首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribulose-l,5-bisphosphate carboxylase (E.C. 4.1.1.39) isolated from Chromatium strain D contains 64 free cysteinyl -SH groups per mol (Mr 5.11 × 105) as determined using three different titrants: p-[14C]chloromercuribenzoate, the Ellman reagent, and [14C]iodoacetamide.Distribution of -SH groups in the two constituent subunits (A and B) isolated from spinach and Chromatium ribulose-1,5-bisphosphate carboxylases was determined to be for spinach, 9 in A and 3 in B; and for Chromatium, 7 in A and 1 in B.The relationship between the numbers of -SH groups blocked vs residual activities of both the ribulose-1,5-bisphosphate carboxylase and oxygenase reactions was examined by titration with p-chloromercuribenzoate. In both spinach and Chromatium enzymes, antisigmoidal curves were obtained for the degree of the enzyme activity loss in relation to the numbers of -SH groups masked. However, at alkaline pH the Chromatium enzyme shows a sharp decline in both carboxylase and oxygenase activities, apparently due to the alkali dissociation of the enzyme molecule accompanied by its structural deformation. The functional role of -SH groups in the ribulose-1,5-bisphosphate carboxylase molecule is discussed in relation to two constituent enzyme reactions, and it is concluded that in both enzyme sources the active sites are probably the same for the two reactions.  相似文献   

2.
The large subunit (LS) of tobacco (Nicotiana rustica) ribulose-1,5-bisphosphate carboxylase/oxygenase (ribulose-P2 carboxylase) contains a trimethyllysyl residue at position 14, whereas this position is unmodified in spinach ribulose-P2 carboxylase. A protein fraction was isolated from tobacco chloroplasts by rate-zonal centrifugation and anion-exchange fast protein liquid chromatography that catalyzed transfer of methyl groups from S-adenosyl-[methyl-3H]-l-methionine to spinach ribulose-P2 carboxylase. 3H-Methyl groups incorporated into spinach ribulose-P2 carboxylase were alkaline stable but could be removed by limited tryptic proteolysis. Reverse-phase high-performance liquid chromatography of the tryptic peptides released after proteolysis showed that the penultimate N-terminal peptide from the LS of spinach ribulose-P2 carboxylase contained the site of methylation, which was identified as lysine-14. Thus, the methyltransferase activity can be attributed to S-adenosylmethionine:ribulose-P2 carboxylase LS (lysine) `N-methyltransferase, a previously undescribed chloroplast enzyme. The partially purified enzyme was specific for ribulose-P2 carboxylase and exhibited apparent Km values of 10 micromolar for S-adenosyl-l-methionine and 18 micromolar for ribulose-P2 carboxylase, a Vmax of 700 picomoles CH3 groups transferred per minute per milligram protein, and a broad pH optimum from 8.5 to 10.0. S-Adenosylmethionine:ribulose-P2 carboxylase LS (lysine)εN-methyltransferase was capable of incorporating 24 3H-methyl groups per spinach ribulose-P2 carboxylase holoenzyme, forming 1 mole of trimethyllysine per mole of ribulose-P2 carboxylase LS, but was inactive on ribulose-P2 carboxylases that contain a trimethyllysyl residue at position 14 in the LS. The enzyme did not distinguish between activated (Mg2+ and CO2) and unactivated forms of ribulose-P2 carboxylase as substrates. However, complexes of activated ribulose-P2 carboxylase with the reaction-intermediate analogue 2′-carboxy-d-arabinitol-1,5-bisphosphate, or unactivated spinach ribulose-P2 carboxylase with ribulose-1,5-bisphosphate, were poor substrates for tobacco LS εN-methyltransferase.  相似文献   

3.
The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from −5 to 50°C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, ΔGu, at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. the Gibbs-Helmholtz expression fit to the ΔGu versus temperature data from fluorescence gave a ΔCp of 8.0 kcal mol−1 K−1, a maximum apparent stability of 23.7 kcal mol−1 at 18°C, and an apparent cold denaturation temperature (TCD) of −23°C. ΔGu values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative TCD. Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. thus, mAbs have a potential to undergo cold denaturation at storage temperatures near −20°C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs.Key words: monoclonal antibodies, thermodynamic stability, cold denaturation, free energy, fluorescence  相似文献   

