首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Bacillus subtilis, four codons, CCU, CCC, CCA, and CCG, are used for proline. There exists, however, only one proline-specific tRNA having the anticodon mo(5)UGG. Here, we found that this tRNA(Pro)(mo(5)UGG) can read not only the codons CCA, CCG and CCU but also CCC, using an in vitro assay system. This means that the first nucleoside of its anticodon, 5-methoxyuridine (mo(5)U), recognizes A, G, U and C. On the other hand, it was reported that mo(5)U at the first position of the anticodon of tRNA(Val)(mo(5)UAC) can recognize A, G, and U but not C. A comparison of the structure of the anticodon stem and loop of tRNA(Pro)(mo(5)UGG) with those of other tRNAs containing mo(5)U at the first positions of the anticodons suggests that a modification of nucleoside 32 to pseudouridine (Psi) enables tRNA(Pro)(mo(5)UGG) to read the CCC codon.  相似文献   

2.
Kothe U  Rodnina MV 《Molecular cell》2007,25(1):167-174
tRNAs reading four-codon families often have a modified uridine, cmo(5)U(34), at the wobble position of the anticodon. Here, we examine the effects on the decoding mechanism of a cmo(5)U modification in tRNA(1B)(Ala), anticodon C(36)G(35)cmo(5)U(34). tRNA(1B)(Ala) reads its cognate codons in a manner that is very similar to that of tRNA(Phe). As Ala codons are GC rich and Phe codons AU rich, this similarity suggests a uniform decoding mechanism that is independent of the GC content of the codon-anticodon duplex or the identity of the tRNA. The presence of cmo(5)U at the wobble position of tRNA(1B)(Ala) permits fairly efficient reading of non-Watson-Crick and nonwobble bases in the third codon position, e.g., the GCC codon. The ribosome accepts the C-cmo(5)U pair as an almost-correct base pair, unlike third-position mismatches, which lead to the incorporation of incorrect amino acids and are efficiently rejected.  相似文献   

3.
According to Crick's wobble hypothesis, tRNAs with uridine at the wobble position (position 34) recognize A- and G-, but not U- or C-ending codons. However, U in the wobble position is almost always modified, and Salmonella enterica tRNAs containing the modified nucleoside uridine-5-oxyacetic acid (cmo5U34) at this position are predicted to recognize U- (but not C-) ending codons, in addition to A- and G-ending codons. We have constructed a set of S. enterica mutants with only the cmo5U-containing tRNA left to read all four codons in the proline, alanine, valine, and threonine family codon boxes. From the phenotypes of these mutants, we deduce that the proline, alanine, and valine tRNAs containing cmo5U read all four codons including the C-ending codons, while the corresponding threonine tRNA does not. A cmoB mutation, leading to cmo5U deficiency in tRNA, was introduced. Monitoring A-site selection rates in vivo revealed that the presence of cmo5U34 stimulated the reading of CCU and CCC (Pro), GCU (Ala), and GUC (Val) codons. Unexpectedly, cmo5U is critical for efficient decoding of G-ending Pro, Ala, and Val codons. Apparently, whereas G34 pairs with U in mRNA, the reverse pairing (U34-G) requires a modification of U34.  相似文献   

4.
5.
Transfer RNAs specific for Gln, Lys, and Glu from all organisms (except Mycoplasma) and organelles have a 2-thiouridine derivative (xm(5)s(2)U) as wobble nucleoside. These tRNAs read the A- and G-ending codons in the split codon boxes His/Gln, Asn/Lys, and Asp/Glu. In eukaryotic cytoplasmic tRNAs the conserved constituent (xm(5)-) in position 5 of uridine is 5-methoxycarbonylmethyl (mcm(5)). A protein (Tuc1p) from yeast resembling the bacterial protein TtcA, which is required for the synthesis of 2-thiocytidine in position 32 of the tRNA, was shown instead to be required for the synthesis of 2-thiouridine in the wobble position (position 34). Apparently, an ancient member of the TtcA family has evolved to thiolate U34 in tRNAs of organisms from the domains Eukarya and Archaea. Deletion of the TUC1 gene together with a deletion of the ELP3 gene, which results in the lack of the mcm(5) side chain, removes all modifications from the wobble uridine derivatives of the cytoplasmic tRNAs specific for Gln, Lys, and Glu, and is lethal to the cell. Since excess of the unmodified form of these three tRNAs rescued the double mutant elp3 tuc1, the primary function of mcm(5)s(2)U34 seems to be to improve the efficiency to read the cognate codons rather than to prevent mis-sense errors. Surprisingly, overexpression of the mcm(5)s(2)U-lacking tRNA(Lys) alone was sufficient to restore viability of the double mutant.  相似文献   

