首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Many migratory bird species have undergone recent population declines, but there is considerable variation in trends between species and between populations employing different migratory routes. Understanding species-specific migratory behaviours is therefore of critical importance for their conservation. The Common Sandpiper Actitis hypoleucos is an Afro-Palaearctic migratory bird species whose European populations are in decline. We fitted geolocators to individuals breeding in England or wintering in Senegal to determine their migration routes and breeding or non-breeding locations. We used these geolocator data in combination with previously published data from Scottish breeding birds to determine the distributions and migratory connectivity of breeding (English and Scottish) and wintering (Senegalese) populations of the Common Sandpiper, and used simulated random migrations to investigate wind assistance during autumn and spring migration. We revealed that the Common Sandpipers tagged in England spent the winter in West Africa, and that at least some birds wintering in Senegal bred in Scandinavia; this provides insights into the links between European breeding populations and their wintering grounds. Furthermore, birds tagged in England, Scotland and Senegal overlapped considerably in their migration routes and wintering locations, meaning that local breeding populations could be buffered against habitat change, but susceptible to large-scale environmental changes. These findings also suggest that contrasting population trends in England and Scotland are unlikely to be the result of population-specific migration routes and wintering regions. Finally, we found that birds used wind to facilitate their migration in autumn, but less so in spring, when the wind costs associated with their migrations were higher than expected at random. This was despite the wind costs of simulated migrations being significantly lower in spring than in autumn. Indeed, theory suggests that individuals are under greater time pressures in spring than in autumn because of the time constraints associated with reproduction.  相似文献   

3.
Twenty‐four juvenile Steller's Sea Eagles Haliaeetus pelagicus were tracked via satellite from natal areas in Magadan, Kabarovsk, Amur, Sakhalin and Kamchatka. Nestling dispersal occurred between 9 September and 6 December (n = 24), mostly 14 September–21 October, and did not differ among regions or years. Most eagles made stopovers of 4–28 days during migration. Migration occurred 9 September–18 January, mostly along previously described routes, taking 4–116 days to complete (n = 18). Eagles averaged 47.8 km/day excluding stopovers; 22.9 km/day including stopovers. The mean degrees of latitude spanned during migration was: Kamchatka, 2.1; Magadan, 11.6; Amur, 7.3; and Sakhalin, 1.1. Eagle winter range sizes varied. Eagles concentrated in 1–3 subareas within overall winter ranges. The mean size of the first wintering subareas was 274 km2, the second 529 km2, and the third 1181 km2. Second wintering areas were south of first wintering areas. Spring migration started between 2 February and 31 March. Two eagles from Magadan were tracked onto summering grounds, well south of their natal areas. Both had early and late summering areas. One bird was followed for 25 months. It initiated its second autumn migration in the first half of October and arrived on its wintering grounds on 26 December. The second autumn migration covered 1839 km (20.9–22.4 km/day). Unlike its first winter when it used two subareas, this bird used only one subarea in 1998–99, but this was located near wintering areas used in 1997–98. It left its wintering ground between 13 April and 13 May, and arrived on its summering grounds between 7 June and 8 July. Unlike most satellite radiotracking studies, data are presented from a relatively large number of birds from across their breeding range, including new information on eagle movements on the wintering grounds and during the second year.  相似文献   

4.
In northern Slovakia an adult male Lesser Spotted Eagle (Aquila pomarina) occupied the same nest site for 11 years running (1992–2002), where it was ringed and fitted with two satellite transmitters. In six of these years it successfully reared a young. In 1994 and 2000–2002 its behaviour during migration could be followed in detail by means of satellite telemetry. The eagle took the known route for this species to South Africa. In 2001, it spent 43% of the year at its breeding site, 33% in its winter quarters, the remaining 24% being spent on migration. In three cases the autumn migration took 40, 48 and 61 days respectively. In two cases the spring migration took 49 days. All five recorded autumn and spring migrations averaged a daily flight distance of 178 km. In spring the daily flight distance was in general slightly greater than in autumn. The longest was recorded from 30 March to 2 April 2001, between Uganda and the Red Sea, during which the bird covered a total of 1,650 km, averaging 412 km per day. In 2001, the spring migration from the wintering grounds was 2 weeks later than in 2002. The wintering grounds, where in 2 years the bird spent around 3.5 months, covering at least 1,666 and 2,269 km, respectively, comprised a large part of Zimbabwe together with the Kruger National Park in South Africa and neighbouring parts of Mozambique. The annual journeys flown, including movements around the wintering grounds, amounted in 2000-2001 to at least 20,396 km and in 2001-2002 to 19,041 km. Except during its crossing of the Sahara, the eagle must have taken food on nearly all its days of migration.  相似文献   