4.
Ribulose-1,5-bisphosphate (RuBP) carboxylase in lysed spinach (Spinacia oleracea L. cv virtuosa) chloroplasts that had been partly inactivated at low CO2 and Mg2+ by incubating in darkness with 4 millimolar partially purified RuBP was reactivated by light. If purified RuBP was used to inhibit dark activation of the enzyme, reactivation by light was not observed unless fructose-1,6-bisphosphate, ATP, or ADP plus inorganic phosphate were also added. Presumably, ADP plus inorganic phosphate acted as an ATP-generating system with a requirement for the generation of ΔpH across the thylakoid membrane. When the RuBP obtained from Sigma Chemical Co. was used, light did not reactivate the enzyme. There was no direct correlation between ΔpH and activation. Therefore, thylakoids are required in the ribulose-1,5-bisphosphate carboxylase activase system largely to synthesize ATP. Inactivation of RuBP carboxylase in isolated chloroplasts or in the lysed chloroplast system was not promoted simply by a transition from light to dark conditions but was caused by low CO2 and Mg2+.  相似文献   

5.
Ribulose-1,5-bisphosphate carboxylase/oxygenase has been purified to electrophoretic homogeneity from comfrey, Symphytum spp. Sodium dodecyl sulfate polyacrylamide and polyacrylamide gel electrophoresis studies on the purified product showed no extraneous proteins. Comparisons of the electrophoretic mobilities of the subunits to those of standard proteins indicated a large subunit MW of 50 000 and a small subunit of 12 700, which for an octameric structure of each subunit indicates a native MW of 502 000. Specific activities of the comfrey enzyme ranged from 1.2 to nearly 2 μmol 14CO2 fixed/min.mg of protein over several preparations and were maintained for months when stored from the sucrose gradient at ? 70°. The specific activities depended critically on the amounts of enzyme used in the assay even under saturating conditions of substrates and cofactors. The effective pH dependence for carboxylase catalysis peaked near 7.4, which apparently is the lowest elective optimum yet reported for this enzyme from any source. However, on a constant carbon dioxide basis the pH dependence profile was reversed with a maximum near pH 8.6 which was 0.4 units higher than the value for the spinach enzyme. The Kms for carbon dioxide and ribulose-1,5-bisphosphate at pH 7.5 were 130 μM and 30 μM, respectively, which are comparable to the accepted values for the carboxylase from spinach at pH 7.2.  相似文献   

6.
This study concerned the role of the sulfhydryl groups in urocanase of Pseudomonas putida. When p-chloromercuribenzoate was added to the enzyme, two sulfhydryl groups reacted at once with little inhibition; the enzyme slowly became inhibited while further sulfhydryls reacted. After the p-chloromercuribenzoate inhibition occurred, if a thiol was subsequently added, most of the original activity was recovered. As the incubation time with p-chloromercuribenzoate was increased, the thiol became less effective in reversing the inhibition. However, if NAD+ (10 μm) was added with the thiol, 60–90% of the initial activity was restored even after long p-chloromercuribenzoate incubations. Restoration of activity by NAD+ was concentration dependent and specific for NAD+. Radioactive NAD+ could be bound to urocanase. These results confirm the coenzyme role for NAD+ in urocanase. In urea, p-chloromercuribenzoate titration of urocanase measured 11.9 -SH groups per molecule. Sulfite-modified enzyme treated with p-chloromercuribenzoate and dialyzed was substantially photoactivated in the presence of a thiol; that is, NAD+ was not required to restore activity. From these results, it is proposed that this enzyme contains two reactive —SH groups and that an essential —SH group is involved in NAD+ binding. Forces present in the sulfite-modified enzyme prevent the release of the NAD+ in the presence of mercurials.  相似文献   

7.
Wheat ribulose-1,5-diphosphate carboxylase purified to homogeneity had a MW of 540 000, sedimentation coefficient (S20, W) of 18.5 S, apparent diffusion constant (Dapp) of 3.07 × 10?7 cm2/sec, Stoke's radius 5.44 nm, and fractional ratio of 1.17. Electron microscopy revealed particles of 10–12 nm diameter. The enzyme was dissociated by sodium dodecyl sulphate into two subunits of MW 53 000 (S20, W = 3.0 S) and 13 500 (S20, W = 1.7 S). The total amino acid residues in the large and small subunits were 481 and 117, respectively. Tryptic peptide maps of the two subunits confirmed the estimated numbers of Arg and Lys residues. Although the amino acid pattern of the large subunit closely resembled that from barley, rather than that for spinach, beet or tobacco, the pattern of the small subunit was markedly different from those of all the other species.  相似文献   

