首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Algorithmic models have been proposed to explain adaptive behavior of bone to loading; however, these models have not been applied to explain the biomechanics of short dental implants. Purpose of present study was to simulate bone remodeling around single implants of different lengths using mechanoregulatory tissue differentiation model derived from the Stanford theory, using finite elements analysis (FEA) and to validate the theoretical prediction with the clinical findings of crestal bone loss. Loading cycles were applied on 7-, 10-, or 13-mm-long dental implants to simulate daily mastication and bone remodeling was assessed by changes in the strain energy density of bone after a 3, 6, and 12 months of function. Moreover, clinical findings of marginal bone loss in 45 patients rehabilitated with same implant designs used in the simulation (n = 15) were computed to validate the theoretical results. FEA analysis showed that although the bone density values reduced over time in the cortical bone for all groups, bone remodeling was independent of implant length. Clinical data showed a similar pattern of bone resorption compared with the data generated from mathematical analyses, independent of implant length. The results of this study showed that the mechanoregulatory tissue model could be employed in monitoring the morphological changes in bone that is subjected to biomechanical loads. In addition, the implant length did not influence the bone remodeling around single dental implants during the first year of loading.  相似文献   

2.
Dental implants may alter the mechanical environment in the jawbone, thereby causing remodelling and adaptation of the surrounding trabecular bone tissues. To improve the efficacy of dental implant systems, it is necessary to consider the effect of bone remodelling on the performance of the prosthetic systems. In this study, finite element simulations were implemented to predict the evolution of microarchitecture around four implant systems using a previously developed model that combines both adaptive and microdamage-based mechano-sensory mechanisms in bone remodelling process. Changes in the trabecular architecture around dental implants were mainly focused. The simulation results indicate that the orientational and ladder-like architecture around the implants predicted herein is in good agreement with those observed in animal experiments and clinical observations. The proposed algorithms were shown to be effective in simulating the remodelling process of trabecular architecture around dental implant systems. In addition, the architectural features around four typical dental implant systems in alveolar bone were evaluated comparatively.  相似文献   

3.
This study presents the implementation of a mathematical bone remodeling algorithm to bone adaptation in the premolar area of the mandible around various dental implant systems, and thus sheds a new perspective to the complex interactions in dental implant mechanics. A two-dimensional, plane strain model of the bone was built from a CT-scan. The effect of implant contour on internal bone remodeling was investigated by considering four dental implant systems with contours similar to commercially available ones and another four with cylindrical and conical cross-sections. The remodeling algorithm predicts non-homogeneous density/elastic modulus distribution; and, implant contour has some effect on how this is distributed. Bone density is predicted to increase on the tips of the threads of the implants, but to decrease inside the grooves. Threadless implants favor to develop a softer bone around their periphery, compared to implant systems that have threads. The overall contour (dimensions and the shape) of an implant affect the bone density redistribution, but the differences between different implant systems are relatively small.  相似文献   

4.
Natural teeth and dental implants have differing degrees of mobility thus causing a potential biomechanical problem when connected by fixed bridgework. The clinical follow-up often discloses marginal bone loss around an implant neck probably due to high stress factors. An implant with a built-in compliance resembling the tooth mobility could be advantageous for stress distribution. With axial loading the proposed 'elastic'-test model accomplishes this demand. By means of theoretical and experimental studies this 'elastic'-test model is optimized and compared with a stiff implant-model. The results show a 20 times reduction of stress accumulation in bone with the 'elastic'-test model.  相似文献   

5.
This study combines finite element method and animal studies, aiming to investigate tissue remodelling processes around dental implants inserted into sika deer antler and to develop an alternative animal consuming model for studying bone remodelling around implants. Implants were inserted in the antlers and loaded immediately via a self-developed loading device. After 3, 4, 5 and 6 weeks, implants and surrounding tissue were taken out. Specimens were scanned by μCT scanner and finite element models were generated. Immediate loading and osseointegration conditions were simulated at the implant-tissue interface. A vertical force of 10 N was applied on the implant. During the healing time, density and Young’s modulus of antler tissue around the implant increased significantly. For each time point, the values of displacement, stresses and strains in the osseointegration model were lower than those of the immediate loading model. As the healing time increased, the displacement of implants was reduced. The 3-week immediate loading model (9878 ± 1965 μstrain) illustrated the highest strains in the antler tissue. Antler tissue showed similar biomechanical properties as human bone in investigating the bone remodelling around implants, therefore the use of sika deer antler model is a promising alternative in implant biomechanical studies.  相似文献   

