首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Krasnovskiĭ AA 《Biofizika》2004,49(2):305-321
The primary mechanisms for the photodynamic action of pigments and dyes, the principles of their division into mechanisms of type I and type II, and the role of these processes in biological systems are reviewed. Singlet oxygen is considered to be an indicator of the mechanisms of photodynamic reactions. The methods of its detection are described, which are based on the use of chemical traps, measurements of infrared phosphorescance at 1270 nm, and the registration singlet oxygen-sensitized delayed fluorescence caused by the summation of the energy of two singlet oxygen molecules by one dye molecule.  相似文献   

2.
This study examined the generation of reactive oxygen species (ROS) and the induction of lipid peroxidation by carcinogenic iron(III)-NTA complex (1:1), which has three conformations with two pKa values (pKa1≈4, pKa2≈8). These conformations are type (a) in acidic conditions of pH 1-6, type (n) in neutral conditions of pH 3-9, and type (b) in basic conditions of pH 7-10. The iron(III)-NTA complex was reduced to iron(II) complex under cool-white fluorescent light without the presence of any reducer. The reduction rates of three species of iron(III)-NTA were in the order type (a)?type (n) ? type (b). Iron(III)-NTA-dependent lipid peroxidation was induced in the presence and absence of preformed lipid peroxides (L-OOH) through processes associated with and without photoreduction of iron(III). The order of the abilities of the three species of iron(III)-NTA to initiate the three mechanisms of lipid peroxidation was: (1) type (a) ? type (n) ? type (b) in lipid peroxidation that is induced L-OOH- and H2O2-dependently and mediated by the photoreduction of iron(III); (2) type (b) ? type (n) ? type (a) in lipid peroxidation that is induced L-OOH- and H2O2-dependently but not mediated by the photoreduction of iron(III); (3) type (n) ? type (b) ? type (a) in lipid peroxidation that is induced peroxide-independently and mediated by the photoactivation but not by the photoreduction of iron(III). The rate of lipid peroxidation induced L-OOH-dependently is faster than that induced H2O2-dependently in the mechanism (1), but the rate of lipid peroxidation induced H2O2-dependently is faster than that induced L-OOH-dependently in the mechanism (2). In the lag process of mechanism (3), L-OOH and/or some free radical species, not 1O2, were generated by photoactivation of iron(III)-NTA. These multiple pro-oxidant properties that depend on the species of iron(III)-NTA were postulated to be a principal cause of its carcinogenicity.  相似文献   

3.
The photodynamic properties of a second-generation photodynamic sensitizer, meta-tetra(hydroxyphenyl)chlorin (mTHPC) were studied by dye-sensitized photoinactivation (650 nm) of HT29 human adenocarcinoma cells in culture. The photocytotoxicity of mTHPC in vitro depended on the presence of molecular oxygen. A strong inhibition of the photocytotoxicity of mTHPC was observed upon addition of sodium azide, a known singlet oxygen quencher. Photocytotoxicity was not inhibited by scavengers of superoxide anion radical, hydrogen peroxide and hydroxyl radicals. We suggest that mTHPC photosensitizes cell killing predominantly by type II, singlet oxygen-mediated photodynamic reactions. Illumination of cells preloaded with mTHPC induced peroxidation of membrane lipids. Inhibition of photoperoxidation by alpha-tocopherol (0.1 mM) present during illumination did not result in any decrease in toxicity, suggesting that reactions of lipid peroxidation play only a minor role in the overall photocytotoxic effect of mTHPC.  相似文献   

4.
Bases, nucleosides, nucleotides, and polynucleotides were exposed to chemically generated singlet oxygen to determine whether the species oxidized paralleled those oxidized in photodynamic reactions. In neutral or basic aqueous solution guanine, guanosine, deoxyguanosine, guanylic acid, deoxyguanylic acid, thymine, and uracil reacted with singlet oxygen. Since these compounds are oxidized in photodynamic processes, this study provides further evidence that singlet oxygen is the active intermediate in the photodynamic oxidation of nucleic acid constituents. Dienophilic attack by singlet oxygen is considered to be a plausible mechanism in these reactions.  相似文献   

