首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of phosphorus limitation on the physiological and biochemical changes of the freshwater bloom alga Microcystis aeruginosa Qutz. are reported in the present study. As a result of phosphorus limitation, biomass was controlled to some extent and the protein content per cell in vivo decreased. However,the carbohydrate content per cell was higher in phosphorus limitation over the 8d of cultivation. Soluble proteins were distinct in the media, whereas phosphorus deficiency induced the presence of a unique protein (16.2 kDa). Under conditions of phosphorus limitation, the activities of both superoxide dismutase and peroxidase per cell in vivo were lower than under normal conditions in the last cultivation. The in vivo absorption spectra of cells showed chlorophyll absorption peaks at 676 and 436nm, over 10nm red-shifted from the normal position; cells showed an absence of a chlorophyll c with an in viva absorption peak at 623nm and an extraction absorption peak at 617nm. The chlorophyll a/carotene and chlorophyll a/xanthophylls ratios decreased under conditions of phosphorus limitation, photosynthetic efficiency (Fv/Fm) was clearly lower, and the low-temperature fluorescence emission spectra indicated a higher peak at 683nm and a lower peak at 721nm relatively, with the 721nm peak drifting slightly to the red and the 683 nm peak strengthened with a weakened 692nm shoulder peak.  相似文献   

2.
Some physiological and biochemical changes in the marine eukaryotic red tide alga Heterosigma akashiwo (Hada) were investigated during the alleviation from iron limitation. Chlorophyll a/carotenoid ratio increases as a result of iron alleviation. In vivo absorption spectra of iron-limited cells showed a chlorophyll (Chl) absorption peak at 630 nm, 2 nm blue-shifted from the normal position. Low-temperature fluorescence emission spectra of the cells have one prominent Chl emission peak at 685 nm. The cells showed a decrease in fluorescence yield from 685 nm band during alleviation from iron limitation. Low-temperature fluorescence excitation spectra and room-temperature fluorescence spectra indicated an efficient excitation energy transfer in the cells alleviated from iron limitation. Photosynthetic efficiency and carbohydrate content per cell increased after alleviation from iron limitation. Total protein decreased in iron-limited cells, while iron deficiency induced the appearance of specific soluble proteins (17 and 55 kDa).  相似文献   

3.
《BBA》1986,850(1):156-161
The orientation of the various absorbing and fluorescing dipoles in Photosystem II have been investigated by linearly polarized light spectroscopy at 5 K, performed on macroscopically oriented PS II complexes derived from Chlamydomonas reinhardtii. Linear dichroism and absorption spectra show that the QY transitions of the chlorophyll molecules are mostly tilted at less than 35° from the plane of largest cross-section of the particle (which in vivo coincides with the plane of the thylakoid membrane). The chlorophyll forms absorbing at 676 and 683 nm are oriented closer to the membrane than the forms absorbing at 665 and 670 nm which are tilted at approximately 35° from the plane. A dip observed around 680 nm in the LD/absorption spectra indicates a component tilted at a larger angle away from the membrane plane than the 676 nm- and 683 nm-absorbing species. A component weakly absorbing around 693 nm and exhibiting a negative LD (tilt larger than 35°) is clearly resolved. The amplitude of the LD at 693 nm relative to that observed at the maximum (676 nm) varies from sample to sample. In the blue spectral region, two populations of carotenoids are observed; one absorbs around 460 and 490 nm, while the other absorbs around 510 nm. They are oriented out of and near to the thylakoid plane, respectively. Comparison of polarized absorption and fluorescence spectra from the same oriented samples allows the assignment of the 695 nm fluorescence emission to the dipoles responsible for the LD signal at 693 nm.  相似文献   

4.
赤潮异弯藻在铁限制条件下的光谱特性   总被引:8,自引:1,他引:8  
由活体吸收光谱可见,赤潮异弯藻在叶绿素c靠近红光区的吸收峰处,由铁丰富条件下的632nm向蓝漂移2nm.由于类胡萝卜素相对于叶绿素a的比值在铁限制的细胞内增大,因而受铁限制的细胞活体吸收光谱在480nm左右类胡萝卜素的吸收峰处增加了一个吸收峰.赤潮异弯藻细胞低温荧光发射光谱在685nm处有一明显的发射峰。与铁丰富条件(10μmol.L-1)相比,缺铁(5nmol·L-1)和低铁(100nmol·L-1)细胞在685nm处的荧光得率分别升高了2倍和1.4倍.补铁48h后荧光得率则明显降低。表明细胞在铁限制条件下存在大量能量耗散,降低了细胞光合作用效率.  相似文献   