6.
The aims of this study were to examine the effect of implant neck design and cortical bone thickness using 3D finite element analysis and to analyse the stability of clinical evidence based on micromotion and principal stress. Four commercial dental implants for a type IV bone and maxillary segments were created. Various parameters were considered, including the osseointegration condition, loading direction and cortical bone thickness. Micromotion and principal stresses were used to evaluate the failure of osseointegration and bone overloading, respectively. It was found that the maximum stress of the peri-implant bone decreased as cortical bone thickness increased. The micromotion level in full osseointegration is less than that in non-osseointegration and it also decreases as cortical bone thickness increases. The cortical bone thickness should be measured before surgery to help select a proper implant. In the early stage of implantation, the horizontal loading component induces stress concentration in bone around the implant neck more easily than does the vertical loading component, and this may result in crestal bone loss.  相似文献   

7.
doi:10.1111/j.1741‐2358.2009.00334.x
The comparison of marginal bone loss around mandibular overdenture‐supporting implants with two different attachment types in a loading period of 36 months Objective: The aim of this study was to assess the influence of attachment types on the marginal bone loss (MBL) around dental implants supporting mandibular overdentures (OVD). Background: There are a number of in vitro studies evaluating the influence of several factors on MBL around implants. Material and methods: Mandibular OVD patients appearing at routine recall sessions consecutively 6, 12, 24 and 36 months after loading were included in the study group. All patients received mandibular OVD with either ball or bar attachments. Measurements were obtained from images of successive radiographs, which were scanned and digitised before, and analysed at ×20 magnification. Statistical analyses were utilised in this study to assess the mean marginal bone level changes as well as to explore the potential effect of several parameters such as the cantilever or the attachment type on bone loss. Results: One hundred and twenty‐six implants in 51 patients with a mean age of 59.39 ± 9.99 years were evaluated. There was no statistical significant difference between the distal and mesial bone loss rates of single or splinted attachment types, whereas bone loss rates were statistically higher in cantilever situations. Conclusion: Within the limitations of this study, gender, age and diameter of the implants do not play a role in MBL. Length of the implant is an important factor in marginal bone level maintenance. The attachment type for OVD support seems not to influence MBL, but cantilevering of the bars increases bone loss significantly.  相似文献   

8.
The objective of this study was to predict time-dependent bone remodeling around tissue- and bone-level dental implants used in patients with reduced bone width. The remodeling of bone around titanium tissue-level, and titanium and titanium–zirconium alloy bone-level implants was studied under 100 N oblique load for one month by implementing the Stanford theory into three-dimensional finite element models. Maximum principal stress, minimum principal stress, and strain energy density in peri-implant bone and displacement in x- and y- axes of the implant were evaluated. Maximum and minimum principal stresses around tissue-level implant were higher than bone-level implants and both bone-level implants experienced comparable stresses. Total strain energy density in bone around titanium implants slightly decreased during the first two weeks of loading followed by a recovery, and the titanium–zirconium implant showed minor changes in the axial plane. Total strain energy density changes in the loading and contralateral sides were higher in tissue-level implant than other implants in the cortical bone at the horizontal plane. The displacement values of the implants were almost constant over time. Tissue-level implants were associated with higher stresses than bone-level implants. The time-dependent biomechanical outcome of titanium–zirconium alloy bone-level implant was comparable to the titanium implant.  相似文献   