5.
Onoue S  Seto Y  Ochi M  Inoue R  Ito H  Hatano T  Yamada S 《Phytochemistry》2011,72(14-15):1814-1820
Extracts from St. John's Wort (SJW: Hypericum perforatum) have been used for the treatment of mild-to-moderate depression. In spite of the high therapeutic potential, orally administered SJW sometimes causes phototoxic skin responses. As such, the present study aimed to clarify the phototoxic mechanisms and to identify the major phototoxins of SJW extract. Photobiochemical properties of SJW extract and 19 known constituents were characterized with focus on generation of reactive oxygen species (ROS), lipid peroxidation, and DNA photocleavage, which are indicative of photosensitive, photoirritant, and photogenotoxic potentials, respectively. ROS assay revealed the photoreactivity of SJW extract and some SJW ingredients as evidenced by type I and/or II photochemical reactions under light exposure. Not all the ROS-generating constituents caused photosensitized peroxidation of linoleic acid and photodynamic cleavage of plasmid DNA, and only hypericin, pseudohypericin, and hyperforin exhibited in vitro photoirritant potential. Concomitant UV exposure of quercitrin, an SJW component with potent UV/Vis absorption, with hyperforin resulted in significant attenuation of photodynamic generation of singlet oxygen from hyperforin, but not with hypericin. In conclusion, our results suggested that hypericin, pseudohypericin, and hyperforin might be responsible for the in vitro phototoxic effects of SJW extract.  相似文献   

6.
The generation of oxygen radicals and the process of lipid peroxidation have become a focus of attention for investigators in the fields of central nervous system (CNS) trauma and stroke (e.g., ischemia). Considering our level of understanding of free radical and lipid peroxidation chemistry, absolute proof for their involvement in the pathophysiology of traumatic and ischemic damage to the CNS has been meager. While direct, unequivocal evidence for the participation of free radicals and lipid peroxidation as primary contributors to the death of neuronal tissue waits to be established, numerous recent studies have provided considerable support for the occurrence of free radical and lipid peroxidation reactions in the injured or ischemic CNS. In addition, the pharmacological use of antioxidants and free radical scavengers in the treatment of experimental CNS trauma and ischemia has provided convincing, although indirect evidence, for the involvement of oxygen radicals and lipid peroxidation in these conditions. The intent of this and its companion paper is to review: 1) the biochemical processes which may give rise to free radical reactions in the CNS, 2) the environment of the ischemic cell as it may affect the generation of oxygen radicals and the catalysis of lipid peroxidation reactions, 3) the evidence for the involvement of free radical mechanisms in CNS trauma and ischemia, and 4) the pathophysiological consequences of these phenomena.  相似文献   

7.
Molecular mechanisms of photosensitization   总被引:1,自引:0,他引:1  
G Laustriat 《Biochimie》1986,68(6):771-778
The first part of this article is devoted to basic concepts of photosensitization and to the primary photophysical and photochemistry processes involved in the reaction. The electronic configuration of molecular oxygen in its ground or activated states, which intervene in numerous photosensitized reactions, is reviewed. Finally, the main photosensitized reactions are reviewed and classified into three different groups: reactions due to radicals (type I), reactions due to singlet oxygen (type II) and those which do not involve oxygen (type III).  相似文献   

8.
Differences in the susceptibility of plant membrane lipids to peroxidation   总被引:5,自引:0,他引:5  
Peroxidation of three membrane lipid preparations from plants was initiated using Fe-EDTA and ascorbate and quantified as the production of aldehydes and loss of esterified fatty acids. Using liposomes prepared from commercial soybean asolecithin, the degree of peroxidation was shown to be dependent on: the free radical dose, which was varied by the ascorbate concentration; the presence of tocopherol in the liposome; the configuration, of the liposome, multilamellar or unilamellar; and time after initiation. There were dramatic interactions among these factors which led to the conclusion that in comparing the susceptibility of different membrane preparations it is essential to examine the kinetics of the peroxidation reactions. The composition of the liposome was a major determinant of the degree of peroxidation and of the type of degradative reactions initiated by the oxygen free radicals. A fresh polar lipid extract from Typha pollen had very similar fatty acid composition to the soybean asolecithin, but was more resistant to peroxidation as shown by less aldehyde production and increased retention of unsaturated fatty acids after treatment. Similarly, microsomal membranes from the crowns of non-acclimated and cold acclimated winter wheat (Triticum aestivum L.) seedlings had a much higher linolenic acid content than soybean asolecithin but was much more resistant to peroxidation. In the winter wheat microsomes, the loss of esterified fatty acids was not selective for the unsaturated fatty acids; consequently, even with 40% degradation, the degree of unsaturation in the membrane did not decrease. These different reaction mechanisms which occur in plant membranes may explain why measurements of fatty acid unsaturation fail to detect peroxidative reactions during processes such as senescence, aging and environmental stress.  相似文献   