6.
Transfer RNA molecules translate the genetic code by recognizing cognate mRNA codons during protein synthesis. The anticodon wobble at position 34 and the nucleotide immediately 3' to the anticodon triplet at position 37 display a large diversity of modified nucleosides in the tRNAs of all organisms. We show that tRNA species translating 2-fold degenerate codons require a modified U(34) to enable recognition of their cognate codons ending in A or G but restrict reading of noncognate or near-cognate codons ending in U and C that specify a different amino acid. In particular, the nucleoside modifications 2-thiouridine at position 34 (s(2)U(34)), 5-methylaminomethyluridine at position 34 (mnm(5)U(34)), and 6-threonylcarbamoyladenosine at position 37 (t(6)A(37)) were essential for Watson-Crick (AAA) and wobble (AAG) cognate codon recognition by tRNA(UUU)(Lys) at the ribosomal aminoacyl and peptidyl sites but did not enable the recognition of the asparagine codons (AAU and AAC). We conclude that modified nucleosides evolved to modulate an anticodon domain structure necessary for many tRNA species to accurately translate the genetic code.  相似文献   

7.
Out of more than 500 sequenced cytosolic tRNAs, there is only one with an unmodified adenosine in the wobble position (position 34). The reason for this rare occurrence of A34 is that it is mostly deaminated to inosine-34 (I34). I34 is a common constituent in the wobble position of tRNAs and has a decoding capacity different from that of A34. We have isolated a mutant (proL207) of Salmonella typhimurium, in which the wobble nucleoside G34 has been replaced by an unmodified A in tRNA(Pro)(GGG), which is the only tRNA that normally reads the CCC codon. Thus, this mutant apparently has no tRNA that is considered cognate for the codon CCC. Despite this, the mutant grows normally. As expected, Pro-tRNA selection at the CCC codon in the A-site in a mutant deleted for the proL gene, which encodes the tRNA(Pro)(GGG), was severely reduced. However, in comparison this rate of selection was only slightly reduced in the proL207 mutant with its A34 containing tRNA(Pro)(AGG) suggesting that this tRNA reads CCC. Moreover, measurements of the interference by a tRNA residing in the P-site on the apparent termination efficiency at the A-site indicated that indeed the A34 containing tRNA reads the CCC codon. We conclude that A34 in a cytosolic tRNA is not detrimental to the cell and that the mutant tRNA(Pro)(AGG) is able to read the CCC codon like its wild-type counterpart tRNA(Pro)(GGG). We suggest that the decoding of the CCC codon by a 5'-AGG-3' anticodon occurs by a wobble base-pair between a protonated A34 and a C in the mRNA.  相似文献   

8.
Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.  相似文献   

9.
Ribosome complexes containing deacyl-tRNA1(Val) or biotinylvalyl-tRNA1(Val) and an mRNA analog have been irradiated with wavelengths specific for activation of the cmo5U nucleoside at position 34 in the tRNA1(Val) anticodon loop. The major product for both types of tRNA is the cross-link between 16S rRNA (C1400) and the tRNA (cmo5U34) characterized already by Ofengand and his collaborators [Prince et al. (1982) Proc. Natl Acad. Sci. USA, 79, 5450-5454]. However, in complexes containing deacyl-tRNA1(Val), an additional product is separated by denaturing PAGE and this is shown to involve C1400 and m5C967 of 16S rRNA and cmo5U34 of the tRNA. Puromycin treatment of the biotinylvalyl-tRNA1(Val) -70S complex followed by irradiation, results in the appearance of the unusual photoproduct, which indicates an immediate change in the tRNA interaction with the ribosome after peptide transfer. These results indicate an altered interaction between the tRNA anticodon and the 30S subunit for the tRNA in the P/E hybrid state compared with its interaction in the classic P/P state.  相似文献   