9.
Stress shielding is a biomechanical phenomenon causing adaptive changes in bone strength and stiffness around metallic implants, which potentially lead to implant loosening. Accordingly, there is a need for standard, objective engineering measures of the “stress shielding” performances of an implant that can be employed in the process of computer-aided implant design. To provide and test such measures, we developed hierarchical computational models of adaptation of the trabecular microarchitecture at different sites in the proximal femur, in response to insertion of orthopaedic screws and in response to hypothetical reductions in hip joint and gluteal muscle forces. By identifying similar bone adaptation outcomes from the two scenarios, we were able to quantify the stress shielding caused by screws in terms of analogous hypothetical reductions in hip joint and gluteal muscle forces. Specifically, we developed planar lattice models of trabecular microstructures at five regions of interest (ROI) in the proximal femur. The homeostatic and abnormal loading conditions for the lattices were determined from a finite element model of the femur at the continuum scale and fed to an iterative algorithm simulating the adaptation of each lattice to these loads. When screws were inserted to the femur model, maximal simulated bone loss (17% decrease in apparent density, 10% decrease in thickness of trabeculae) was at the greater trochanter and this effect was equivalent to the effect of 50% reduction in gluteal force and normal hip joint force. We conclude that stress shielding performances can be quantified for different screw designs using model-predicted hypothetical musculoskeletal load fractions that would cause a similar pattern and extent of bone loss to that caused by the implants.  相似文献   

10.
Stress shielding is a biomechanical phenomenon causing adaptive changes in bone strength and stiffness around metallic implants, which potentially lead to implant loosening. Accordingly, there is a need for standard, objective engineering measures of the "stress shielding" performances of an implant that can be employed in the process of computer-aided implant design. To provide and test such measures, we developed hierarchical computational models of adaptation of the trabecular microarchitecture at different sites in the proximal femur, in response to insertion of orthopaedic screws and in response to hypothetical reductions in hip joint and gluteal muscle forces. By identifying similar bone adaptation outcomes from the two scenarios, we were able to quantify the stress shielding caused by screws in terms of analogous hypothetical reductions in hip joint and gluteal muscle forces. Specifically, we developed planar lattice models of trabecular microstructures at five regions of interest (ROI) in the proximal femur. The homeostatic and abnormal loading conditions for the lattices were determined from a finite element model of the femur at the continuum scale and fed to an iterative algorithm simulating the adaptation of each lattice to these loads. When screws were inserted to the femur model, maximal simulated bone loss (17% decrease in apparent density, 10% decrease in thickness of trabeculae) was at the greater trochanter and this effect was equivalent to the effect of 50% reduction in gluteal force and normal hip joint force. We conclude that stress shielding performances can be quantified for different screw designs using model-predicted hypothetical musculoskeletal load fractions that would cause a similar pattern and extent of bone loss to that caused by the implants.  相似文献   

11.
doi: 10.1111/j.1741‐2358.2011.00525.x Effect of electromagnetic field on bone regeneration around dental implants after immediate placement in the dog mandible: a pilot study Background: Accelerating bone healing around dental implants can reduce the long‐term period between the insertion of implants and functional rehabilitation. Objective: This in vivo study evaluated the effect of a constant electromagnetic field (CEF) on bone healing around dental implants in dogs. Materials and methods: Eight dental implants were placed immediately after extraction of the first pre‐molar and molar teeth on the mandible of two male dogs and divided into experimental (CEF) and control groups. A CEF at magnetic intensity of 0.8 mT with a pulse width of 25 μs and frequency of 1.5 MHz was applied on the implants for 20 min per day for 2 weeks. Result and conclusion: After qualitative histological analysis, a small quantity of newly formed bone was observed in the gap between the implant surface and alveolar bone in both groups.  相似文献   

12.
Peri-implantitis is an inflammatory disease that results in the destruction of soft tissue and bone around the implant. Titanium implant corrosion has been attributed to the implant failure and cytotoxic effects to the alveolar bone. We have documented the extent of titanium release into surrounding plaque in patients with and without peri-implantitis. An in vitro model was designed to represent the actual environment of an implant in a patient’s mouth. The model uses actual oral microbiota from a volunteer, allows monitoring electrochemical processes generated by biofilms growing on implants and permits control of biocorrosion electrical current. As determined by next generation DNA sequencing, microbial compositions in experiments with the in vitro model were comparable with the compositions found in patients with implants. It was determined that the electrical conductivity of titanium implants was the key factor responsible for the biocorrosion process. The interruption of the biocorrosion current resulted in a 4–5 fold reduction of corrosion. We propose a new design of dental implant that combines titanium in zero oxidation state for osseointegration and strength, interlaid with a nonconductive ceramic. In addition, we propose electrotherapy for manipulation of microbial biofilms and to induce bone healing in peri-implantitis patients.  相似文献   