9.
Hypochlorite or its acid, hypochlorous acid, may exert both beneficial and toxic effects in vivo. In order to understand the role and action of hypochlorite, the formation of active oxygen species and its kinetics were studied in the reactions of hypochlorite with peroxides and amino acids. It was found that tert-butyl hydroperoxide and methyl linoleate hydroperoxide reacted with hypochlorite to give peroxyl and/or alkoxyl radicals with little formation of singlet oxygen in contrast to hydrogen peroxide, which gave singlet oxygen exclusively. Amino acids and ascorbate reacted with hypochlorite much faster than peroxides. Free radical-mediated lipid peroxidation of micelles and membranes in aqueous suspensions was induced by hypochlorite, the chain initiation being the decomposition of hydroperoxides by hypochlorite. It was suppressed efficiently by ebselen which reduced hydroperoxides and by alpha-tocopherol, which broke chain propagation, but less effectively by hydrophilic antioxidants present in the aqueous phase. Cysteine suppressed the oxidation, but it was poorer antioxidant than alpha-tocopherol. Ascorbate also exerted moderate antioxidant capacity, but it acted as a synergist with alpha-tocopherol. Taken together, it was suggested that the primary target of hypochlorite must be sulfhydryl and amino groups in proteins and that the lipid peroxidation may proceed as the secondary reaction, which is induced by radicals generated from sulfenyl chlorides and chloramines.  相似文献   

10.
Isolation and activity of the photodynamic pigment hypericin   总被引:1,自引:0,他引:1  
Abstract. Hypericin, a photodynamic pigment, occurring in members of the Hypericaceae, can induce photosensitivity in grazing animals. The pigment has been isolated from the glandular trichomes located on the calyx of Hypericum hirsulum. Hypericin is shown to be capable of sensitizing the photo-oxidation of methyl linolenate. This activity is reduced in the presence of crocin, a carotenoid. Evidence for the generation of singlet molecular oxygen by hypericin is provided by the monitoring of oxygen consumption during the photosensitized oxidation of imidazole. Rates of oxygen consumption were modified by deuterium oxide and sodium azide. The photodynamic action of hypericin on pea leaf discs results in the promotion of photo-oxidative damage, measured by pigment loss and ethane production. These results are discussed in relation to the possible function of hypericin within the plant and the role of photo-dynamic reactions in nature.  相似文献   

11.
This study examined the generation of reactive oxygen species (ROS) and the induction of lipid peroxidation by carcinogenic iron(III)-NTA complex (1:1), which has three conformations with two pKa values (pKa1 approximately 4, pKa2 approximately 8). These conformations are type (a) in acidic conditions of pH 1-6, type (n) in neutral conditions of pH 3-9, and type (b) in basic conditions of pH 7-10. The iron(III)-NTA complex was reduced to iron(II) complex under cool-white fluorescent light without the presence of any reducer. The reduction rates of three species of iron(III)-NTA were in the order type (a) > type (n) > type (b). Iron(III)-NTA-dependent lipid peroxidation was induced in the presence and absence of preformed lipid peroxides (L-OOH) through processes associated with and without photoreduction of iron(III). The order of the abilities of the three species of iron(III)-NTA to initiate the three mechanisms of lipid peroxidation was: (1) type (a) > type (n) > type (b) in lipid peroxidation that is induced L-OOH- and H2O2-dependently and mediated by the photoreduction of iron(III); (2) type (b) > type (n) > type (a) in lipid peroxidation that is induced L-OOH- and H2O2-dependently but not mediated by the photoreduction of iron(III); (3) type (n) > type (b) > type (a) in lipid peroxidation that is induced peroxide-independently and mediated by the photoactivation but not by the photoreduction of iron(III). The rate of lipid peroxidation induced L-OOH-dependently is faster than that induced H2O2-dependently in the mechanism (1), but the rate of lipid peroxidation induced H2O2-dependently is faster than that induced L-OOH-dependently in the mechanism (2). In the lag process of mechanism (3), L-OOH and/or some free radical species, not 1O2, were generated by photoactivation of iron(III)-NTA. These multiple pro-oxidant properties that depend on the species of iron(III)-NTA were postulated to be a principal cause of its carcinogenicity.  相似文献   

12.
An interactive image analysis system has been developed to analyse and quantify the percentage of motile filaments and the individual linear velocities of organisms. The technique is based on the "difference" image between two digitized images taken from a time-lapse video recording 80 s apart which is overlaid on the first image. The bright lines in the difference image represent the paths along which the filaments have moved and are measured using a crosshair cursor controlled by the mouse. Even short exposure to solar ultraviolet radiation strongly impairs the motility of the gliding cyanobacterium Phormidium uncinatum, while its velocity is not likewise affected. These effects are not due to either type I (free radical formation) or type II (singlet oxygen production) photodynamic reactions, since specific quenchers and scavengers, indicative of these reactions, failed to be effective.  相似文献   