8.
Metal binding and conformational stability characteristics of psychrophilic elastase (ACE) from Atlantic cod (Gadus morhua) has been investigated. Chelation to Ca2+ was found to be important for maintaining the biologically active conformation and for the thermal stability of the enzyme. However, presence of metal ions such as Zn2+, Fe3+ and Cu2+ was found to inhibit its hydrolytic activity and so did the chelating agent EDTA. Both pH and guanidinium chloride induced denaturation of the enzyme was followed by monitoring the changes in the tryptophan fluorescence. ACE exhibited a simple two-state unfolding pattern in both acidic and basic conditions with the midpoint of transition at pH values 4.08 and 10.29, respectively. Guanidinium chloride and heat induced denaturation of the enzyme was investigated at two pH values, 5.50 and 8.00, wherein the enzyme possesses similar tertiary structure but differ in its hydrolytic activity. Guanidinium chloride induced denaturation indicated that the enzyme unfolds with a Cm of 1.53 M at pH 8.0 and a ΔGH2O of 6.91 kJ mol−1 (28.65 J mol−1 residue−1) which is the lowest reported for psychrophilic enzymes investigated till-date. However, at pH 5.50, ΔGH2O value is slightly lowered by 0.65 kJ mol−1 consistent with the observed increase in the apparent quenching constant obtained with acrylamide. On the other hand, increase in Tm by 38.45 °C was observed for the enzyme at acid pH (5.50) in comparison to the heat induced unfolding at pH 8.0. The increase in the apparent Tm has been attributed to the possible weak intermolecular association of the enzyme molecules at moderately high temperatures that is favoured by the increase in the accessible surface area / dynamics under acidic conditions. The stability characteristics of ACE have been compared with the available data for mesophilic porcine pancreatic elastase and possible mechanism for the low temperature adaptation of ACE has been proposed.  相似文献   

9.
Spinach leaves and photoautotrophically grown Euglena and Chlorella possess fructose 1,6-diphosphate aldolases inhibited by p-chloromercuribenzoate but insensitive to K+ or ethylenediamine tetraacetate (Type I). Dark grown Euglena and Chlorella have aldolases inhibited by p-chloromercuribenzoate and ethylenediamine tetraacetate but stimulated by K+ (Type II). The red alga, Chondrus, and the golden-brown alga, Ochromonas, appear to possess both types. Bean, pea, and spinach seeds and the leaves and cotyledons of etiolated bean seedlings contain a p-chloromercuribenzoate insensitive, apparently non-sulfhydryl variant of Type I. Sensitivity of leaf aldolase to p-chloromercuribenzoate occurs in etiolated bean seedlings only after an extended period of illumination. Type II aldolase activity in cell-free extracts of 4 blue-green algae has been demonstrated.  相似文献   

10.
The catalytically active oligomeric form of the larger subunit, Am, obtained from spinach leaf ribulose-1,5-diphosphate carboxylase by pretreatment with p-mercuribenzoate at pH 7.5 followed by incubation at pH 9.0, was free of the smaller subunit based on C-terminal amino acid analyses. Valine was the predominant C-terminus of the Am preparations, the release of tyrosine being negligibly small [cf. Sugiyama and Akazawa, Biochemistry 9 (1970) 4499]. The pH optimum of the ribulose-1,5-diphosphate carboxylase reaction by Am was about 8.5, in comparison to the native enzyme which showed an alkaline pH optimum only in the absence of Mg2+. The substrate saturation curve of the catalytic subunit with respect to bicarbonate followed the Michaelis-Menten equation, as contrasted to the anomalous reaction kinetics of the native ribulose-1,5-diphosphate carboxylase molecule reported previously. These overall results indicate that the allosteric properties of spinach ribulose-1,5-diphosphate carboxylase are possibly conveyed by a unique structural conformation that requires the presence of the smaller subunit in association with the larger catalytic subunit component of the enzyme molecule.  相似文献   

