共查询到20条相似文献,搜索用时 0 毫秒
1.
Mouse L-cell nuclei incorporate gamma-32P from ATP in vitro predominantly in 5'-monophosphoryl termini and internal phosphodiester bonds with a nonrandom nearest-neighbor distribution. In the presence of 1 microgram of alpha-amanitin per ml the gamma-32P showed a time-dependent appearance in RNA bands which migrated with mature tRNA species but not with pre-tRNA and 5S RNA. The gamma-32P was found in internal phosphodiester bonds as shown by alkaline phosphatase resistance and was identified in 3'-monophosphates after RNase T2, T1, and A digestion. The specificity of this incorporation was indicated by a limited number of labeled oligonucleotides from a T1 digest and identification of 70 to 80% of the 32P label as Cp on complete digestion of the eluted tRNA band. We also observed transiently [gamma-32P]ATP-labeled RNA bands (in 5'-monophosphate positions) that were 32 to 45 nucleotides long. The results presented suggest splicing of several mouse L-cell tRNA species in isolated nuclei which involve the RNA 5'-OH kinase products as intermediates. 相似文献
2.
3.
Characterization of the 5'' to 3'' exonuclease associated with Thermus aquaticus DNA polymerase. 总被引:3,自引:5,他引:3 下载免费PDF全文
Thermus aquaticus DNA polymerase was shown to contain an associated 5' to 3' exonuclease activity. Both polymerase and exonuclease activities cosedimented with a molecular weight of 72,000 during sucrose gradient centrifugation. Using a novel in situ activity gel procedure to simultaneously detect these two activities, we observed both DNA polymerase and exonuclease in a single band following either nondenaturing or denaturing polyacrylamide gel electrophoresis: therefore, DNA polymerase and exonuclease activities reside in the same polypeptide. As determined by SDS-polyacrylamide gel electrophoresis this enzyme has an apparent molecular weight of 92,000. The exonuclease requires a divalent cation (MgCl2 or MnCl2), has a pH optimum of 9.0 and excises primarily deoxyribonucleoside 5'-monophosphate from double-stranded DNA. Neither heat denatured DNA nor the free oligonucleotide (24-mer) were efficient substrates for exonuclease activity. The rate of hydrolysis of a 5'-phosphorylated oligonucleotide (24-mer) annealed to M13mp2 DNA was about twofold faster than the same substrate containing a 5'-hydroxylated residue. Hydrolysis of a 5'-terminal residue from a nick was preferred threefold over the same 5'-end of duplex DNA. The 5' to 3' exonuclease activity appeared to function coordinately with the DNA polymerase to facilitate a nick translational DNA synthesis reaction. 相似文献
4.
Adenosine 3'':5''-cyclic monophosphate-dependence of protein kinase isoenzymes from mouse liver. 下载免费PDF全文
Conditions influencing the cyclic AMP-dependence of protein kinase (ATP-protein phosphotransferase, EC 2.7.1.37) during the phosphorylation of histone were studied. Protein kinase from mouse liver cytosol and the two isoenzymes [PK (protein kinase) I and PK II] isolated from the cytosol by DEAE-cellulose chromatography were tested. A relation between concentration of enzyme and cyclic AMP-dependence was observed for both isoenzymes. Moderate dilution of isoenzyme PK II decreased the stimulation of the enzyme by cyclic AMP. Isoenzyme PK I could be diluted 200 times more than isoenzyme PK II before the same decrease in cyclic AMP-dependence appeared. Long-term incubation with high concentrations of histone increased the activity in the absence of cyclic AMP relative to the activity in the presence of the nucleotide. This was more pronounced for isoenzyme PK II than for isoenzyme PK I. The cyclic AMP concentration needed to give half-maximal binding of the nucleotide was the same as the cyclic AMP concentration (Ka) at which the protein kinase had 50% of its maximal activity. The close correlation between binding and activation is also found in the presence of KCl, which increased the apparent activation constant (Ka) for cyclic AMP. With increasing [KCl], a progressively higher proportion of the histone phosphorylation observed in cytosol was due to cyclic AMP-independent (casein) kinases, leading to an overestimation of the degree of activation of the cyclic AMP-dependent protein kinases present. The relative contributions of cyclic AMP-dependent and -independent kinases to histone phosphorylation at different ionic strengths was determined by use of heat-stable inhibitor and phospho-cellulose chromatography. 相似文献
5.
