首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The overexpression of saccharides such as Globo-H, Lewis(Y) and Tn antigen is a common feature of oncogenic transformed cells. Endeavors to exploit this aberrant glycosylation for cancer vaccine development have been complicated by difficulties in eliciting high titers of IgG antibodies against classical conjugates of tumor-associated carbohydrates to carrier proteins. We have designed, chemically synthesized and immunologically evaluated a number of fully synthetic vaccine candidates to establish strategies to overcome the poor immunogenicity of tumor-associated carbohydrates and glycopeptides. We have found that a three-component vaccine composed of a TLR2 agonist, a promiscuous peptide T-helper epitope and a tumor-associated glycopeptide can elicit in mice exceptionally high titers of IgG antibodies that can recognize cancer cells expressing the tumor-associated carbohydrate. The superior properties of the vaccine candidate are attributed to the local production of cytokines, upregulation of co-stimulatory proteins, enhanced uptake by macrophages and dendritic cells and avoidance of epitope suppression.  相似文献   

2.
Over the last few years, anticancer immunotherapy has emerged as a new exciting area for controlling tumors. In particular, vaccination using synthetic tumor-associated antigens (TAA), such as carbohydrate antigens hold promise for generating a specific antitumor response by targeting the immune system to cancer cells. However, development of synthetic vaccines for human use is hampered by the extreme polymorphism of human leukocyte-associated antigens (HLA). In order to stimulate a T-cell dependent anticarbohydrate response, and to bypass the HLA polymorphism of the human population, we designed and synthesized a glycopeptide vaccine containing a cluster of a carbohydrate TAA B-cell epitope (Tn antigen: alpha-GalNAc-Ser) covalently linked to peptides corresponding to the Pan DR 'universal' T-helper epitope (PADRE) and to a cytotoxic T lymphocyte (CTL) epitope from the carcinoembryonic antigen (CEA). The immunogenicity of the construct was evaluated in outbred mice as well as in HLA transgenic mice (HLA-DR1, and HLA-DR4). A strong T-cell dependent antibody response specific for the Tn antigen was elicited in both outbred and HLA transgenic mice. The antibodies induced by the glycopeptide construct efficiently recognized a human tumor cell line underlying the biological relevance of the response. The rational design and synthesis of the glycopeptide construct presented herein, together with its efficacy to induce antibodies specific for native tumor carbohydrate antigens, demonstrate the potential of a such synthetic molecule as an anticancer vaccine candidate for human use.  相似文献   

3.
Glycopeptides containing a tumor-associated carbohydrate antigen (mono-, tri- or hexa-Tn antigen) as a B-cell epitope and a CD4+ T-cell epitope (PV: poliovirus or TT: tetanus toxin) were prepared for immunological studies. Several Tn antigen residues [FmocSer/Thr (alpha-GalNAc)-OH] were successively incorporated into the peptide sequence with unprotected carbohydrate groups. The tri- and hexa-Tn glycopeptides were recognized by MLS128, a Tn-specific monoclonal antibody. The position of the tri-Tn motif in the peptide sequence and the peptide backbone itself do not alter its antigenicity. As demonstrated by both ELISA and FACS analysis, the glycopeptides induced high titers of anti-Tn antibodies in mice, in the absence of a carrier molecule. In addition, the generated antibodies recognized the native Tn antigen on cancer cells. The antibody response obtained with a D-(Tn3)-PV glycopeptide containing three alpha-GalNAc-D-serine residues is similar that obtained with the Tn6-PV glycopeptide. These results demonstrate that short synthetic glycopeptides are able to induce anticancer antibody responses.  相似文献   