13.
组织中的氧是由血管中扩散而来,存在一定的差异。光动力疗法使用的卟啉类光敏剂主要是通过将能量转移到氧分子产生单线态氧来产生毒性物质,因此在光动力治疗中有氧的消耗,使组织中氧分布对光动力作用具有特殊意义。本文对氧在靶组织和正常组织中的分布、光动力效应对组织中氧含量的影响、以及氧含量对光动力效应的反作用等方面进行了综述。  相似文献   

14.
The production of reactive oxygen species is a regular feature of life in the presence of oxygen. Some reactive oxygen species possess sufficient energy to initiate lipid peroxidation in biological membranes, self-propagating reactions with the potential to damage membranes by altering their physical properties and ultimately their function. Two of the most prominent patterns of lipid restructuring in membranes of ectotherms involve contents of polyunsaturated fatty acids and ratios of the abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine. Since polyunsaturated fatty acids and phosphatidylethanolamine are particularly vulnerable to oxidation, it is likely that higher contents of these lipids at low body temperature elevate the inherent susceptibility of membranes to lipid peroxidation. Although membranes from animals living at low body temperatures may be more prone to oxidation, the generation of reactive oxygen species and lipid peroxidation are sensitive to temperature. These scenarios raise the possibility that membrane susceptibility to lipid peroxidation is conserved at physiological temperatures. Reduced levels of polyunsaturated fatty acids and phosphatidylethanolamine may protect membranes at warm temperatures from deleterious oxidations when rates of reactive oxygen species production and lipid peroxidation are relatively high. At low temperatures, enhanced susceptibility may ensure sufficient lipid peroxidation for cellular processes that require lipid oxidation products.  相似文献   

15.
Overexpression of bcl-2protects neurons from numerous necrotic insults, both in vitro and in vivo. While the bulk of such protection is thought to arise from Bcl-2 blocking cytochrome c release from mitochondria, thereby blocking apoptosis, the protein can target other steps in apoptosis, and can protect against necrotic cell death as well. There is evidence that these additional actions may be antioxidant in nature, in that Bcl-2 has been reported to protect against generators of reactive oxygen species (ROS), to increase antioxidant defenses and to decrease levels of ROS and of oxidative damage. Despite this, there are also reports arguing against either the occurrence, or the importance of these antioxidant actions. We have examined these issues in neuron-enriched primary hippocampal cultures, with overexpression of bcl-2 driven by a herpes simplex virus amplicon: (i) Bcl-2 protected strongly against glutamate, whose toxicity is at least partially ROS-dependent. Such protection involved reduction in mitochondrially derived superoxide. Despite that, Bcl-2 had no effect on levels of lipid peroxidation, which is thought to be the primary locus of glutamate-induced oxidative damage; (ii) Bcl-2 was also mildly protective against the pro-oxidant adriamycin. However, it did so without reducing levels of superoxide, hydrogen peroxide or lipid peroxidation; (iii) Bcl-2 protected against permanent anoxia, an insult likely to involve little to no ROS generation. These findings suggest that Bcl-2 can have antioxidant actions that may nonetheless not be central to its protective effects, can protect against an ROS generator without targeting steps specific to oxidative biochemistry, and can protect in the absence of ROS generation. Thus, the antioxidant actions of Bcl-2 are neither necessary nor sufficient to explain its protective actions against these insults in hippocampal neurons.  相似文献   

16.
Some of the photophysical properties (stationary absorbance and fluorescence, fluorescence decay times and singlet oxygen quantum yields) of pheophorbide a, metal-free, ClAl-, Cu- and Mg-t-butyl-substituted phthalocyanines, metal-free, ClAl- and Cu-t-butyl-substituted naphthalocyanines and of a number of tetraphenylporphyrins (5,10,15,20-tetraphenylporphyrin, 5,10,15,20-tetra(m-hydroxyphenyl)porphyrin, 5,10,15,20-tetra(p-hydroxyphenyl)porphyrin) have been studied in comparison with hematoporphyrin IX in order to select potent photosensitizers for the photodynamic treatment of cancer. The photodynamic activity of these compounds was investigated using Lewis lung carcinoma in mice. As a consequence of the photophysical parameters (relatively short singlet state lifetimes, and high singlet oxygen quantum yields) the photodynamic activities of pheophorbide a, t-butyl-substituted ClAl-phthalocyanine and ClAl-naphthalocyanine were selected for study in greater detail. Under the conditions employed in the present study, pheophorbide a was found to be the most effective sensitizer, as judged from its strong absorption at the excitation wavelength as compared with the hematoporphyrin derivative and greater singlet oxygen quantum yield relative to the phthalocyanines and naphthalocyanines. The photodynamic activity was observed to be strongly dependent on the photophysical parameters of the compounds. The primary mechanism underlying the photodynamic activity of these sensitizers probably consists of energy transfer from the lowest triplet state of the dyes to molecular oxygen, resulting in the formation of singlet oxygen (type II of photosensitization).  相似文献   