11.
Spinach leaf (Spinacia oleracea L. var. Kyoho) protoplasts sustain protein-synthesizing activity as measured by the incorporation of [14C]-leucine into the protein fraction both in the light and in the dark. By the immunoprecipitation of ribulose-1,5-bisphosphate (RuP2) carboxylase with rabbit antibody raised against the purified spinach enzyme preparation, it was found that approximately 7% of the total radiocarbon incorporated into the protein fraction in the light was in the carboxylase molecules. However, there was no measurable net increase observed in the content of the enzyme protein in the experimental conditions employed. It was found that both chloramphenicol and cycloheximide inhibited the incorporation of [14C]leucine into RuP2 carboxylase and its constituent subunits, as measured by the immunoprecipitation of the enzyme molecule and its subunits, A and B.  相似文献   

12.
A fourth molecular from of α-galactosidase, designated LIV, an alkaline α-galactosidase, was isolated from leaves of Cucurbita pepo and purified 165-fold. It was active over a narrow pH range with optimal hydrolysis of p-nitrophenyl-α-d-galactoside and stachyose at pH 7.5. The rate of stachyose hydrolysis was 10 times that of raffinose. Km determinations in McIlvaine buffer (200 millimolar Na2-phosphate, 100 millimolar citric acid, pH 7.5) for p-nitrophenyl-α-d-galactoside, stachyose, and raffinose were 1.40, 4.5, and 36.4 millimolar, respectively. LIV was partially inhibited by Ca2+, Mg2+, and Mn2+, more so by Ni2+, Zn2+, and Co2+, and highly so by Cu2+, Ag2+, Hg2+ and by p-chloromercuribenzoate. It was not inhibited by high concentrations of the substrate p-nitrophenyl-α-d-galactoside or by myo-inositol, but α-d-galactose was a strong inhibitor. As observed for most other forms of α-galactosidase, LIV only catalyzed the hydrolysis of glycosides possessing the α-d-galactose configuration at C1, C2, and C4, and did not hydrolyze p-nitrophenyl-α-d-fucoside (α-d-galactose substituted at C6). The enzyme was highly sensitive to buffers and chelating agents. Maximum hydrolytic activity for p-nitrophenyl-α-d-galactoside was obtained in McIlvaine buffer (pH 7.5). In 10 millimolar triethanolaminehydrochloride-NaOH (pH 7.5) or 10 millimolar Hepes-NaOH (pH 7.5), hydrolytic activity was virtually eliminated, but the addition of low concentrations of either ethylenediaminetetraacetate or citrate to these buffers restored activity almost completely. Partial restoration of activity was also observed, but at higher concentrations, with pyruvate and malate. Similar effects were found for stachyose hydrolysis, but in addition some inhibition of LIV in McIlvaine buffer, possibly due to the high phosphate concentration, was observed with this substrate. It is questionable whether the organic acid anions possess any regulatory control of LIVin vivo. It was possible that the results reflected the ability of these anions, and ethylene-diaminetetraacetate, to restore LIV activity through coordination with some toxic cation introduced as a buffer contaminant.  相似文献   

13.
The acetyl-CoA:acetoacetate-CoA-transferase has been purified 36-fold to homogeneity from an acetoacetate degradation operon (ato) constitutive mutant of Escherichia coli. The enzyme has the following physical properties: Stokes radius, 40.5 Å; diffusion coefficient (D20,w), 5.32 × 10?7 cm s?1; sedimentation coefficient (s20,w), 5.38S; molecular weight, 97,000 and a frictional ratio (ff0) of 1.35. The enzyme is composed of two α subunits (Mr = 26,000) and two β subunits (Mr = 23,000). E. coli CoA-transferase contains six cysteine residues per mole of enzyme and no disulfide bonds. The native transferase reacts with 4 mol of p-chloromercuribenzoate per 97,000 g of enzyme. Two cysteine residues react rapidly with p-chloromercuribenzoate resulting in an 85% inactivation of enzyme activity. The reactivity of these two residues is enhanced at least fivefold in the presence of acetyl-CoA. Acetoacetate has no effect on the rate of reaction of p-chloromercuribenzoate with the enzyme. E. coli CoA-transferase is partially inactivated by acyl-CoA substrates in the absence of carboxylic acid substrates, presumably as the result of a metal-catalyzed acylation of the ?-amino group of a lysine residue near the active site. The enzyme utilizes a variety of short chain acyl-CoA and carboxylic acid substrates but exhibits maximal activity with normal and 3-keto substrates.  相似文献   