5.
The migration of the great snipe Gallinago media was previously poorly known. Three tracks in 2010 suggested a remarkable migratory behaviour including long and fast overland non‐stop flights. Here we present the migration pattern of Swedish male great snipes, based on 19 individuals tracked by light‐level geolocators in four different years. About half of the birds made stopover(s) in northern Europe in early autumn. They left the breeding area 15 d earlier than those which flew directly to sub‐Sahara, suggesting two distinct autumn migration strategies. The autumn trans‐Sahara flights were on average 5500 km long, lasted 64 h, and were flown at ground speeds of 25 m s?1 (90 km h?1). The arrival in the Sahel zone of west Africa coincided with the wet season there, and the birds stayed for on average three weeks. The birds arrived at their wintering grounds around the lower stretches of the Congo River in late September and stayed for seven months. In spring the great snipes made trans‐Sahara flights of similar length and speed as in autumn, but the remaining migration through eastern Europe was notably slow. All birds returned to the breeding grounds within one week around mid‐May. The annual cycle was characterized by relaxed temporal synchronization between individuals during the autumn–winter period, with maximum variation at the arrival in the wintering area. Synchronization increased in spring, with minimum time variation at arrival in the breeding area. This suggests that arrival date in the breeding area is under strong stabilizing selection, while there is room for more flexibility in autumn and arrival to the wintering area. The details of the fast non‐stop flights remain to be elucidated, but the identification of the main stopover and wintering areas is important for future conservation work on this red‐listed bird species.  相似文献   

6.
Migration is fundamental in the life of many birds and entails significant energetic and time investments. Given the importance of arrival time in the breeding area and the relatively short period available to reproduce (particularly at high latitudes), it is expected that birds reduce spring migration duration to a greater extent than autumn migration, assuming that pressure to arrive into the wintering area might be relaxed. This has previously been shown for several avian groups, but recent evidence from four tracked Icelandic whimbrels Numenius phaeopus islandicus, a long distance migratory wader, suggests that this subspecies tends to migrate faster in autumn than in spring. Here, we 1) investigate differences in seasonal migration duration, migration speed and ground speed of whimbrels using 56 migrations from 19 individuals tracked with geolocators and 2) map the migration routes, wintering and stopover areas for this population. Tracking methods only provide temporal information on the migration period between departure and arrival. However, migration starts with the fuelling that takes place ahead of departure. Here we estimate the period of first fuelling using published fuel deposition rates and thus explore migration speed using tracking data. We found that migration duration was shorter in autumn than in spring. Migration speed was higher in autumn, with all individuals undertaking a direct flight to the wintering areas, while in spring most made a stopover. Wind patterns could drive whimbrels to stop in spring, but be more favourable during autumn migration and allow a direct flight. Additionally, the stopover might allow the appraisal of weather conditions closer to the breeding areas and/or improve body condition in order to arrive at the breeding sites with reserves.  相似文献   