4.
We report the preparation of gold nanoparticle (AuNP)-based vaccine candidates against the tumor-associated form of the mucin-1 (MUC1) glycoprotein. Chimeric peptides, consisting of a glycopeptide sequence derived from MUC1 and the T-cell epitope P30 sequence were immobilized on PEGylated AuNPs and the ability to induce selective antibodies in vivo was investigated. After immunization, mice showed significant MHC-II mediated immune responses and their antisera recognized human MCF-7 breast cancer cells. Nanoparticles designed according to this report may become key players in the development of anticancer vaccines.  相似文献   

5.
Active immunisation against gonadotropin releasing hormone (GnRH) is a potential alternative to surgical castration. This study focused on the development of a GnRH subunit lipopeptide vaccine. A library of vaccine candidates that contained one or more (up to eight) copies of monomeric or dimeric GnRH peptide antigen, an adjuvanting lipidic moiety based on lipoamino acids, and an additional T helper epitope, was synthesised by solid phase peptide synthesis. The candidates were evaluated in vivo in order to determine the minimal components of this vaccine necessary to induce a systemic immune response. BALB/c mice were immunised with GnRH lipopeptide conjugates, co-administered with or without Complete Freund’s Adjuvant, followed by two additional immunisations. Significant GnRH-specific IgG titres were detected in sera obtained from mice immunised with four of the seven lipopeptides tested, with an increase in titres observed after successive immunisations. This study highlights the importance of for epitope optimisation and delivery system design when producing anti-hapten antibodies in vivo. The results of this study also contribute to the development of future clinical and veterinary immunocontraceptives.  相似文献   

6.
Short peptides derived from virulent pathogen proteins are promising antigens for the development of vaccines against infectious diseases. However, in order to mimic the danger signals associated with natural infection and stimulate an adaptive immune response, peptide antigens must be co-delivered with immune adjuvants. In this study, a group A streptococcus (GAS) M-protein derived B-cell epitope: J8, and universal T-helper epitope P25 containing peptides, were chemically coupled with different anionic amino acid-based polymers. The poly(anionic amino acid)-peptide antigen conjugates were mixed with trimethyl chitosan (TMC) to produce self-adjuvanting nanoparticulate vaccine candidates. TMC from two different sources were used to analyse their effect on immunogenicity. The nanoparticles produced from a peptide modified with 10 residues of polyglutamic acid and fungal TMC (NP5) stimulated production of the highest levels of serum antibodies in outbred mice. These antibodies were opsonic against all clinical GAS isolates tested.  相似文献   

7.
To test the immunogenicity of GPGRAFY-epitope-based candidate vaccines, a peptide with four repetitive GPGRAFY epitopes, V3-P1 [C-(GPGRAFY)4], and a peptide (PND) of the principal neutralizing domain (V3 loop: amino acid 301-328: C-TRPNNNTRKSIRIQRGPGRAFYTIGKI) on gp120 were synthesized and covalently coupled to a carrier protein BSA. Immunization of BALB/c mice and New Zealand White Rabbits with these conjugate vaccines engendered strong antibody responses against the PND (mouse serum titer by 1:12,800-25,600; rabbit serum titer by 1:6,400-12,800). Interestingly, the V3-P1-BSA conjugates and the PND-BSA conjugates could induce high levels of GPGRAFY-epitope-specific antibodies in the mice and rabbits (mouse serum titer by 1:25,600; rabbit serum titer by 1:12,800-25,600), while a recombinant gp160 subunit vaccine induced a low level of GPGRAFY-epitope-specific antibodies (serum titer by 1:400-1,600 in mice and rabbits). To confirm the above results, GPGRAFY-epitope-specific antibodies were isolated from rabbit sera induced by V3-P1-BSA, PND-BSA conjugates and rgp160 vaccine. In fact, 23-38 and 13-22 microg epitope-specific antibodies per milliliter serum were isolated from rabbit sera induced by V3-P1-BSA and PND-BSA conjugate, respectively, while 1.34 microg epitope-specific antibodies per milliliter serum were identified in rabbit serum induced by rgp160 vaccine. In the control group, only 0.069 microg proteins per milliliter serum were found in pooled pre-immune serum (normal serum). These results from mouse and rabbit experiments indicate that epitope and peptide vaccines both induce high levels of GPGRAFY-epitope-specific antibodies in comparison with rgp160 subunit vaccine, suggesting that epitope/peptide vaccines may be a new strategy to induce protective activity.  相似文献   