5.
Whole cell absorption spectra of the Eustigmatophycean algae Nannochloropsis salina Bourrelly and Nannochloropsis sp. reveal the presence of a distinct absorption peak at 490 nm. The lack of chlorophylls b and c in these species indicates that this peak must be attributed to carotenoid absorption. In vivo fluorescence excitation spectra for chlorophyll a emission show a corresponding maximum at 490 nm. This peak is more clearly resolved than carotenoid maxima in other algal classes due to the absence of accessory chlorophylls. The carotenoid composition of the two Nannochloropsis species shows that violaxanthin and vaucheriaxanthin are the main contributors to 490 nm absorption. Violaxanthin accounts for approximately 60% of the total carotenoid in both clones. We conclude that light absorption by violaxanthin, and possibly by vaucheriaxanthin, is coupled in energy transfer to chlorophyll a and that violaxanthin is the major light-harvesting pigment in the Eustigmatophyceae. This is the first report of the photosynthetic light-harvesting function of this carotenoid.  相似文献   

6.
The antenna composition of the Photosystems IIα, IIβ and I was studied in tobacco chloroplasts. Absorbance spectra, recorded at 4 K, were analyzed for the wild type and the mutants Su/su and Su/su var. Aurea, containing higher concentrations of the photosystems. With chloroplasts of Su/su we measured the action spectra of the three photosystems from 625 to 690 nm. Above 675 nm absorption by Photosystem I dominated. This sytem had a maximum at 678 nm and a shoulder at 660 nm. Of the long-wavelength chlorophyll a forms, absorbing at 690, 697 and 705 nm at 4 K, which are generally assigned to Photosystem I, the 697 nm form occurred in an amount of four molecules per reaction center of Photosystem I in each type of chloroplast. The Photosystem IIα spectrum was characterized by maxima at 650 and 672 nm, showing clearly the participation of the chlorophyll a and b containing light-harvesting complex. In the mutants the light-harvesting complex has a chlorophyll a to chlorophyll b ratio of more than 1; the amount of the 672 nm chlorophyll a was normal, whereas the amount of chlorophyll b was markedly decreased in the mutants relative to the wild type. The Photosystem IIβ spectrum mainly consisted of a band at 683 nm.  相似文献   

7.
Distribution of phycobilisomes between photosystem I (PSI) and photosystem II (PSII) complexes in the cyanobacterium Spirulina platensis has been studied by analysis of the action spectra of H2 and O2 photoevolution and by analysis of the 77 K fluorescence excitation and emission spectra of the photosystems. PSI monomers and trimers were spectrally discriminated in the cell by the unique 760 nm low-temperature fluorescence, emitted by the trimers under reductive conditions. The phycobilisome-specific 625 nm peak was observed in the action spectra of both PSI and PSII, as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 695 nm (PSII), 730 nm (PSI monomers), and 760 nm (PSI trimers). The contributions of phycobilisomes to the absorption, action, and excitation spectra were derived from the in vivo absorption coefficients of phycobiliproteins and of chlorophyll. Analyzing the sum of PSI and PSII action spectra against the absorption spectrum and estimating the P700:P680 reaction center ratio of 5.7 in Spirulina, we calculated that PSII contained only 5% of the total chlorophyll, while PSI carried the greatest part, about 95%. Quantitative analysis of the obtained data showed that about 20% of phycobilisomes in Spirulina cells are bound to PSII, while 60% of phycobilisomes transfer the energy to PSI trimers, and the remaining 20% are associated with PSI monomers. A relevant model of organization of phycobilisomes and chlorophyll pigment-protein complexes in Spirulina is proposed. It is suggested that phycobilisomes are connected with PSII dimers, PSI trimers, and coupled PSI monomers.  相似文献   

8.
E. Lehoczki 《BBA》1975,408(3):223-227
The absorption spectra of chlorophyll b in Triton X-100 micelles at room temperature are superpositions of components with absorption maxima at 640.8, 648.9, 659.5, 669.6, 682.1 and 695.7 nm, obtained from Gaussian analysis of the spectra. The last four forms strongly overlap the chlorophyll a forms of this system obtained with maxima at 659.3, 667.6, 674.3, 680.8, 686.5, 692.8, 701.9, 713.6 and 722.0 nm.