17.
Photodynamic therapy (PDT) leads to production of reactive oxygen species (ROS) and cell destruction due to oxidative stress. We used photodynamic effect of photosensitizer radachlorin to unravel the effect of photo-induced oxidative stress on the calcium signal and lipid peroxidation in primary culture of cortical neurons and astrocytes using live cell imaging. We have found that irradiation in presence of 200 nM of radachlorin induces calcium signal in primary neurons and astrocytes. Photo-induced neuronal calcium signal depends on internal calcium stores as it was still observed in calcium-free medium and could be blocked by depletion of endoplasmic reticulum (ER) stores with inhibitor of sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) thapsigargin. Both inhibitors of phospholipase C activity U73122 and water-soluble analogue of vitamin E Trolox suppressed calcium response activated by PDT. We have also observed that the photodynamic effect of radachlorin induces lipid peroxidation in neurons and astrocytes. This data demonstrate that lipid peroxidation induced by PDT in neurons and astrocytes leads to activation of phospholipase C that results in production of inositol 1,4,5-trisphosphate (IP3).  相似文献   

18.
Both chlorophyll a and b and polypeptides of the photosynthetic apparatus are found in gymnosperm seedlings. germinated and grown in absolute darkness. The photosystem II (PSII) activity is, however, limited, probably due to an inactive oxygen evolving system. In the present study dark-grown seedlings of Scots pine ( Pinus sylvestris L.) were transferred to light and changes in antenna size and the activation process of PSII were investigated using fluorescence measurements and quantitative western blotting. It was found that the activation process is rapid, requires very little light and that strong light inhibits the process. It takes place without any changes in the primary reactions of PSII. Furthermore, all polypeptides except the major light-harvesting chlorophyll a/b -binding protein complex of PSII (LHCII) were present in dark-grown seedlings in amounts comparable to the light treated control. The dark-grown seedlings had the same LHCII polypeptide composition as light treated seedlings, and the LHCII present seemed to be fully connected to the reaction centre. The results indicate that activation of PSII in dark-grown conifer seedlings resembles the photoactivation process of angiosperms. This implies that the fundamental processes in the assembly of the photosystem II complex is the same in all plants, but that the regulation differs between different taxa.  相似文献   

19.
The anionic redox activity in lithium‐rich layered oxides has the potential to boost the energy density of lithium‐ion batteries. Although it is widely accepted that the anionic redox activity stems from the orphaned oxygen energy level, its regulation and structural stabilization, which are essential for practical employment, remain still elusive, requiring an improved fundamental understanding. Herein, the oxygen redox activity for a wide range of 3d transition‐metal‐based Li2TMO3 compounds is investigated and the intrinsic competition between the cationic and anionic redox reaction is unveiled. It is demonstrated that the energy level of the orphaned oxygen state (and, correspondingly, the activity) is delicately governed by the type and number of neighboring transition metals owing to the π‐type interactions between Li? O? Li and M t2g states. Based on these findings, a simple model that can be used to estimate the anionic redox activity of various lithium‐rich layered oxides is proposed. The model explains the recently reported significantly different oxygen redox voltages or inactivity in lithium‐rich materials despite the commonly observed Li? O? Li states with presumably unhybridized character. The discovery of hidden factors that rule the anionic redox in lithium‐rich cathode materials will aid in enabling controlled cumulative cationic and anionic redox reactions.  相似文献   

20.
The processes of light-induced cell protection against photodamage, including DNA photorepair with involvement of photolyases and photoactivation of enzymatic synthesis of photoprotectors and antioxidants (flavonoids, carotenoids, melanins, serotonin, and hemoxygenase), are discussed. Mechanisms of photoprotective effects against photodynamic oxidation of membrane components and photodamage of DNA are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号