8.
A multifunctional carrier combining B/T cell epitopes (i), a built-in vaccine adjuvant (ii), and a universal T cell epitope (iii) for the construction of potent and specific immunogenic conjugates is presented. The IL-1beta(163-171) fragment known to reproduce the immunostimulatory and adjuvant effects of the whole IL-1beta without possessing any of the pro-inflammatory properties of IL-1beta was covalently anchored to the N-terminus of the Sequential Oligopeptide Carrier, SOC(n), formed by the repeating tripeptide unit Lys-Aib-Gly. A promiscuous T cell epitope derived from the tetanus toxin, TT(593-599), was also positioned in the carboxy terminus of SOC(n) as a universal immunogen to provide broad immunogenicity. Selected B/T cell epitopes from the Sm and La/SSB autoantigens, against which is directed the humoral autoimmunity in patients with systemic lupus erythematosus and Sj?gren's Syndrome, respectively, were coupled to the Lys-N(epsilon)H2 groups of the carrier, and the formulated constructs were administered in animals following the conventional immunization protocol of complete/incomplete Freund's adjuvant. The induced immune responses were compared with that produced when the Sm- and La/SSB-reconstituted immunogenic conjugates were injected alone. High titers of specific antibodies recognizing the priming construct, as well as the cognate autoantigen, were obtained when administered alone without the assistance of Freund's adjuvant. It is concluded that our approach provides the conceptual and experimental framework for the development of multifunctional immunogenic conjugates eliciting enhanced, specific, and prolonged humoral response for usage as human vaccine candidates.  相似文献   

9.
Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope‐scaffolds are a new class of antigens engineered by transplanting viral epitopes of predefined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope‐scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody‐binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope‐scaffolds that display the known epitope of human immunodeficiency virus 1 (HIV‐1) neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope‐scaffold that bound 2F5 with subnanomolar affinity (KD = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope‐scaffold represents a successful example of rational protein backbone engineering and protein–protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity. Proteins 2014; 82:2770–2782. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Defined Abs to the Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan (GXM) have been shown to be protective against experimental cryptococcosis. This suggests that if a vaccine could induce similar Abs it might protect against infection. However, the potential use of a GXM-based vaccine has been limited by evidence that GXM is a poor immunogen that can induce nonprotective and deleterious, as well as protective, Abs, and that the nature of GXM oligosaccharide epitopes that can elicit a protective response is unknown. In this study, we investigated whether a peptide surrogate for a GXM epitope could induce an Ab response to GXM in mice. The immunogenicity of peptide-protein conjugates produced by linking a peptide mimetic of GXM, P13, to either BSA, P13-BSA, or tetanus toxoid, P13-tetanus toxoid, was examined in BALB/c and CBA/n mice that received four s.c. injections of the conjugates at 14- to 30-day intervals. All mice immunized with conjugate produced IgM and IgG to P13 and GXM. Challenge of conjugate-immunized mice with C. neoformans revealed longer survival and lower serum GXM levels than control mice. These results indicate that 1) P13 is a GXM mimotope and 2) that it induced a protective response against C. neoformans in mice. P13 is the first reported mimotope of a C. neoformans Ag. Therefore, the P13 conjugates are vaccine candidates for C. neoformans and their efficacy in this study suggests that peptide mimotopes selected by protective Abs deserve further consideration as vaccine candidates for encapsulated pathogens.  相似文献   

