首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hallmann A 《Protist》2006,157(4):445-461
Green algae of the family Volvocaceae provide an unrivalled opportunity to analyze an evolutionary pathway leading from unicellularity to multicellularity with division of labor. One key step required for achieving multicellularity in this group was the development of a process for turning an embryo inside out: a morphogenetic process that is now known as "inversion," and that is a diagnostic feature of the group. Inversion is essential because at the end of its embryonic cleavage divisions, each volvocacean embryo contains all of the cells that will be present in an adult, but the flagellar ends of all cells are pointed toward the interior, rather than toward the exterior where they will need to be to function in locomotion. Inversion has been studied in greatest detail in Volvox carteri, but although all other volvocacean species have to struggle with the same awkward situation of being wrong-side out at the end of cleavage, they do it in rather different ways. Here, the inversion processes of six different volvocacean species (Gonium pectorale, Pandorina morum, Eudorina unicocca, Volvox carteri, Volvox tertius, and Volvox globator) are compared, in order to illustrate the variation in inversion patterns that exists within this family. The simplest inversion process occurs in the plate-shaped alga Gonium pectorale and the most complicated in the spherical alga Volvox globator. Gonium pectorale goes only from a concave-bowl shape to a slightly convex plate. In Volvox globator, the posterior hemisphere inverts completely before the anterior pole opens and the anterior hemisphere slides over the already-inverted posterior hemisphere; during both halves of this inversion process, the regions of maximum cell-sheet curvature move progressively, as radially symmetrical waves, along the posterior-anterior axis.  相似文献   

2.
Smith (1944) divided the familiar genus Volvox L. into four sections, placing seven species that lacked cytoplasmic bridges between adult cells in the section Merrillosphaera. Herein, we describe a new member of the section Merrillosphaera originating from Texas (USA): Volvox ovalis Pocock ex Nozaki et A. W. Coleman sp. nov. Asexual spheroids of V. ovalis are ovoid or elliptical, with a monolayer of 1,000–2,000 somatic cells that are not linked by cytoplasmic bridges, an expanded anterior region, and 8–12 gonidia in the posterior region. Visibly asymmetric cleavage divisions do not occur in V. ovalis embryos as they do Volvox carteri F. Stein, Volvox obversus (W. Shaw) Printz, and Volvox africanus G. S. West, so the gonidia of the next generation are not yet recognizable in V. ovalis embryos prior to inversion. Molecular phylogenetic analyses of the five chloroplast genes and the internal transcribed spacer (ITS) regions of nuclear rDNA indicated that V. ovalis is closely related to Volvox spermatosphaera Powers ( Powers 1908 , as “spermatosphara”) and/or Volvox tertius Art. Mey.; however, V. ovalis can be distinguished from V. spermatosphaera by its larger gonidia, and from V. tertius by visible differences in gonidial chloroplast morphology.  相似文献   

3.
4.
Volvox pocockiae is described as the second species in the section Janetosphaera. The somatic protoplasts are connected by cytoplasmic strands approximately the same diameter as flagella, and the construction of the spheroid is identical to that of V. aureus. Asexual reproduction by the division of gonidia differs from that in V. aureus in the enlargement of the gonidium prior to its division to form the embryo. Sexual reproduction is very similar to that in V. spermatosphaera, a species in the section Merrillosphaera without cytoplasmic connections. Dwarf males are formed in the posterior end of the parental spheroid, and, as in V. spermatosphaera, the dwarf males are composed exclusively of androgonidia with no sterile somatic cells. Females are facultatively asexual spheroids, the gonidia of which function as eggs. The single biflagellate zoospore produced by the germinating zygote undergoes cleavage to form a germling spheroid. The differentiation of gonidia in the asexual embryo and in the germling spheroid is evident only after inversion and enlargement of the spheroid have begun.  相似文献   

