues, a finite element musculoskeletal model with the ability to predict contractions of 3D muscles was developed. Muscles with realistic 3D geometry, spatial muscle fibre alignment and muscle-muscle and muscle-bone interactions were accounted for. Active contractile stresses of the 3D muscles were determined through an efficient optimization approach based on the measured kinematics of the lower extremity and ground force during gait. This model also provided stresses and strains of muscles and contact mechanics of the muscle-muscle and muscle-bone interactions. The total contact force of the knee predicted by the model corresponded well to the in vivo measurement. Contact and wrapping between muscles and surrounding tissues were evident, demonstrating the need to consider 3D contact models of muscles. This modelling framework serves as the methodological basis for developing musculoskeletal modelling systems in finite element method incorporating 3D deformable contact models of muscles, joints, ligaments and bones.  相似文献   

19.
A general theory is described for deriving the mechanical effect of muscles with large attachment sites. In a cadaver experiment the complete attachment sites and bundle distribution of 16 muscles of the shoulder mechanism were recorded. These data were used to calculate the mechanical effect, i.e. the resulting force and moment vector, for a large number (200) and a reduced number (maximal 6) of muscle lines of action. The resulting error between both representations is small. The number of muscle lines of action in the reduced representation depends on the shape of the attachment site and muscle architecture. An important feature of this method is that the necessary number of muscle lines of action is determined afterwards. In the often used centroid line approach the number of muscle lines of action and partitioning of muscles is determined before recording the geometry, leading to unverifiable results.  相似文献   

20.
When any muscle in the human musculoskeletal system is damaged, other muscles and ligaments tend to compensate for the role of the damaged muscle by exerting extra effort. It is beneficial to clarify how the roles of the damaged muscles are compensated by other parts of the musculoskeletal system from the following points of view: From a clinical point of view, it will be possible to know how the abnormal muscle and joint forces caused by the acute compensations lead to further physical damage to the musculoskeletal system. From the viewpoint of rehabilitation, it will be possible to know how the role of the damaged muscle can be compensated by extra training of the other muscles. A method to evaluate the influence of muscle deactivation on other muscles and joints is proposed in this report. Methodology based on inverse dynamics and static optimization, which is applicable to arbitrary motion was used in this study. The evaluation method was applied to gait motion to obtain matrices representing (1) the dependence of muscle force compensation and (2) the change to bone-on-bone contact forces. These matrices make it possible to evaluate the effects of deactivation of one of the muscles of the musculoskeletal system on the forces exerted by other muscles as well as the change to the bone-on-bone forces when the musculoskeletal system is performing the same motion. Through observation of this matrix, it was found that deactivation of a muscle often results in increment/decrement of force developed by muscles with completely different primary functions and bone-on-bone contact force in different parts of the body. For example, deactivation of the iliopsoas leads to a large reduction in force by the soleus. The results suggest that acute deactivation of a muscle can result in damage to another part of the body. The results also suggest that the whole musculoskeletal system must go through extra retraining in the case of damage to certain muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号