10.
The nucleotide sequences of the complete set of tRNA species in Mycoplasma capricolum, a derivative of Gram-positive eubacteria, have been determined. This bacterium represents the first genetic system in which the sequences of all the tRNA species have been determined at the RNA level. There are 29 tRNA species: three for Leu, two each for Arg, Ile, Lys, Met, Ser, Thr and Trp, and one each for the other 12 amino acids as judged from aminoacylation and the anticodon nucleotide sequences. The number of tRNA species is the smallest among all known genetic systems except for mitochondria. The tRNA anticodon sequences have revealed several features characteristic of M. capricolum. (1) There is only one tRNA species each for Ala, Gly, Leu, Pro, Ser and Val family boxes (4-codon boxes), and these tRNAs all have an unmodified U residue at the first position of the anticodon. (2) There are two tRNAThr species having anticodons UGU and AGU; the first positions of these anticodons are unmodified. (3) There is only one tRNA with anticodon ICG in the Arg family box (CGN); this tRNA can translate codons CGU, CGC and CGA. No tRNA capable of translating codon CGG has been detected, suggesting that CGG is an unassigned codon in this bacterium. (4) A tRNATrp with anticodon UCA is present, and reads codon UGA as Trp. On the basis of these and other observations, novel codon recognition patterns in M. capricolum are proposed. A comparatively small total, 13, of modified nucleosides is contained in all M. capricolum tRNAs. The 5' end nucleoside of the T psi C-loop (position 54) of all tRNAs is uridine, not modified to ribothymidine. The anticodon composition, and hence codon recognition patterns, of M. capricolum tRNAs resemble those of mitochondrial tRNAs.  相似文献   

11.
All mitochondrial tRNAs in kinetoplastid protists are encoded in the nucleus and imported into the organelle. The tRNA(Trp)(CCA) can decode the standard UGG tryptophan codon but can not decode the mitochondrial UGA tryptophan codon. We show that the mitochondrial tRNA(Trp) undergoes a specific C to U nucleotide modification in the first position of the anticodon, which allows decoding of mitochondrial UGA codons as tryptophan. Functional evidence for the absence of a UGA suppressor tRNA in the cytosol, using a reporter gene, was also obtained, which is consistent with a mitochondrial localization of this editing event. Leishmania cells have dealt with the problem of a lack of expression within the organelle of this non-universal tRNA by compartmentalizing an editing activity that modifies the anticodon of the imported tRNA.  相似文献   

12.
The uridine-5-0-derivatives, 5-methoxyuridine (mo5U) and uridine-5-oxyacetic acid (cmo5U) occupy the first position of anticondons in certain tRNA species of B. subtilis and E. coli, respectively. Here we present experimental evidence showing that both modifications are derived from a common precursor, 5-hydroxyuridine. Incompletely modified tRNASer and tRNAVal from E. coli met- rel-. All five tRNAs accepted methyl groups from S-adenosylmethionine with B. subtilis extracts in vitro and mo5U was formed. In B. subtilis tRNAs the mo5U was proved to be at the specific site; in E. coli tRNAVal the mo5U was demonstrated to be present in the oligonucleotide that comprises the anticodon. In submethylated E. coli tRNAVal,5-hydroxyuridine was detected whereas considerable amounts of cmo5U were lacking.  相似文献   

13.
The uniformly 32P-labeled bacteriophage T5 proline tRNA has been isolated from phage-infected E. coli cells by two-dimensional PAGE. Its nucleotide sequence has been determined by conventional techniques (using TLC on cellulose for oligonucleotide fractionation) as follows: (Formula: see text). The tRNA has the anticodon sequence UGG, which can presumably recognize the four proline-specific codons (CCN). It has 70% homology with phage T4 tRNA(Pro).  相似文献   