DNA strand transfer catalyzed by the 5'-3' exonuclease domain of Escherichia coli DNA polymerase I. 下载免费PDF全文
A protein which promotes DNA strand transfer between linear double-stranded M13mp19 DNA and single-stranded viral M13mp19 DNA has been isolated from recA- E.coli. The protein is DNA polymerase I. Strand transfer activity residues in the small fragment encoding the 5'-3' exonuclease and can be detected using a recombinant protein comprising the first 324 amino acids encoded by polA. Either the recombinant 5'-3' exonuclease or intact DNA polymerase I can catalyze joint molecule formation, in reactions requiring only Mg2+ and homologous DNA substrates. Both kinds of reactions are unaffected by added ATP. Electron microscopy shows that the joint molecules formed in these reactions bear displaced single strands and therefore this reaction is not simply promoted by annealing of exonuclease-gapped molecules. The pairing reaction is also polar and displaces the 5'-end of the non-complementary strand, extending the heteroduplex joint in a 5'-3' direction relative to the displaced strand. Thus strand transfer occurs with the same polarity as nick translation. These results show that E.coli, like many eukaryotes, possesses a protein which can promote ATP-independent strand-transfer reactions and raises questions concerning the possible biological role of this function. 相似文献
6.
2'',3''-Dideoxy-3'' aminonucleoside 5''-triphosphates are the terminators of DNA synthesis catalyzed by DNA polymerases. 总被引:1,自引:2,他引:1 下载免费PDF全文
Z G Chidgeavadze R S Beabealashvilli A M Atrazhev M K Kukhanova A V Azhayev A A Krayevsky 《Nucleic acids research》1984,12(3):1671-1686
It is shown that 2',3'-dideoxy-3'-aminonucleoside 5'-triphosphates with adenine, guanine, cytosine and thymine bases are effective inhibitors of DNA polymerase I, calf thymus DNA polymerase alpha and rat liver DNA polymerase beta. The effect of the above-mentioned compounds is markedly higher than corresponding action of the well-known DNA synthesis inhibitors arabinonucleoside 5'-triphosphates and 2',3'-dideoxynucleoside 5'-triphosphates. 2',3'-dideoxy-3'-aminonucleoside 5'-monophosphate residues incorporate into the 3'-terminus of the primer and terminate the DNA chain elongation. The possibility of using 2',3'-dideoxy-3'-aminonucleoside 5'-triphosphates as terminators for DNA sequencing by the polymerization method is demonstrated. 相似文献
7.
Mechanism of 3'' to 5'' exonuclease associated with phage T5-induced DNA polymerase: processiveness and template specificity. 总被引:1,自引:1,他引:1 下载免费PDF全文
T5-induced DNA polymerase has an associated 3' to 5' exonuclease activity. Both single-stranded and duplex DNA are hydrolyzed by this enzyme in a quasi-processive manner. This is indicated by the results of polymer-challenge experiments utilizing product analysis techniques. Due to the quasi-processive mode of hydrolysis, the kinetics of label release from the 3'-terminally labeled oligonucleotide substrates, annealed to complementary homopolymers, show an initial high rate of hydrolysis. In the case of both single-stranded and duplex DNA substrates, hydrolysis seems to continue, at best, up to the point where the enzyme is five or six nucleotides away from the 5-end. The enzyme carries out mismatch repair, as evidenced by experiments with primer molecules containing improper base residues at the 3'-OH terminus. Control experiments with complementary base residues at the 3'-end indicate that extensive removal of terminal residue takes place in the presence of dNTP's only when such residues are "improper" in the Watson-Crick sense. 相似文献
8.
The relaxosome protein MobC promotes conjugal plasmid mobilization by extending DNA strand separation to the nick site at the origin of transfer 总被引:7,自引:4,他引:7
The frequency of conjugal mobilization of plasmid R1162 is decreased approximately 50-fold if donor cells lack MobC, one of the plasmid-encoded proteins making up the relaxosome at the origin of transfer ( oriT ). The absence of MobC has several different effects on oriT DNA. Site- and strand-specific nicking by MobA protein is severely reduced, accounting for the lower frequency of mobilization. The localized DNA strand separation required for this nicking is less affected, but becomes more sensitive to the level of active DNA gyrase in the cell. In addition, strand separation is not efficiently extended through the region containing the nick site. These effects suggest a model in which MobC acts as a molecular wedge for the relaxosome-induced melting of oriT DNA. The effect of MobC on strand separation may be partially complemented by the helical distortion induced by supercoiling. However, MobC extends the melted region through the nick site, thus providing the single-stranded substrate required for cleavage by MobA. 相似文献
9.