11.
Telechelic water-soluble HPMA copolymers and HPMA copolymer-doxorubicin (DOX) conjugates have been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA) that contains an enzymatically degradable oligopeptide sequence. Postpolymerization aminolysis followed by chain extension with a bis-maleimide resulted in linear high molecular weight multiblock HPMA copolymer conjugates. These polymers are enzymatically degradable; in addition to releasing the drug (DOX), the degradation of the polymer backbone resulted in products with molecular weights similar to the starting material and below the renal threshold. The new multiblock HPMA copolymers hold potential as new carriers of anticancer drugs.  相似文献   

12.
Previously using a series of monovalent vaccines, we demonstrated that the optimal method for inducing an antibody response against cancer cell-surface antigens is covalent conjugation of the antigens to keyhole limpet hemocyanin (KLH) and the use of a saponin adjuvant. We have prepared a heptavalent-KLH conjugate vaccine containing the seven epithelial cancer antigens GM2, Globo H, Lewis(y), TF(c), Tn(c), STn(c), and glycosylated MUC1. In preparation for testing this vaccine in the clinic, we tested the impact on antibody induction of administering the individual conjugates plus adjuvant compared with a mixture of the seven conjugates plus adjuvant, and of several variables thought to augment immunogenicity. These include approaches for decreasing suppressor cell activity or increasing helper T-lymphocyte activity (low dose cyclophosphamide or anti-CTLA-4 MAb), different saponin adjuvants at various doses (QS-21 and GPI-0100), and different methods of formulation (lyophilization and use of polysorbate 80). We find that: (1). Immunization with the heptavalent-KLH conjugate plus GPI-0100 vaccine induces antibodies against the seven antigens of comparable titer to those induced by the individual-KLH conjugate vaccines, high titers of antibodies against Tn (median ELISA titer IgM/IgG 320/10240), STn (640/5120), TF (320/10240), MUC1 (80/20480), and globo H (640/40); while lower titers of antibodies against Lewis(y)()(160/0) and only occasional antibodies against GM2 are induced. (2). These antibodies reacted with the purified synthetic antigens by ELISA, and with naturally expressed antigens on the cancer cell surface by FACS. (3). None of the approaches for further altering the suppressor cell/helper T-cell balance nor changes to the standard formulation by lyophilization or use of polysorbate 80 had any impact on antibody titers. (4). An optimal dose of saponin adjuvant, QS-21 (50 microg) or GPI-0100 (1000 microg), is required for optimal antibody titers. This heptavalent vaccine is sufficiently optimized for testing in the clinic.  相似文献   

13.
Immunotherapeutic approaches are investigated for treatment of neurodegenerative diseases of the Alzheimer's dementia (AD) type. The identification of a beta-amyloid-plaque specific epitope, Abeta(4-10) (4FRHDSGY10), recognized by therapeutically active antibodies from transgenic AD mice could provide the basis for the development of AD vaccines. Here we report on the synthesis, structural and immuno-analytical characterization of bioconjugates comprising the beta-amyloid(4-10) epitope as new vaccine lead structures against Alzheimer's disease. To produce antigenic bioconjugates, potential immunogens, the epitope peptide elongated by a cysteine residue or a cysteinyl-pentaglycine hexapeptide unit either at the N- or C-terminus was attached via a thioether bond to synthetic oligopeptide carriers, such as oligotuftsin derivatives, sequential oligopeptide carrier, or lysine dendrimer. The antigenic properties of these constructs were determined by enzyme-linked immunosorbent assay (ELISA) using an anti-Abeta(1-17) monoclonal antibody. Our results indicate that the major factors which influence the antibody binding of the Abeta(4-10) epitope are (i) the epitope topology and (ii) the presence of a spacer moiety between the carrier and the epitope peptide. Interestingly, the carrier type had no marked effect on the binding of the antibody to the epitope-conjugates. The conformational preferences of the conjugates were examined by circular dichroism spectroscopy in water and in trifluoroethanol. In water, the conjugates adopt random coil conformation independently on their primary structure. However, differences related to the attachment site of the epitope to the carriers were determined in TFE, conjugates in which the epitope was attached to the carrier through the N-terminus exhibiting more ordered secondary structure.  相似文献   