5.
The cytoplasmic bridge system that links all cells of a Volvox embryo and plays a crucial role in morphogenesis is shown to form as a result of localized incomplete cytokinesis; sometimes bridge formation occurs before other regions of the cell have begun to divide. Vesicles, believed to be derived from the cell interior, align along the presumptive cleavage furrow in the bridge-forming region. Apparently it is where these vesicles fail to fuse that bridges are formed. Conventional and high voltage transmission electron microscopy analyses confirm that bridges are regularly spaced; they possess a constant, highly ordered structure throughout cleavage and inversion. Concentric cortical striations (similar to those observed previously in related species) ring each bridge throughout its length and continue out under the plasmalemma of the cell body to abut the striations of neighboring bridges. These striations are closely associated with an electron-dense material that coats the inner face of the membrane throughout the bridge region and appears to be thickest near the equator of each bridge. In addition to the parallel longitudinal arrays of cortical microtubules that traverse the cells, we observed microtubules that angle into and through the bridges during cleavage; however, the latter are not seen once inversion movements have begun. During inversion, bridge bands undergo relocation relative to the cell bodies without any loss of integrity or change in bridge spacing. Observation of isolated cell clusters reveals that it is the sequential movement of individual cells with respect to a stationary bridge system, and not actual movement of the bridges, that gives rise to the observed relocation.  相似文献   

6.
Desnitskiĭ AG 《Ontogenez》2002,33(2):136-138
Reproduction and formation of resistant dormant spores in Volvox aureus (Ehr.) and V. tertius (Meyer) were studied in a biocoenosis of a transient pool in July-August 1996 and 1997. Under these conditions, the populations of two Volvox species had species-specific reproductive features. In the V. tertius population, a relatively small amount of male individuals and dormant spores (zygospores) appeared sporadically. On the contrary, in the V. aureus population, dormant parthenospores were formed, but male individuals were never observed.  相似文献   

7.
Aono N  Shimizu T  Inoue T  Shiraishi H 《FEBS letters》2002,521(1-3):95-99
Group I introns were found in the cob and cox I genes of Volvox carteri. These introns contain tandem arrays of short palindromic sequences that are related to each other. Inspection of other regions in the mtDNA revealed that similar palindromic repetitive sequences are dispersed in the non-protein coding regions of the mitochondrial genome. Analysis of the group I intron in the cob gene of another member of Volvocaceae, Volvox aureus, has shown that its sequence is highly homologous to its counterpart in V. carteri with the exception of a cluster of palindromic sequences not found in V. carteri. This indicates that the palindromic clusters were inserted into the introns after divergence of the two species, presumably due to frequent insertions of the palindromic elements during evolution of the Volvocaceae. Possible involvement of the palindromic repetitive elements in the molecular evolution of functional RNAs is discussed.  相似文献   

8.
Recent literary data on inversion (turning inside out) in the embryos of flagellated algae of the genus Volvox are critically analyzed. In this process, active changes in the shape of embryonic cells and the displacement of intercellular cytoplasmic bridges play an important role. After inversion, the flagella appear on the outer side of the young colony and provide its motility. Within the genus Volvox, two main modes of embryo inversion have been recently established during the asexual developmental cycle—inversion of type A and inversion of type B—represented by the two species most thoroughly studied, respectively, Volvox carterif. nagariensis and V. globator. However, the published opinion that the inversion of V. aureus embryos is of the type B seems to be doubtful. Comparative and evolutionary aspects of embryonic inversion in Volvox are discussed with the use of data on other genera of colonial volvocine algae.  相似文献   

9.
Molecular phylogeny of the volvocine flagellates.   总被引:8,自引:0,他引:8  
Phylogenetic studies of approximately 2,000 bases of sequence from the large and small nuclear-encoded ribosomal RNAs are used to investigate the origins of the genus Volvox. The colonial and multicellular genera currently placed in the family Volvocaceae form a monophyletic group that is significantly closer phylogenetically to Chlamydomonas reinhardtii than it is to the other unicellular green flagellates that were tested, including Chlamydomonas eugametos, Chlorella pyrenoidosa, and Haematococcus lacustris. Statistical analysis of 251 phylogenetically informative nucleotide positions rejects the "volvocine lineage" hypothesis, which postulates a monophyletic evolutionary progression from unicellular organisms (such as Chlamydomonas), through colonial organisms (e.g., Gonium, Pandorina, Eudorina, and Pleodorina) demonstrating increasing size, cell number, and tendency toward cellular differentiation, to multicellular organisms having fully differentiated somatic and reproductive cells (in the genus Volvox). The genus Volvox appears not to be monophyletic. Volvox capensis falls outside a lineage containing other representatives of Volvox (V. aureus, V. carteri, and V. obversus), and both of these Volvox lineages are more closely related to certain colonial genera than they are to each other. This implies either a diphyletic origin of Volvox from different colonial volvocacean ancestors, a phylogenetic derivation of some of the colonial genera from a multicellular (i.e., Volvox) ancestor, or both. Considered together with previously published observations, these results suggest that the different levels of organizational and developmental complexity found in the Volvocaceae represent alternative stable states, among which evolutionary transitions have occurred several times during the phylogenetic history of this group.  相似文献   