A non-curved chicken lysozyme 5'' matrix attachment site is 3'' followed by a strongly curved DNA sequence. 总被引:2,自引:5,他引:2 下载免费PDF全文
Matrix attachment regions (MARs) partition the genome into functional and structural loop-domains. Here, we determined the relative matrix affinity of cloned fragments of the chicken lysozyme 5' MAR. We show that this region contains a non-curved high-affinity binding site, which is 3' followed by a strongly curved DNA sequence that exhibits weak matrix binding. DNA curvature is not a physical property required for strong matrix binding. Possible biological functions of this sequence arrangement, particularly of the strongly curved DNA, are discussed. 相似文献
10.
Three different mutations were introduced in the polA gene of Streptococcus pneumoniae by chromosomal transformation. One mutant gene encodes a truncated protein that possesses 5' to 3' exonuclease but has lost polymerase activity. This mutation does not affect cell viability. Other mutated forms of polA that encode proteins with only polymerase activity or with no enzymatic activity could not substitute for the wild-type polA gene in the chromosome unless the 5' to 3' exonuclease domain was encoded elsewhere in the chromosome. Thus, it appears that the 5' to 3' exonuclease activity of the DNA polymerase I is essential for cell viability in S. pneumoniae. Absence of the polymerase domain of DNA polymerase I slightly diminished the ability of S. pneumoniae to repair DNA lesions after ultraviolet irradiation. However, the polymerase domain of the pneumococcal DNA polymerase I gave almost complete complementation of the polA5 mutation in Escherichia coli with respect to resistance to ultraviolet irradiation. 相似文献
11.
Streptococcus pneumoniae DNA polymerase I lacks 3''-to-5'' exonuclease activity: localization of the 5''-to-3'' exonucleolytic domain. 下载免费PDF全文
The Streptococcus pneumoniae polA gene was altered at various positions by deletions and insertions. The polypeptides encoded by these mutant polA genes were identified in S. pneumoniae. Three of them were enzymatically active. One was a fused protein containing the first 11 amino acid residues of gene 10 from coliphage T7 and the carboxyl-terminal two-thirds of pneumococcal DNA polymerase I; it possessed only polymerase activity. The other two enzymatically active proteins, which contained 620 and 351 amino acid residues from the amino terminus, respectively, lacked polymerase activity and showed only exonuclease activity. These two polymerase-deficient proteins and the wild-type protein were hyperproduced in Escherichia coli and purified. In contrast to the DNA polymerase I of Escherichia coli but similar to the corresponding enzyme of Thermus aquaticus, the pneumococcal enzyme appeared to lack 3'-to-5' exonuclease activity. The 5'-to-3' exonuclease domain was located in the amino-terminal region of the wild-type pneumococcal protein. This exonuclease activity excised deoxyribonucleoside 5'-monophosphate from both double- and single-stranded DNAs. It degraded oligonucleotide substrates to a decameric final product. 相似文献
12.
13.
14.
Measurement of adenosine 3'':5''-cyclic monophosphate by competitive binding to salt-dissociated protein kinase. 下载免费PDF全文
An assay for cyclic AMP is described which takes advantage of the high affinity of the dissociated receptor moiety of cyclic AMP-dependent protein kinase I for the nucleotide. The kinase is kept dissociated by salt (800 mM-NaCl/30mM-EDTA). In the presence of a simply prepared heat-stable protein fraction the binding reagent is stable for the time needed to reach equilibrium of binding. A simple procedure [precipitation with poly-(ethylene glycol) followed by DEAE-cellulose chromatography] is described for the separation of protein kinase I from other binding proteins for cyclic AMP in rabbit skeletal muscle. The sensitivity, precision, reproducibility and specificity of the assay compared favourably with those of other cyclic AMP assays. The main advantage of the present assay is its resistance towards non-specific interference from a number of salts, tissue-culture media and substances found in crude tissue extracts. The reliability of cyclic AMP measurement directly in crude tissue extracts was ensured by removal of the assayable cyclic AMP with cyclic nucleotide phosphodiesterase digestion or adsorption with antibody against cyclic AMP, by comparison with measurement in tissue extracts purified by chromatography on QAE-Sephadex or sequentially on Dowex 50, and aluminium oxide as well as by dilution and recovery experiments. 相似文献
15.