Since the in vivo chlorophyll a forms practically coincide with the forms found in this system, the possible existence of in vivo overlapping chlorophyll b and a forms eventually should be taken into consideration. In this case, however, the Gaussian analysis of in vivo absorption bands in itself in the proper spectrum range cannot discriminate between chlorophyll a and b components.  相似文献   


9.
Curve resolution into Gaussian components of the absorption spectra during the varying stages of the Shibata shift in dark grown, irradiated leaves of barley indicates that the chlorophyll a forms formed after irradiation consist of the same main components which have been reported to be present in all hitherto investigated plant materials (peak values in the red region 662, 670, 677 and 683 nm, respectively) but in varying proportions. The spectra during the Shibata shift proper can be satisfied by a mixture of two single components gradually changing their proportions, although a four component system gives a still better fit to the measured absorption curves. It is also shown that curves taken before and after the shift and added together in the appropriate proportions will match the absorption spectrum measured with peak at the isosbestic point (after ca. 15 min at room temperature).  相似文献   

10.
Whole cell absorption spectra of the Eustigmatophycean algae Nannochloropsis salina Bourrelly and Nannochloropsis sp. reveal the presence of a distinct absorption peak at 490 nm. The lack of chlorophylls b and c in these species indicates that this peak must be attributed to carotenoid absorption. In vivo fluorescence excitation spectra for chlorophyll a emission show a corresponding maximum at 490 nm. This peak is more clearly resolved than carotenoid maxima in other algal classes due to the absence of accessory chlorophylls. The carotenoid composition of the two Nannochloropsis species shows that violaxanthin and vaucheriaxanthin are the main contributors to 490 nm absorption. Violaxanthin accounts for approximately 60% of the total carotenoid in both clones. We conclude that light absorption by violaxanthin, and possibly by vaucheriaxanthin, is coupled in energy transfer to chlorophyll a and that violaxanthin is the major light-harvesting pigment in the Eustigmatophyceae. This is the first report of the photosynthetic light-harvesting function of this carotenoid.  相似文献   

11.
Jeanette S. Brown 《BBA》1980,591(1):9-21
A spectroscopic study of chlorophyll-protein complexes isolated from Euglena gracilis membranes was carried out to gain information about the state of chlorophyll in vivo and energy transfer in photosynthesis. The membranes were dissociated by Triton X-100 and separated into fractions by sucrose gradient centrifugation and hydroxyapatite chromatography. Four different types of chlorophyll-protein complexes were distinguished from each other and from detergent-solubilized chlorophyll in these fractions by examination of their absorption, fluorescence excitation (400–500 nm) and emission spectra at low temperature. These types were: (1). A mixture of antenna chlorophyll a- and chlorophyll ab-proteins with an absorption maximum at 669 and emission at 682 nm; (2) a P-700-chlorophyll a-protein (chlorophyll: P-700 = 30 : 1), termed CPI with an absorption maximum at 676 nm and emission maxima at 698 and 718 nm; (3) a second chlorophyll a-protein (CPI-2) less enriched in P-700, with an absorption maximum at 676 nm and emission maxima at 680, 722 and 731 nm; (4) a third chlorophyll a-protein (CPa1) with no P-700, absorption maxima at 670 and 683 nm, and an unusually sharp emission maximum at 687 nm. Treatment of CPa1 with sodium dodecyl sulfate drastically altered its spectroscopic properties indicating that at least some chlorophyll-proteins isolated with this detergent are partially denatured. The results suggest that the complex absorption spectra of chlorophyll in vivo are caused by varying proportions of different chlorophyll-protein complexes, each with different groups of chlorophyll molecules bound to it and making up a unique entity in terms of electronic transitions.  相似文献   