14.
15.
Three glutamine tRNA isoacceptors are known in Tetrahymena thermophila. One of these has the anticodon UmUG which reads the two normal glutamine codons CAA and CAG, whereas the two others with CUA and UmUA anticodons recognize UAG and UAA, respectively, which serve as termination codons in other organisms. We have employed these tRNA(Gln)-isoacceptors as tools for studying unconventional base interactions in a mRNA- and tRNA-dependent wheat germ extract. We demonstrate here (i) that tRNA(Gln)UmUG suppresses the UAA as well as the UAG stop codon, involving a single G:U wobble pair at the third anticodon position and two simultaneous wobble base pairings at the first and third position, respectively, and (ii) that tRNA(Gln)CUA, in addition to its cognate codon UAG, reads the UAA stop codon which necessitates a C:A mispairing in the first anticodon position. These unorthodox base interactions take place in a codon context which favours readthrough in tobacco mosaic virus (TMV) or tobacco rattle virus (TRV) RNA, but are not observed in a context that terminates zein and globin protein synthesis. Furthermore, our data reveal that wobble or mispairing in the middle position of anticodon-codon interactions is precluded in either context. The suppressor activities of tRNAs(Gln) are compared with those of other known naturally occurring suppressor tRNAs, i.e., tRNA(Tyr)G psi A and tRNA(Trp)CmCA. Our results indicate that a 'leaky' context is neither restricted to a single stop codon nor to a distinct tRNA species.  相似文献   

16.
We have carried out molecular dynamics simulations of the tRNA anticodon and mRNA codon, inside the ribosome, to study the effect of the common tRNA modifications cmo(5)U34 and m(6)A37. In tRNA(Val), these modifications allow all four nucleotides to be successfully read at the wobble position in a codon. Previous data suggest that entropic effects are mainly responsible for the extended reading capabilities, but detailed mechanisms have remained unknown. We have performed a wide range of simulations to elucidate the details of these mechanisms at the atomic level and quantify their effects: extensive free energy perturbation coupled with umbrella sampling, entropy calculations of tRNA (free and bound to the ribosome), and thorough structural analysis of the ribosomal decoding center. No prestructuring effect on the tRNA anticodon stem-loop from the two modifications could be observed, but we identified two mechanisms that may contribute to the expanded decoding capability by the modifications: The further reach of the cmo(5)U34 allows an alternative outer conformation to be formed for the noncognate base pairs, and the modification results in increased contacts between tRNA, mRNA, and the ribosome.  相似文献   

17.
Base insertion mutations in the anticodons of two different Escherichia coli tRNAs have been isolated that allow suppression of a series of +1 frameshift mutations. Insertion of a U between positions 34 and 35 of tRNAGln1 or addition of a G between positions 36 and 37 of tRNA(Lys) expand the anticodons of both tRNAs similarly to 3'-GUUU(-5') and allow decoding of complementary 5'-CAAA(-3') quadruplets. Analysis of the suppressed mRNA sequences suggests that suppression occurs by pairing of the expanded anticodons to all four bases of the complementary, quadruplet codon. The tRNA Gln mutants are identical to the sufG class of frameshift suppressors isolated both in Salmonella enterica serovar Typhimurium and E. coli by Kohno and Roth and previously thought to affect tRNA(Lys).  相似文献   

18.
19.
Chorismic acid, a key metabolite in modification of tRNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
Chorismic acid is the common precursor for the biosynthesis of the three aromatic amino acids as well as for four vitamins. Mutants of Escherichia coli defective in any of the genes involved in the synthesis of chorismic acid are also unable to synthesize uridine 5-oxyacetic acid (cmo5U) and its methyl ester (mcmo5U). Both modified nucleosides are normally present in the wobble position of some tRNA species. Mutants defective in any of the specific pathways leading to phenylalanine, tyrosine, tryptophan, folate, enterochelin, ubiquinone, and menaquinone have normal levels of cmo5U and mcmo5U in their tRNA. The presence of shikimic acid in the growth medium restores the ability of an aroD mutant to synthesize cmo5U, while O-succinylbenzoate, which is an early intermediate in the synthesis of menaquinone, does not. Thus, chorismic acid is a key metabolite in the synthesis of these two modified nucleosides in tRNA. The absence of chorismic acid blocks the formation of cmo5U and mcmo5U at the first step, which might be the formation of 5-hydroxyuridine. This results in an unmodified U in the wobble position of tRNA(1Val) and in most of the tRNAs normally containing cmo5U and mcmo5U. Since cmo5U and mcmo5U are synthesized under anaerobic conditions, the formation of these nucleosides does not require molecular oxygen. One of the carbon atoms of the side chain, --O--CH2--COOH, originates from the methyl group of methionine. The other carbon atom does not originate directly from the C-1 pool, from the carboxyl group methionine, or from bicarbonate. This metabolic link between intermediary metabolism and translation also exists for another member of the family Enterobacteriaceae, Salmonella typhimurium, as well as for the distantly related gram-positive organism Bacillus subtilis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号