14.
The functions of His291, His295 and His324 at the active-site of recombinant A. nidulans ribulose-1,5-bisphosphate carboxylase/ oxygenase have been explored by site-directed mutagenesis. Replacement of His291 by K or R resulted in unassembled proteins, while its replacement by E, Q or N resulted in assembled but inactive proteins. These results are in accord with a metal ion-binding role of this residue in the activated ternary complex by analogy to x-ray crystallographic analyses of tobacco and spinach enzymes.His324 (H327 in spinach), which is located within bonding distance of the 5-phosphate of bound bi-substrate analog 2-carboxyarabinitol 1,5-bisphosphate in the crystal structures, has been substituted by A, K, R, Q and N. Again with the exception of the H324K and R variants, these changes resulted in detectable assembled protein. The mutant H324A protein exhibited no detectable carboxylase activity, whereas the H324Q and H324N changes resulted in purifiable holoenzyme with 2.0 and 0.1% of the recombinant wild-type specific carboxylase activity, respectively. These results are consistent with a phosphate binding role for this residue.The replacement of His295, which has been suggested to aid in phosphate binding, with Ala in the A. nidulans enzyme leads to a mutant with 5.8% of the recombinant wild-type carboxylase activity. All other mutations at this position resulted in unassembled proteins. Purified H295A and H324Q enzymes had elevated Km(RuBP) values and unchanged CO2/O2 specificity factors compared to recombinant wild-type.Abbreviations CABP D-2-carboxyarabinitol 1,5 bisphosphate - IPTG isopropyl-b-d-thiogalactopyranoside - L large subunit of rubisco - PAGE polyacrylamide gel electrophoresis - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-P2, ribulose 1,5 bisphosphate - S small subunit of rubisco - SDS sodium dodecyl sulfate - X-gal 5-bromo-4-chloro-3-indolyl-b-d-galactoside  相似文献   

15.
Ribulose-1,5-bisphosphate carboxylase/oxygenase has been purified from chemolithotrophically grown Rhizobium japonicum SR and ribulose-5-phosphate kinase activity has also been detected in extracts of such cells. Electrophoretically homogeneous ribulosebisphosphate carboxylase/oxygenase purified in the presence of PMSF showed two types of large subunits of 55 000 and 53 000 daltons and small subunits of 14 200 daltons. The heterogeneity of large subunits was not observed when the enzyme was prepared in the presence of PMSF and DIFP. Ribulose-1,5-bisphosphate carboxylase from R. japonicum was inhibited by antibodies to this enzyme and a single precipitin band from the antibody-enzyme interaction was observed on double diffusion plates. Antibodies to R. japonicum enzyme did not cross-react on immunodiffusion plates with the ribulosebisphosphate carboxylase/oxygenases from wheat, spinach, soybean and tobacco.  相似文献   

16.
The mechanism of sucrose transport was investigated in plasma membrane (PM) vesicles isolated from spinach (Spinacia oleracea L.) leaves. PM vesicles were isolated by aqueous two-phase partitioning and were equilibrated in pH 7.8 buffer containing K+. The vesicles rapidly accumulated sucrose in the presence of a transmembrane pH gradient (ΔpH) with external pH set at 5.8. The uptake rate was slow at pH 7.8. The K+-selective ionophore, valinomycin, stimulated uptake in the presence of a ΔpH, and the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), greatly inhibited ΔpH-dependent sucrose uptake. Addition of sucrose to the vesicles resulted in immediate alkalization of the medium. Alkalization was stimulated by valinomycin, was abolished by CCCP, and was sucrose-specific. These results demonstrate the presence of a tightly coupled H+/sucrose symporter in PM vesicles isolated from spinach leaves.  相似文献   