12.
The absorption spectra of chlorophyll b in Triton X-100 micelles at room temperature are superpositions of components with absorption maxima at 640.8, 648.9, 659.5, 669.6, 682.1 and 695.7 nm, obtained from Gaussian analysis of the spectra. The last four forms strongly overlap the chlorophyll a forms of this system obtained with maxima at 659.3, 667.6, 674.3, 680.8, 686.5, 692.8, 701.9, 713.6 and 722.0 nm. Since the in vivo chlorophyll a forms practically coincide with the forms found in this system, the possible existence of in vivo overlapping chlorophyll b and a forms eventually should be taken into consideration. In this case, however, the Gaussian analysis of in vivo absorption bands in itself in the proper spectrum range cannot discriminate between chlorophyll a and b components.  相似文献   

13.
Enhancement spectra for photosynthesis of intact leaves of higherplants were investigated by means of the rate of CO2 absorptionunder atmospheric conditions. Enhancement spectra for photosystem(system)II measured with a reference beam of 700 nm had twopronounced peaks at about 480 and 650 nm and lower humps at540–600 nm in all of the nine species tested. By the useof a rice mutant which lacks chlorophyll b, it was revealedthat the 650-nm peak and the middle humps in the spectrum canbe attributed mostly to chlorophyll b absorption, whereas the480-nm peak must be due to the absorption of carotenoids andchlorophyll b. Enhancement for system I in wheat had a peakat about 715 nm, and the maximum was much higher than that ofthe enhancement for system II. Enhancement between a red anda farred light for wheat was much greater for the farred lightthan for the red light in the presence of an excess amount ofthe other light. These results demonstrate that the enhancementphenomenon in higher plants is essentially the same as thatin green algae. (Received November 30, 1977; )  相似文献   

14.
Absorption spectra and photosynthetic action spectra have been determined for living Anacystis grown in complete and iron-deficient inorganic media. The absorption studies have shown a spectral shift from 679 nm to 673 nm in the chlorophyll a absorption peak when the algae had to grow without iron. The shift is believed to reflect a changed ratio between at least two chlorophyll a forms denoted Ca670 and Ca680 in this work. Action spectra determinations have revealed a similar shift from 677 nm to 672 nm in the photosynthetic activity peak of chlorophyll a when Anacystis was transferred to a medium without iron. It is proposed that both Ca670 and Ca680 participate in light absorption for photo-system I.  相似文献   

15.
Absorption and fluorescence spectra in the red region of water-soluble chlorophyll proteins, Lepidium CP661, CP663 and Brassica CP673, pigment System II particles of spinach chloroplasts and chlorophyll a in diethylether solution at 25 degrees C were analyzed by the curve-fitting method (French, C.S., Brown, J.S. and Lawrence, M.C. (1972) Plant Physiol 49, 421--429). It was found that each of the chlorophyll forms of the chlorophyll proteins and the pigment System II particles had a corresponding fluorescence band with the Stokes shift ranging from 0.6 to 4.0 nm. The absorption spectrum of chlorophyll a in diethylether solution was analyzed to one major band with a peak at 660.5 nm and some minor bands, while the fluorescence spectrum was analyzed to one major band with a peak at 664.9 nm and some minor bands. A mirror image was clearly demonstrated between the resolved spectra of absorption and fluorescence. The absorption spectrum of Lepidium CP661 was composed of a chlorophyll b form with a peak at 652.8 nm and two chlorophyll a forms with peaks at 662.6 and 671.9 nm. The fluorescence spectrum was analyzed to five component bands. Three of them with peaks at 654.8, 664.6 and 674.6 nm were attributed to emissions of the three chlorophyll forms with the Stokes shift of 2.0--2.7 nm. The absorption spectrum of Brassica CP673 had a chlorophyll b form with a peak at 653.7 nm and four chlorophyll a forms with peaks at 662.7, 671.3, 676.9 and 684.2 nm. The fluorescence spectrum was resolved into seven component bands. Four of them with peaks at 666.7, 673.1, 677.5 and 686.2 nm corresponded to the four chlorophyll a forms with the Stokes shift of 0.6--4.0 nm. The absorption spectrum of the pigment System II particles had a chlorophyll b form with a peak at 652.4 nm and three chlorophyll a forms with peaks at 662.9, 672.1 and 681.6 nm. The fluorescence spectrum was analyzed to four major component bands with peaks at 674.1, 682.8, 692.0 and 706.7 nm and some minor bands. The former two bands corresponded to the chlorophyll a forms with peaks at 672.1 and 681.6 nm with the Stokes shift of 2.0 and 1.2 nm, respectively. Absorption spectra at 25 degrees C and at --196 degrees C of the water-soluble chlorophyll proteins were compared by the curve-fitting methods. The component bands at --196 degrees C were blue-shifted by 0.8--4.1 nm and narrower in half widths as compared to those at 25 degrees C.  相似文献   