10.
Lang, Norma J. (U. Texas, Austin.) Electron microscopy of the Volvocaceae and Astrephomenaceae. Amer. Jour. Bot. 50(3): 280-300. Illus. 1963.—Clonal cultures of Gonium sociale, G. pectorale, Pandorina morum, Eudorina elegans, Eudorina sp., Volvulina steinii, V. pringsheimii, Platydorina caudata, Pleodorina illinoisensis, P. californica, Volvox aureus, V. tertius, V. globator, V. barberi, and Astrephomene gubernaculifera representing the Volvocaceae and Astrephomenaceae in the Volvocales were examined with the electron microscope and their ultrastructure compared. The ultrastructure of the various organelles is basically similar in the species studied and no increase in cellular complexity is found to accompany the evolutionary trends evidenced in the Volvocaceae. The ultrastructure of a colonial cell is basically that of Chlamydotnonas. A cytoplasmic membrane having a unit membrane structure encompasses a cell and is continuous with the double-membraned flagellar sheaths. The flagella contain the typical 9 + 2 fibril arrangement with the 2 axial fibrils terminating in a cylinder at the flagellar base and the 9 peripheral pairs continuing into the cytoplasm as a basal body. The organelles comprising the cytoplasm are: mitochondria with plate-like cristae; dictyosomes composed of stacks of agranular cisternae; small, rough or smooth-surfaced vesicles; an endoplasmic reticulum of granule-bearing and agranular tubules, lamellae and broad cisternae; vacuoles which are either contractile, contain fine granular and fibrillar material, or have dense contents probably representing polyphosphate; lipid bodies; and dense granules 100–150 A which have been called ribosomes. The finely granular nucleoplasm is surrounded by a porous, double-membraned nuclear envelope and contains a centric nucleolus composed of dense, spherical granules. The outer membrane of the nuclear envelope bears granules and may have granular extensions into the perinuclear cytoplasm. Each extension appears to encompass one or several dictyosomes and has been termed an “amplexus.” The amplexi are agranular on the surface contiguous to a dictyosome. A double-membraned chloroplast envelope is continuous around the single, cup-shaped chloroplast. The basic chloroplast units are discs closed at each end, occurring in stacks of varying number parallel to the envelope. The presumed proteinaceous matrix of the basal pyrenoid is penetrated by elongated, tubular elements which connect with the lamellar discs. Multiple rows of granules, associated with individual discs, form the anterior stigma within the chloroplast envelope. The colonial matrix is not a structureless, mucilaginous material uniting the cells in colonies, but it has rather a highly complex structure especially around the periphery of the colony and the flagellar channels. The apparent substitution of a fibrillar layer of the colonial matrix for the discrete compact cell wall, such as is found in Chlamydomonas, implies a greater degree of complexity in the evolution of these colonial genera than is generally assumed.  相似文献   

11.
SYNOPSIS. The flagellar behavior of the colonial flagellates Volvox carteri Stein and Volvox perglobator Powers was examined by placing 1.01 μm polystyrene particles in solution with swimming colonies, and photographing these particle movements. When directional light stimulation was administered to individual colonies, a cessation of flagellar activity occurred in the anterior cells of the stimulated side in both species. Since Volvox perglobator possesses prominent intercellular connections and Volvox carteri does not, the results of these experiments suggest that the connections linking colony members in some species do not function in the coordination of flagellar activity associated with light orientation behavior.  相似文献   

12.
The response of Volvox to ultraviolet irradiation was analyzed. Young individuals isolated from a synchronous culture were exposed to UV light (120 J/m2) and subjected to variable length periods of dark following irradiation. The major effect of the UV treatment was the inability of the gonidia present in the colonies at the time of irradiation to continue and complete the developmental program. Individuals show a heightened sensitivity to UV for a limited period immediately following inversion and are insensitive at other stages of development. The cytotoxic effect of UV during this interval is completely reversed by the immediate exposure to white light and is increased with longer periods of dark treatment prior to exposure to white light. The temporal profile of the sensitivity defines a smooth curve in which the maximal sensitivity occurs three hours after inversion. The response to higher doses of UV (up to 500 J/m2) is a nonlinear increase in cytotoxicity and is disproportionately greater in those individuals just prior to the period of maximal sensitivity than those later in development. The results suggest that Volvox has at least two pathways for the repair of UV damage and that one of these, the principal dark repair pathway, is temporarily deficient in the gonidia of young individuals.  相似文献   