17.
Studies were made on the boundary conditions for thermotropic ovalbumin gelation at pH within the range 2.5 to 10.0. The pH dependence of the gelation threshold, C0, and denaturation temperature, Td, were obtained. The dependence C0(pH) has a sharp minimum close to the isoelectric point (pl). Over pH range 2.5 to 4.0 the dependence Td(pH) is linear; although above pI it shows unusual behaviour. Td increases smoothly, becoming a constant value (Td=80°C) at pH 7. Analysis of the temperature dependence of Leu's line integral intensity in the p.m.r. spectrum of ovalbumin shows that the temperature threshold of thermotropic gelation closely approximates to Td. A diagram for the state of an ovalbumin -water system was constructed in temperature-concentration-pH coordinates. The dependences of the initial shear modulus for thermotropic ovalbumin gels on the concentration (0.06≤C≤0.25g/cm3 were obtained at pH 4.0, 7.0, 8.5, 10.0. They are equivalent to the concentration dependence of the equilibrium elastic modulus Ee(C). The dependences obtained may be reduced to the theoretical master dependence of Hermans, Ee(rmC?), where C?=C/C0 is the reduced concentration. Hermans' theory, based o the model for random cross-linking of linear identical macromolecules without cyclization, adequately describes the equilibrium elastic properties of thermotropic ovalbumin gels.  相似文献   

18.
The enzyme ribulose bisphosphate carboxylase/oxygenase has been purified from Chromatium vinosum. When an extract is subjected to centrifugation at 35,000xg in the presence of polyethylene glycol (PEG)-6000 and the supernatant is treated with 50 mM Mg2+ and the precipitate is then fractionated by vertical centrifugation into a reoriented sucrose gradient followed by chromatography on diethylaminoethyl (DEAE)-Sephadex A50, the resultant enzyme contains large (L) and small (S) subunits. Alternatively, centrifugation of extracts at 175,000xg in the presence of PEG-6000 followed by fractionation with Mg2+, density gradient centrifugation, and chromatography on DEAE-Sephadex A50 yields an enzyme free of small subunits. The two forms have comparable carboxylase and oxygenase activities and have compositions and molecular weights corresponding to L8 and L8S8 enzymes. The amino acid compositions of L and S subunits are reported. The L8S8 enzyme from spinach cannot be similarly dissociated by centrifugation at 175,000xg in the presence of PEG-6000.Abbreviations DEAE diethylaminoethyl - EDTA ethylenediamine-tetraacetate - MOPS 3-(N-morpholino)propanesulfonic acid - PEG polyethylene glycol - RuBisCO d-ribulose 1,5-bisphosphate caboxylase/oxygenase - RnBP d-ribulose 1,5-bisphosphate - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis Dedicated to Professor G. Drews on occasion of his 60th birthday  相似文献   

19.
Polypeptides of spinach chloroplast envelopes were separated by electrophoresis in an SDS-polyacrylamide gradient gel. At least 37 polypeptides were resolved; nine were prominent. Two (Mr 54 000 and 16 000) were also found in the stroma fraction and identified by peptide mapping and isoelectric focusing in the second dimension as the large and small subunits of ribulose-1,5-bisphosphate carboxylase. Proteins of the chloroplast envelope were also separated by isoelectric focusing. An adaptation of a previous method (Ames, G.F.L. and Nikaido, K. (1976) Biochemistry 15, 616ndash;623), using solubilization in SDS and isoelectric focusing in the presence of a high concentration of Nonidet P-40, gave the best separation and resolved the envelope membranes into at least 21 proteins. The major band (pI 6.85) contained both subunits of the carboxylase and at least two additional polypeptides which corresponded to the prominent bands found in SDS gel electrophoresis of chloroplast envelopes.  相似文献   

20.
The molecular weights of alkylated small subunits of ribulose-1,5-bisphosphate carboxylase of pea and spinach were determined from gel filtration data in the presence of 6M guanidinium chloride as 12,800 and 13,500, respectively. In the presence of 0.1 M sodium phosphate (pH 12.0) these molecules chromatograph at the same position as chymotrypsinogen (M=25,700) on Sephadex G-75. The intrinsic viscosity of the small subunit of spinach ribulose bisphosphate carboxylase, measured in this solvent, was [η] = 30 cm3/gm, while the intrinsic viscosity of chymotrypsinogen measured in this solvent was [η] = 2.4 cm3/gm. These data rule out a globular dimeric model for the sructure of the small subunit in 0.1 M sodium phosphate (pH 12.0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号