7.
YOSSI LESHEM  YORAM YOM-TOV 《Ibis》1996,138(2):188-203
The magnitude and timing of the autumn and spring migrations of 35 species of medium-and large-sized raptors, White Pelicans Pelicanus onocrotalus and White Storks Ciconia ciconia were studied in Israel. Observations were carried out from the ground by a line of observers covering most of the width of Israel across the line of migration and by radar. There was a high correlation between the counts obtained by ground observers and by radar. On average, about half a million raptors (mainly Lesser Spotted Eagles Aquila po-marina, Honey Buzzards Pernis apivorus and Levant Sparrowhawks Accipiter brevipes), 250,000 White Storks and 70,000 White Pelicans passed during autumn, and about a million raptors (mainly Honey Buzzards, Steppe Buzzards Buteo vulpinus, Steppe Eagles Aquila nipalensis and Black Kites Milvus migrans) and 450,000 White Storks passed during spring. Peak numbers were higher–over a million raptors and half a million White Storks. There was high interyear variation in the number of migrants recorded during the study, probably caused by weather and counting efforts. For some species, the whole world (Lesser Spotted Eagle and Levant Sparrowhawk) or Palaearctic (White Pelican) population passes over Israel during migration, allowing an estimate of the world populations of these species. Mean dates of arrival of most raptors are highly predictable, with confidence limits ranging between 1.5 and 5.5 days. The migration periods of White Storks and White Pelicans are longer and their mean day of appearance is less predictable (confidence limits range from 4.2 to 13.8 days). During autumn, 90% of the migrating populations of nocking species, such as Levant Sparrowhawk, Lesser Spotted Eagle, Honey Buzzard and Red-footed Falcon Falco vespertinus, pass within 13, 15, 16 and 18 days, respectively, while nonflocking species, such as Egyptian Vulture Neophron percnopterus, Marsh Harrier Circus aeruginosus and Short-toed Eagle Circaetus gallicus, generally take twice as long to pass. Similar passage periods were recorded in spring. For most species, the autumn migration period was longer than the spring migration period, probably because in autumn adults move before the young birds. Three factors affected the timing and spread of the migration wave: age at first breeding, diet and size of the breeding area.  相似文献   

8.
An important issue in migration research is how small‐bodied passerines pass over vast geographical barriers; in European–African avian migration, these are represented by the Mediterranean Sea and the Sahara Desert. Eastern (passing eastern Mediterranean), central (passing Apennine Peninsula) and western (via western Mediterranean) major migration flyways are distinguished for European migratory birds. The autumn and spring migration routes may differ (loop migration) and there could be a certain level of individual flexibility in how individuals navigate themselves during a single migration cycle. We used light‐level loggers to map migration routes of barn swallows Hirundo rustica breeding in the centre of a wide putative contact zone between the northeastern and southernwestern European populations that differ in migration flyways utilised and wintering grounds. Our data documented high variation in migration patterns and wintering sites of tracked birds (n = 19 individuals) from a single breeding colony, with evidence for loop migration in all but one of the tracked swallows. In general, two migratory strategies were distinguished. In the first, birds wintering in a belt stretching from southcentral to southern Africa that used an eastern route for both the spring and autumn migration, then shifted their spring migration eastwards (anti‐clockwise loops, n = 12). In the second, birds used an eastern or central route to their wintering grounds in central Africa, shifting the spring migration route westward (clockwise loops, n = 7). In addition, we observed an extremely wide clockwise loop migration encompassing the entire Mediterranean, with one individual utilising both the eastern (autumn) and western (spring) migratory flyway during a single annual migration cycle. Further investigation is needed to ascertain whether clockwise migratory loops encircling the entire Mediterranean also occur other small long‐distance passerine species.  相似文献   

9.
Many populations of long‐distance migrants are declining and there is increasing evidence that declines may be caused by factors operating outside the breeding season. Among the four vulture species breeding in the western Palaearctic, the species showing the steepest population decline, the Egyptian Vulture Neophron percnopterus, is a long‐distance migrant wintering in Africa. However, the flyways and wintering areas of the species are only known for some populations, and without knowledge of where mortality occurs, effective conservation management is not possible. We tracked 19 juvenile Egyptian Vultures from the declining breeding population on the Balkan Peninsula between 2010 and 2014 to estimate survival and identify important migratory routes and wintering areas for this species. Mortality during the first autumn migration was high (monthly survival probability 0.75) but mortality during migration was exclusively associated with suboptimal navigation. All birds from western breeding areas and three birds from central and eastern breeding areas attempted to fly south over the Mediterranean Sea, but only one in 10 birds survived this route, probably due to stronger tailwind. All eight birds using the migratory route via Turkey and the Middle East successfully completed their first autumn migration. Of 14 individual and environmental variables examined to explain why juvenile birds did or did not successfully complete their first migration, the natal origin of the bird was the most influential. We speculate that in a declining population with fewer experienced adults, an increasing proportion of juvenile birds are forced to migrate without conspecific guidance, leading to high mortality as a consequence of following sub‐optimal migratory routes. Juvenile Egyptian Vultures wintered across a vast range of the Sahel and eastern Africa, and had large movement ranges with core use areas at intermediate elevations in savannah, cropland or desert. Two birds were shot in Africa, where several significant threats exist for vultures at continental scales. Given the broad distribution of the birds and threats, effective conservation in Africa will be challenging and will require long‐term investment. We recommend that in the short term, more efficient conservation could target narrow migration corridors in southern Turkey and the Middle East, and known congregation sites in African wintering areas.  相似文献   