13.
The assessment of the behavior of immediately loaded dental implants using biomechanical methods is of particular importance. The primary goal of this investigation is to optimize the function of the implants to serve for immediate loading. Animal experiments on reindeer antlers as a novel animal model will serve for investigation of the bone remodeling processes in the implant bed. The main interest is directed towards the time and loading-dependant behavior of the antler tissue around the implants. The aim and scope of this work was to design an autonomous loading device that has the ability to load an inserted implant in the antler with predefined occlusal forces for predetermined time protocols. The mechanical part of the device can be attached to the antler and is capable of cyclically loading the implant with forces of up to 100 N. For the calibration and testing of the loading device a biomechanical measuring system has been used. The calibration curve shows a logarithmic relationship between force and motor current and is used to control the force on the implant. A first test on a cast reindeer antler was performed successfully.  相似文献   

14.
A repeated sampling bone chamber methodology was developed for the study of the influence of the mechanical environment on skeletal tissue differentiation and bone adaptation around titanium implants. Via perforations, bone grows into the implanted outer bone chamber, containing an inner bone chamber with a central test implant. An actuator—easily mounted on the outer bone chamber—allows a controlled mechanical stimulation of the test implant. After each experiment, the inner bone chamber—with its content—can be harvested and analysed. A new inner bone chamber with a central implant can be inserted consecutively in the outer bone chamber and a new experiment can start. Pilot studies led to a reliable surgical protocol and showed the applicability of the methodology, offering the possibility to study skeletal tissue differentiation and adaptation around implants under well-controlled mechanical conditions, and this protected from external loading. Repeated sampling of the bone chamber allows conducting several experiments within the same animal at the same site, thereby excluding subject- and site-dependent variability and reducing the amount of experimental animals.  相似文献   

15.
This study aimed to predict the distribution of bone trabeculae, as a density change per unit time, around a dental implant based on applying a selected mathematical remodelling model. The apparent bone density change as a function of the mechanical stimulus was the base of the applied remodelling model that describes disuse and overload bone resorption. The simulation was tested in a finite element model of a screw-shaped dental implant in an idealised bone segment. The sensitivity of the simulation to different mechanical parameters was investigated; these included element edge length, boundary conditions, as well as direction and magnitude of the implant loads. The alteration in the mechanical parameters had a significant influence on density distribution and model stability, in particular at the cortical bone region. The remodelling model could succeed to achieve trabeculae-like structure around osseointegrated dental implants. The validation of this model to a real clinical case is required.  相似文献   

16.
This study aimed to predict the distribution of bone trabeculae, as a density change per unit time, around a dental implant based on applying a selected mathematical remodelling model. The apparent bone density change as a function of the mechanical stimulus was the base of the applied remodelling model that describes disuse and overload bone resorption. The simulation was tested in a finite element model of a screw-shaped dental implant in an idealised bone segment. The sensitivity of the simulation to different mechanical parameters was investigated; these included element edge length, boundary conditions, as well as direction and magnitude of the implant loads. The alteration in the mechanical parameters had a significant influence on density distribution and model stability, in particular at the cortical bone region. The remodelling model could succeed to achieve trabeculae-like structure around osseointegrated dental implants. The validation of this model to a real clinical case is required.  相似文献   