Polynucleotide kinase from a T4 mutant which lacks the 3'' phosphatase activity. 总被引:2,自引:9,他引:2 下载免费PDF全文
Polynucleotide kinase from E. coli infected with the PseT 1 mutant of bacteriophage T4 has been isolated. The PseT 1 enzyme purifies similarly to normal polynucleotide kinase and effectively transfers the gamma phosphate of ATP to the 5' terminal hydroxyl of DNA and RNA. The PseT 1 and normal enzymes require similar magnesium ion concentrations, have the same pH optima and are both inhibited by inorganic phosphate. However, the PseT 1 enzyme is totally lacking the 3' phosphatase activity associated with normal polynucleotide kinase. The PseT 1 enzyme is a useful tool for the preparation of oligonucleotides with 3' and 5' terminal phosphates for use as susbstrates for RNA ligase. 相似文献
16.
T4 DNA ligase can seal a nick in double-stranded DNA limited by a 5''-phosphorylated base-free deoxyribose residue. 总被引:1,自引:1,他引:1 下载免费PDF全文
The 5' AP endodeoxyribonucleases hydrolyze the phosphodiester bond 5' to AP (apurinic or apyrimidinic) sites in double-stranded DNA leaving 3'-OH and 5'-phosphate ends. These nicks are sealed by T4 DNA ligase although the 5'-phosphate end belongs to a base-free deoxyribose. 相似文献
17.
The role of the phosphate group for the structure of phosphopeptide products of adenosine 3'',5''-cyclic monophosphate-dependent protein kinase. 总被引:1,自引:0,他引:1
By c.d. studies it is shown that liver-pyruvate-kinase-related peptide substrates of cyclic AMP-dependent protein kinase have a high tendency towards non-random structures in non-aqueous media. When phosphorylated, the conformation tendencies decrease. This structural change is explained in terms of the formation of strong intrapeptide phosphate-guanidinium salt links. It is proposed that similar events occur at the catalytic site of protein kinase and that such an interaction could facilitate the removal of the phosphorylated products. 相似文献
18.
We describe a novel 5' to 3' single-strand exonuclease activity exhibited by a Ku preparation purified from a human cell line. The enzyme removes 5' single-strand extensions from duplex DNA molecules. The exonuclease and helicase activities respond reciprocally to changes in ATP concentrations: Nuclease activity is inhibited at the ATP concentrations that are optimal for the helicase. The exonuclease activity does not require divalent cations. The potential implications of the exonuclease activity findings for repair of double-strand breaks and recombination processes are discussed. 相似文献
19.
20.
Factors affecting the binding of [3H]adenosine 3'':5''-cyclic monophosphate to protein kinase from bovine adrenal cortex. 下载免费PDF全文
Inorganic salts, several proteins and traces of protein precipitants were tested to find out by what mechanisms they modulate the binding of cyclic [3H]AMP to protein kinase (ATP-protein phosphotransferase; EC 2.7.1.37). The separation of free and bound cyclic AMP by (NH4)2SO4 precipitation was unaffected by the above agents and was more reliable than the Millipore filtration technique. Several binding sites for cyclic AMP were revealed in adrenal-cortex extract. When this extract was used as binding reagent in an assay for cyclic AMP, the standard curve was distorted in the presence of KCl because the salt affected the different binding sites to a varying extent. At high ionic strenth the protein kinase isoenzyme I dissociated and showed an extraordinarily high affinity for cyclic AMP. Trichloroacetate and perchlorate at very low concentrations were able to dissociate the protein kinase and modulate its binding characteristics as well. A progressive decrease in the cyclic AMP-binding capacity occurred on prolonged incubations. The binding protein was protected against inactivation by 2-mercaptoethanol, EDTA and several proteins. It was more resistant to denaturation when complexed to cyclic AMP. The enhancement of cyclic AMP binding by bovine serum albumin was investigated in some detail and appeared to be a pure stabilizing effect. It is proposed that the competitive-binding assays for cyclic AMP based on protein kinase be conducted at high ionic strength and in the presence of stabilizers (protein, EDTA, 2-mercaptoethanol). The interference from agents that may dissociate the protein kinase or influence its stability will thus be decreased. 相似文献