14.
Auto-antibodies induced by cancer represent promising sensitive biomarkers and probes to identify immunotherapeutic targets without immunological tolerance. Surprisingly few epitopes for such auto-antibodies have been identified to date. Recently, a cancer-specific syngeneic murine monoclonal antibody 237, developed to a spontaneous murine fibrosarcoma, was shown to be directed to murine podoplanin (OTS8) with truncated Tn O-glycans. Our understanding of such cancer-specific auto-antibodies to truncated glycoforms of glycoproteins is limited. Here we have investigated immunogenicity of a chemoenzymatically produced Tn-glycopeptide derived from the putative murine podoplanin O-glycopeptide epitope. We found that the Tn O-glycopeptide was highly immunogenic in mice and produced a Tn-glycoform specific response with no reactivity against unglycosylated peptides or the O-glycopeptide with extended O-glycan (STn and T glycoforms). The immunodominant epitope was strictly dependent on the peptide sequence, required Tn at a specific single Thr residue (Thr77), and antibodies to the epitope were not found in naive mice. We further tested a Tn O-glycopeptide library derived from human podoplanin by microarray analysis and demonstrated that the epitope was not conserved in man. We also tested human cancer sera for potential auto-antibodies to similar epitopes, but did not detect such antibodies to the Tn-library of podoplanin. The reagents and methods developed will be valuable for further studies of the nature and timing of induction of auto-antibodies to distinct O-glycopeptide epitopes induced by cancer. The results demonstrate that truncated O-glycopeptides constitute highly distinct antibody epitopes with great potential as targets for biomarkers and immunotherapeutics.  相似文献   

15.
Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5) vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1) Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2) Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3) Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4) Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5) Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which different vaccine candidates can be compared in early phases of evaluation.  相似文献   

16.
Peptide mimics of a conformational epitope that is recognized by a mAb with antitumor activity are promising candidates for formulations of anticancer vaccines. These mimotope vaccines are able to induce a polyclonal Ab response focused to the determinant of the mAb. Such attempts at cancer immunotherapy are of special interest for malignant melanoma that is highly resistant to chemotherapy and radiotherapy. In this study, we describe for the first time the design and immunogenicity of a vaccine containing a mimotope of the human high m.w. melanoma-associated Ag (HMW-MAA) and the biological potential of the induced Abs. Mimotopes were selected from a pVIII-9mer phage display peptide library with the anti-HMW-MAA mAb 225.28S. The mimotope vaccine was then generated by coupling the most suitable candidate mimotope to tetanus toxoid as an immunogenic carrier. Immunization of rabbits with this vaccine induced a specific humoral immune response directed toward the epitope recognized by the mAb 225.28S on the native HMW-MAA. The induced Abs inhibited the in vitro growth of the melanoma cell line 518A2 up to 62%. In addition, the Abs mediated 26% lysis of 518A2 cells in Ab-dependent cellular cytotoxicity. Our results indicate a possible application of this mimotope vaccine as a novel immunotherapeutic agent for the treatment of malignant melanoma.  相似文献   

17.
The C-saccharide analogue of the GalNAc (Tn epitope) has been covalently linked to the T cell epitope peptide (328)(-)(340)OVA using a chemoselective convergent synthetic approach. In this way, a non-hydrolyzable synthetic vaccine was obtained composed by a B epitope conjugated to a T cell epitope. This compound was tested in a proliferation assay with spleen cells from DO11.10 mice. The molecule was recognized by transgenic T cells although at a slightly lower efficiency if compared with the reference peptide OVA. An additional experiment with dendritic cells fixed with glutaraldehyde shows that the glycopeptide can bind to extracellular MHC molecules without need of internalization and processing and that the C-glycoside part does not interfere with TCR recognition. These observations constitute an important starting point for the use of this molecule as vaccine against the Tn-expressing TA3-Ha mouse mammary carcinoma.  相似文献   