13.
A fine structural analysis of fetal mouse ovaries reveals the presence of intercellular bridges between developing oocytes. These bridges, which connect two or more oocytes, are most frequently seen prior to the dictyate stage of meiotic prophase. The intercellular connections are limited by a tri-laminar membrane which is continuous with the oocyte plasmalemma. A characteristic feature of all bridges is the presence of an electron-dense material on the cytoplasmic side of the limiting membrane. Since this dense material is a constant and conspicuous component of the entire bridge, identification of these connections is possible in all planes of section. In cross section, the bridges are usually cylindrical, while in longitudinal section, a variety of configurations are observed. Oocytes connected by intercellular bridges exhibit a highly developed Golgi complex which is frequently localized in the region of the cytoplasmic continuities. Vesicular elements, apparently derived from the Golgi, are routinely observed within the boundaries of the bridges. Other cytoplasmic organelles, including rough and smooth endoplasmic reticulum, free ribosomes and mitochondria, are also seen in these bridges. The presence of these vesicles and organelles within intercellular bridges suggests that these connections may provide a means for transfer of organelles and other substances from one oocyte to another. It may be, therefore, that intercellular bridges are important for the nourishment and maturation of certain selected oocytes as well as for the synchronization of meiotic events.  相似文献   

14.
The growth of Volvox globator L. and Volvox aureus Ehr. was measured at five temperatures and nine phosphorus concentrations. Growth rates were hyperbolically related to phosphorus concentrations for all temperatures using a Monod growth model. Optimal growth rates of 1.17 and 1.00 doublings d?1 were obtained at 20°C for V. globator and V. aureus, respectively. Neither species grew at 5°C. The half-saturation constants for growth, Ks, were lower for V. aureus. Phosphorus uptake by both species was also dependent upon external phosphorus concentrations and temperature. At all temperatures, maximum phosphorus uptake (μmol P colony?1 min?1) was similar for both species; however, the half-saturation constants for uptake showed significant differences between the species. Comparisons of the kinetic constants for growth and phosphorus uptake suggest that V. aureus will outcompete V. globator under phosphorus limited, conditions.  相似文献   

15.
The green alga Volvox carteri has a very simple and regular adult form that arises through a short sequence of well-defined morphogenetic steps. A mature gonidium (asexual reproductive cell) initiates a stereotyped sequence of rapid cleavage divisions that will produce all of the cells found later in an adult. A predictable subset of these divisions are asymmetric and result in production of a small set of germ cells in a precise spatial pattern. Throughout cleavage, all intracellular components are held in predictable spatial relationships by a cytoskeleton of unusually regular structure, while neighboring cells are also held in fixed spatial relationships by an extensive network of cytoplasmic bridges that form as a result of incomplete cytokinesis. As a result of these two orienting mechanisms combined, dividing cells are arranged around the anterior-posterior axis of the embryo with precise rotational symmetry. These relationships are maintained by the cytoplasmic bridge system when the embryo that was inside out at the end of cleavage turns right-side out in the gastrulation-like process of inversion. Inversion is driven by a cytoskeleton-mediated sequence of cell shape changes, cellular movements and coordinated contraction. Then, by the time the cytoplasmic bridges begin to break down shortly after inversion, a preliminary framework of extracellular matrix (ECM) has been formed. The ECM traps the cells and holds them in the rotational relationships that were established during cleavage, and that must be maintained in order for the adult to be able to swim. Transposon tagging is now being used to clone and characterize the genes regulating these morphogenetic processes.  相似文献   