16.
By DNA recombination technology in vitro, ORF469- mutant of cynobacterium Synechocystis sp. PCC 6803 was constructed, in which the ORF469 fragment relative to the light-inde-pendent protochlorophyllide (Pchlide) reduction was deleted. In BG-11 medium with 5 mmol/L glucose, the mutant was grown in darkness with a brief period (10 min) of illumination everyday (light-activated heterotrophic growth, LAHG) for 2 weeks to delete chlorophyll (Chl). The 665 mn Chl peak was replaced by the 629 nm Pchlide peak in the absorption spectra of the methanol extracts. The absorption spectra of the intact cells showed only shoulder peak at 620 nm (representing phyco- biliprotein). The thylakoid membrane disappeared, but the amount of phycobilisome did not decrease. When the mutant was transferred from LAHG condition to continuous light illumination for 3 h, the absorbance at 665 nm became higher than that at 629 nm and two peaks at 620 nm and 440 nm,representing phycobiliprotein and Chi-protein complex respectively, appeared in the absorption spectra of the intact cells. Mter exposure to the light for 8 h, the thylakoid membrane was visible in the cells. And for 24 h, a shoulder peak was present at 680 nm in the absorption spectra of the intact cells. Meanwhile the absorption spectra of the methanol extracts had no difference from that of cells grown in the light. Mter 48 h, the shape of the absorption spectra of the intact cells became the same as that of cells grown in the light. The layers of thylakoid membranes were as clear as those of the cells grown in the light. The results indicated that the biosynthesis of chlorophyll regulates the reconstmction of thylakoid membrane rendering the Chl protein complex to play its functional role in photosystems.  相似文献   

17.
The steady-state fluorescence properties and uphill energy transfer were analyzed on intact cells of a chlorophyll (Chl) d-dominating photosynthetic prokaryote, Acaryochloris marina. Observed spectra revealed clear differences, depending on the cell pigments that had been sensitized; using these properties, it was possible to assign fluorescence components to specific Chl pigments. At 22 degrees C, the main emission at 724 nm came from photosystem (PS) II Chl d, which was also the source of one additional band at 704 nm. Chl a emissions were observed at 681 nm and 671 nm. This emission pattern essentially matched that observed at -196 degrees C, as the main emission of Chl d was located at 735 nm, and three minor bands were observed at 704 nm, 683 nm, and 667 nm, originating from Chl d, Chl a, and Chl a, respectively. These three minor bands, however, had not been sensitized by carotenoids, suggesting specific localization in PS II. At 22 degrees C, excitation of the red edge of the absorption band (which, at 736 nm, was 20 nm longer than the absorption maximum), resulted in fluorescence bands of Chl d at 724 nm and of Chl a at 682 nm, directly demonstrating an uphill energy transfer in this alga. This transfer is a critical factor for in vivo activity, due to an inversion of energy levels between antenna Chl d and the primary electron donor of Chl a in PS II.  相似文献   