18.
The Tn antigen (GalNAcα-O-Ser/Thr) is a well-established tumor-associated marker which represents a good target for the design of anti-tumor vaccines. Several studies have established that the binding of some anti-Tn antibodies could be affected by the density of Tn determinant or/and by the amino acid residues neighboring O-glycosylation sites. In the present study, using synthetic Tn-based vaccines, we have generated a panel of anti-Tn monoclonal antibodies. Analysis of their binding to various synthetic glycopeptides, modifying the amino acid carrier of the GalNAc(*) (Ser* vs Thr*), showed subtle differences in their fine specificities. We found that the recognition of these glycopeptides by some of these MAbs was strongly affected by the Tn backbone, such as a S*S*S* specific MAb (15G9) which failed to recognize a S*T*T* or a T*T*T* structure. Different binding patterns of these antibodies were also observed in FACS and Western blot analysis using three human cancer cell lines (MCF-7, LS174T and Jurkat). Importantly, an immunohistochemical analysis of human tumors (72 breast cancer and 44 colon cancer) showed the existence of different recognition profiles among the five antibodies evaluated, demonstrating that the aglyconic part of the Tn structure (Ser vs Thr) plays a key role in the anti-Tn specificity for breast and colon cancer detection. This new structural feature of the Tn antigen could be of important clinical value, notably due to the increasing interest of this antigen in anticancer vaccine design as well as for the development of anti-Tn antibodies for in vivo diagnostic and therapeutic strategies.  相似文献   

19.
MBr1 is a murine monoclonal antibody, defining a saccharidic epitope [CaMBr1] of a human tissue-specific, tumor-associated globoside, present on the mammary carcinoma cell line MCF-7. The same epitope is shared by glycoproteins present on normal and neoplastic mammary epithelial cells, and by mucins from some ovarian cyst fluids. We have used MBr1 as the monoclonal antitumor antibody in an idiotypic sequence of immunizations in order to obtain and characterize "internal images" of the original epitope to be used as substitutes of the nominal antigen in serologic immunoassays. Two monoclonal anti-idiotypic antibodies (beta-1 and beta-2), which reacted with paratope-related idiotopes on MBr1, were obtained. The analysis of the antigenic and immunogenic properties of these molecules by both "antigen" and "antibody" competition assays provided evidence that both beta-1 and beta-2 bear "internal images" of the MBr1-defined epitope. Moreover, when injected in mice and rabbits both beta-1 and beta-2 induced anti anti-idiotypic antibodies, which mimicked MBr1 in binding MCF-7 as well as normal and neoplastic mammary gland epithelial cells. These data are discussed in terms of their possible application to the production of tumor-associated antigen substitutes and their use in serologic immunoassays.  相似文献   

20.
Several novel thiol-reactive clenbuterol analogues were coupled in high yield with bovine serum albumin (BSA). After labelling of unreacted cysteines with maleimide spin label (MiSL), the yield of the coupling reaction was determined by electron paramagnetic resonance (EPR) spectroscopy and spectral analysis. Two spin-probe populations with different mobility states were quantitatively determined. Molecular dynamics was used to model the structure of clenbuterol analogues and spin label conjugated to BSA and recognition of conjugates by anti-clenbuterol antibodies was demonstrated. The recognition of BSA-A, BSA-C and BSA-S conjugates with monoclonal and polyclonal anti-clenbuterol (mCLB-Ab and rCLB-Ab) antibodies was an indication, that chlorine substituents on the aromatic ring of clenbuterol derivatives are not necessary for the binding of antibodies to the conjugates. These results confirmed the importance of the tert-butylamino group as a part of the epitope and contribute to the understanding of the recognition process with anti-clenbuterol antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号