17.
Due to the increasing adoption of immediate implantation strategies and the rapid development of the computer aided design/computer aided manufacturing technology, a therapeutic concept based on patient-specific implant dentistry has recently been reintroduced by many researchers. However, little information is available on the designs of custom-made dental implant systems, especially their biomechanical behavior. The influence of the custom-made implant designs on the biomechanical performance for both an immediate and a delayed loading protocol in the maxillary esthetic zone was evaluated by means of the finite element (FE) method. FE models of three dental implants were considered: a state of the art cylindrical implant and two custom-made implants designed by reverse engineering technology, namely a root-analogue implant and a root-analogue threaded implant. The von Mises stress distributions and micro-motions around the bone-implant interfaces were calculated using ANSYS software. In a comparison of the three implant designs for both loading protocols, a favorable biomechanical performance was observed for the use of root-analogue threaded implant which approximated the geometry of natural anterior tooth and maintained the original long-axis. The results indicated that bone-implant interfacial micro-motion was reduced and a favorable stress distribution after osseointegration was achieved.  相似文献   

18.
Thirteen patients with large ameloblastomas of the mandible underwent segmental mandibulectomy and immediate reconstruction, with simultaneous placement of osseointegrated implants. All patients received palatal mucosal grafts around the dental implants 6 to 10 months after surgical treatment and received implant-supported prostheses another 1 to 2 months later. There were five female and eight male patients, with a mean age of 32 years (range, 17 to 50 years). The mean length of the mandibular defect was 8.8 cm (range, 5 to 13 cm). All free fibula flap procedures were successful, with no reexplorations or partial flap losses. There was no clinical or radiographic evidence of failure during the osseointegration process for any implant. With functional occlusal loading, the marginal bone loss around the implants was less than 1.5 mm in a mean follow-up period of 40 months (range, 18 to 70 months). There were no recurrences during that time. The technique described allows improved access to the bone at the time of reconstruction, immediate assessment of alveolar ridge relationships, and accurate fixation of the implant-fibula construct. The advantages of this procedure include a reduced risk of recurrence with segmental resection, reliable mandibular reconstruction, and reduction of the number of surgical procedures, allowing full oral rehabilitation in a shorter time. It is concluded that segmental mandibulectomy and immediate vascularized fibula osteoseptocutaneous flap reconstruction, with simultaneous placement of osseointegrated implants, represent an ideal treatment method for large ameloblastomas of the mandible.  相似文献   

19.
The aim of this study was to investigate the interactions of implant position, implant–abutment connection and loading condition influencing bone loss of an implant placed in the maxilla using finite element (FE) analysis and mathematical bone remodeling theory. The maxilla section contours were acquired using CT images to construct FE models containing RS (internal retaining-screw) and the TIS (taper integrated screwed-in) implants placed in SC (along the axis of occlusal force) and RA (along the axis of residual ridge) positions. The adaptive strain energy density (SED) algorithm was combined with FE approach to study the preliminary bone remodeling around implant systems under different load conditions. The simulated results showed that the implant position obviously influenced the bone loss. An implant placed in the RA position resulted in substantially increased bone loss. Implant receiving a lateral load slightly increased bone loss compared with an axial load. The implant type did not significantly influence bone loss. It was found that buccal site suffered the most bone loss around the implant, followed by distal, lingual and mesial sites. The implant position primarily influenced bone loss and it was found most obviously at the buccal site. Implant placed along the axial load direction of a proposed prosthesis could obtain less bone loss around the implant. Attaining proper occlusal adjustments to reduce the lateral occlusal force is recommended in implant–bone–prosthesis system. Abutments of internal engagement with or without taper-fit did not affect the bone loss in the surrounding bone.  相似文献   

20.
徐国皓  谷方  孙红丽  李婷  杨建军 《生物磁学》2013,(10):1878-1882
目的:应用三维有限元分析法研究牙种植体过盈植入对种植体-骨界面接触压力的影响。方法:选择直径为3.3 mm的ITI种植体和成人离体下颌骨,模拟种植体植入下颌骨内,过盈量为0.5 mm,建立三维有限元模型,应用ANSYS软件分析种植体-骨界面的应力分布情况。结果:种植体周围骨最大应力为48.796 MPa,应力分布均匀。种植体所受应力主要集中于颈部,最大应力值为87.832 MPa。结论:过盈量为0.5 mm时,种植体-骨界面所产生的应力值在骨组织所能承受的最大应力值范围内,种植体所受到的应力值远远小于钛的屈服强度,从生物力学角度,周围骨所受应力在骨组织能够承受范围,种植体也不会断裂,过盈联结在临床种植时有其可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号