18.
Absorption and fluorescence spectra in the red region of water-soluble chlorophyll proteins, Lepidium CP661, CP663 and Brassica CP673, pigment System II particles of spinach chloroplasts and chlorophyll a in diethylether solution at 25°C were analyzed by the curve-fitting method (French, C.S., Brown, J.S. and Lawrence, M.C. (1972) Plant Physiol. 49, 421–429). It was found that each of the chlorophyll forms of the chlorophyll proteins and the pigment System II particles had a corresponding fluorescence band with the Stokes shift ranging from 0.6 to 4.0 nm.The absorption spectrum of chlorophyll a in diethylether solution was analyzed to one major band with a peak at 660.5 nm and some minor bands, while the fluorescence spectrum was analyzed to one major band with a peak at 664.9 nm and some minor bands. A mirror image was clearly demonstrated between the resolved spectra of absorption and fluorescence. The absorption spectrum of Lepidium CP661 was composed of a chlorophyll b form with a peak at 652.8 nm and two chlorophyll a forms with peaks at 662.6 and 671.9 nm. The fluorescence spectrum was analyzed to five component bands. Three of them with peaks at 654.8, 664.6 and 674.6 nm were attributed to emissions of the three chlorophyll forms with the Stokes shift of 2.0–2.7 nm. The absorption spectrum of Brassica CP673 had a chlorophyll b form with a peak at 653.7 nm and four chlorophyll a forms with peaks at 662.7, 671.3, 676.9 and 684.2 nm. The fluorescence spectrum was resolved into seven component bands. Four of them with peaks at 666.7, 673.1, 677.5 and 686.2 nm corresponded to the four chlorophyll a forms with the Stokes shift of 0.6–4.0 nm. The absorption spectrum of the pigment System II particles had a chlorophyll b form with a peak at 652.4 nm and three chlorophyll a forms with peaks at 662.9, 672.1 and 681.6 nm. The fluorescence spectrum was analyzed to four major component bands with peaks at 674.1, 682.8, 692.0 and 706.7 nm and some minor bands. The former two bands corresponded to the chlorophyll a forms with peaks at 672.1 and 681.6 nm with the Stokes shift of 2.0 and 1.2 nm, respectively.Absorption spectra at 25°C and at ?196°C of the water-soluble chlorophyll proteins were compared by the curve-fitting method. The component bands at ?196°C were blue-shifted by 0.8–4.1 nm and narrower in half widths as compared to those at 25°C.  相似文献   

19.
Since akinete germination is triggered by light and the action spectrum for this process has features in common with the spectra of the two photochromic pigments, phycochromes b and d, a search was made for the presence of these phycochromes in akinetes of the blue-green alga. Anabaena variabilis Kützing. Allophycocyanin-B was also looked for, since the action spectrum for akinete germination points to a possible participation of this pigment too. Isoelectric focusing was used for purification of the pigments. The different fractions were investigated for phycochromes b and d by measuring the absorbance difference spectra: for phycochrome b. 500 nm irradiated minus 570 nm irradiated, and for phycochrome d, 650 nm irradiated minus 610 nm irradiated. For determination of allophycocyanin-B. fourth derivative analysis of absorption spectra was made for some of the fractions from the isoelectric focusing column. Phycochrome b was also assayed for by measuring in vivo absorption difference spectra. The assays were positive for all three pigments. The complete photosynthetic pigment systems were also studied by in vivo fluorescence measurements on both akinetes and vegetative cells of Anabaena variabilis. Fluorescence emission and excitation spectra at selected emission wavelengths were measured at room temperature and liquid nitrogen temperature. The energy transfer from phycoerythrocyanin to phycocyanin is very efficient under all conditions, as is the energy transfer from phycocyanin to allophycocyanin at room temperature. At low temperature, however, phycocyanin is partly decoupled from allophycocyanin, particularly in the akinetes; the energy transfer from allophycocyanin to chlorophyll a is less efficient at low temperature in both types of cells, but especially in akinetes. Delayed light emission was measured for both types of cells and found to be very weak in akinetes compared to vegetative cells. From this study it would seem that akinetes lack an active photosystem II, although the 691 nm peak in the 570 nm excited low temperature fluorescence emission spectrum proves the presence of photosystem II chlorophyll, and also its energetic connection to the phycobilisomes.  相似文献   

20.
CP47 is a pigment-protein complex in the core of photosystem II that tranfers excitation energy to the reaction center. Here we report on a spectroscopic investigation of the isolated CP47 complex. By deconvoluting the 77 K absorption and linear dichroism, red-most states at 683 and 690 nm have been identified with oscillator strengths corresponding to approximately 3 and approximately 1 chlorophyll, respectively. Both states contribute to the 4 K emission, and the Stark spectrum shows that they have a large value for the difference polarizability between their ground and excited states. From site-selective polarized triplet-minus-singlet spectra, an excitonic origin for the 683 nm state was found. The red shift of the 690 nm state is most probably due to strong hydrogen bonding to a protein ligand, as follows from the position of the stretch frequency of the chlorophyll 13(1) keto group (1633 cm(-)(1)) in the fluorescence line narrowing spectrum at 4 K upon red-most excitation. We discuss how the 683 and 690 nm states may be linked to specific chlorophylls in the crystal structure [Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W., and Orth, P. (2001) Nature 409, 739-743].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号