16.
Morphogenesis in Volvox: analysis of critical variables.   总被引:6,自引:0,他引:6  
Inversion, the process by which Volvox embryos turn inside out, was analyzed by a combination of geometrical and experimental techniques. It was shown that simple geometric figures are adequate to represent cell shapes during inversion and that cell volumes remain constant as cell shapes change and the embryo inverts. The first stage of inversion, phialopore opening, results from the release of compressive forces as the embryo withdraws from its surrounding vesicle during a two-stage contraction of each cell around its radial axis. Premature phialopore opening occurs when withdrawal of the embryo from the vesicle is elicited artificially by exposure to either calcium ionophore or hypertonic solutions. The major event of inversion, generation of negative curvature, requires both microtubule-driven elongation of cells (to produce a classical "flask" shape) and cytochalasin-sensitive active migration of cytoplasmic bridges to the outermost ends of flask cells. Colchicine, cyclic GMP and isobutyl methyl xanthine (individually) block both normal elongation and bridge migration; cytochalasin D blocks bridge migration selectively. Flask cell formation and bridge migration are adequate to account for the negative curvature observed. An asymmetric bending of flask cell stalks along the ring of maximum curvature accounts for the fact that the embryo is not constricted in a "purse-string" fashion as negative curvature is generated. Inversion of the posterior hemisphere involves an elastic snap-through resulting from a combination of compressive stresses generated by inversion of the anterior hemisphere and the circumferential restraint imposed by cells at the equator. We conclude that the observed changes in cell shape and the migration of cytoplasmic bridges are the result of an ordered process of membrane-cytoskeletal interactions, and both necessary and sufficient to account for the morphogenetic process of inversion in Volvox.  相似文献   

17.
Multicellularity arose several times in evolution of eukaryotes. The volvocine algae have full range of colonial organization from unicellular to colonies, and thus these algae are well-known models for examining the evolution and mechanisms of multicellularity. Gonium pectorale is a multicellular species of Volvocales and is thought to be one of the first small colonial organisms among the volvocine algae. In these algae, a cytoplasmic bridge is one of the key traits that arose during the evolution of multicellularity. Here, we observed the inversion process and the cytoplasmic bridges in G. pectorale using time-lapse, fluorescence, and electron microscopy. The cytoplasmic bridges were located in the middle region of the cell in 2-, 4-, 8-, and 16-celled stages and in inversion stages. However, there were no cytoplasmic bridges in the mature adult stage. Cytoplasmic bridges and cortical microtubules in G. pectorale suggest that a mechanism of kinesin-microtubule machinery similar to that in other volvocine algae is responsible for inversion in this species.  相似文献   

18.
Nishii I  Ogihara S  Kirk DL 《Cell》2003,113(6):743-753
In Volvox carteri adults, reproductive cells called gonidia are enclosed within a spherical monolayer of biflagellate somatic cells. Embryos must "invert" (turn inside out) to achieve this configuration, however, because at the end of cleavage the gonidia are on the outside and the flagellar ends of all somatic cells point inward. Generation of a bend region adequate to turn the embryo inside out involves a dramatic change in cell shape, plus cell movements. Here, we cloned a gene called invA that is essential for inversion and found that it codes for a kinesin localized in the cytoplasmic bridges that link all cells to their neighbors. In invA null mutants, cells change shape normally, but are unable to move relative to the cytoplasmic bridges. A normal bend region cannot be formed and inversion stops. We conclude that the InvA kinesin provides the motile force that normally drives inversion to completion.  相似文献   

19.
从超微结构水平上对葫芦藓(Funaria hygrometrica Hedw.)精子发生过程中胞间连接系统的结构及其变化动态进行了研究.结果表明,同一区中的相邻生精细胞由大量胞质桥相连,而不同区的细胞之间则不存在胞质桥.胞间连丝存在于套细胞之间以及套细胞与生精细胞之间,但它在生精细胞间不存在.在精子器发生的后期,当精子细胞壁开始降解时,同一个精子器中所有的精子细胞似乎都由扩大的胞质桥相互连接.胞质桥一直保持到精子分化的后期,最终精子细胞同步分化成精子.胞间连丝与胞质桥具有不同的内部结、分布以及生物发生机制,这表明它们在精子器的发育过程中可能扮演着不同的角色.  相似文献   

20.
Summary An electron microscopic examination of human fetal ovaries reveals the presence of intercellular bridges between developing germ cells. The bridges are characterized by a band of electron-dense material beneath the lateral limiting membrane, and cell organelles are seen within the confines of these connections. Their general morphology is similar to that described in ovaries of other species. The possible functional significance of these connections is discussed.This work was supported by grants from the Edward G. Schlieder Educational Foundation, New Orleans, Louisiana State University and HD-03288 from the National Institute of Child Health and Human Development.The authors would like to thank Miss Cathy Chase for her technical assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号