10.
For many migratory bird species, the latitudinal range of the winter distribution spans thousands of kilometres, thus encompassing considerable variation in individual migration distances. Pressure to winter near breeding areas is thought to be a strong driver of the evolution of migration patterns, as individuals undertaking a shorter migration are generally considered to benefit from earlier arrival on the breeding grounds. However, the influence of migration distance on timing of arrival is difficult to quantify because of the large scales over which individuals must be tracked. Using a unique dataset of individually‐marked Icelandic black‐tailed godwits Limosa limosa islandica tracked throughout the migratory range by a network of hundreds of volunteer observers, we quantify the consequences of migrating different distances for the use of stop‐over sites and timing of arrival in Iceland. Modelling of potential flight distances and tracking of individuals from across the winter range shows that individuals wintering further from the breeding grounds must undertake a stop‐over during spring migration. However, despite travelling twice the distance and undertaking a stop‐over, individuals wintering furthest from the breeding grounds are able to overtake their conspecifics on spring migration and arrive earlier in Iceland. Wintering further from the breeding grounds can therefore be advantageous in migratory species, even when this requires the use of stop‐over sites which lengthen the migratory journey. As early arrival on breeding sites confers advantages for breeding success, the capacity of longer distance migrants to overtake conspecifics is likely to influence the fitness consequences of individual migration strategies. Variation in the quality of wintering and stopover sites throughout the range can therefore outweigh the benefits of wintering close to the breeding grounds, and may be a primary driver of the evolution of specific migration routes and patterns.  相似文献   

11.
2009年4月至2010年1月,对西藏南部羊卓雍错的水鸟资源状况进行了调查。采用定点观察的方法,沿湖选择了24个观察点,分别在繁殖前期、中期和后期,以及秋季和冬季进行了6次调查。采用核密度分析(Kernel analysis)的方法,对两只卫星跟踪斑头雁(Anser indicus)的活动区进行了分析。调查期间,记录到水鸟32种31044只,隶属于6目10科。雁鸭类和鸥类分别占水鸟总数73.9%和19.1%,主要是斑头雁、赤嘴潜鸭(Rhodonessa rufina)、赤麻鸭(Tadorna ferruginea)、棕头鸥(Larus brunnicephalus)等。水鸟多样性较高的季节是春秋迁徙季节。羊卓雍错夏季主要的繁殖种群是斑头雁和棕头鸥,也有少量黑颈鹤(Grus nigricollis)的繁殖个体;冬季主要物种是赤嘴潜鸭,经常聚集在融化的冰面上。春季斑头雁的数量增加趋势较为明显;进入繁殖期后,斑头雁处于孵卵阶段,繁殖种群的数量达到2000余只;繁殖后期,斑头雁换羽结束,成鸟带领幼鸟在鸟岛附近的湖边取食,此时观察到斑头雁的数量又有明显的增加;秋季斑头雁的南迁致使种群数量呈下降趋势;冬季许多斑头雁从北方如青海湖等地迁来越冬使得种群数量有所增加,多分布于湖西浪卡子县城附近的沼泽湿地和湖南部的绒波臧布河流的入口处。卫星跟踪结果表明,羊卓雍错是青海湖繁殖的斑头雁重要的越冬地之一,湖西部沼泽湿地和湖南部的河流入口处是其主要活动区域,而且该湖与雅鲁藏布江河谷之间通过斑头雁的往来移动存在着联系,因而是西藏南部禽流感监测的重要地点。  相似文献   

12.
Individual migration pattern during non‐breeding season is still a black box in many migratory birds. However, knowledge on both individual level and population level in migration and overwintering is fundamental to understand the life cycle of these birds and the constraints affecting them. We showed in a highly aerial migrant, the common swift Apus apus, that repeatedly tracked birds breeding at one site in Germany used the same individual‐specific migration routes and wintering areas in subsequent years. In contrast, different individuals from the same breeding colony showed diverse movement patterns during non‐breeding season suggesting that several suitable areas for overwintering coexist. We found lower variation in timing of autumn and spring migration within than between individuals. Our findings provide first indication of individual consistency but between‐individual variation in migration pattern in a small non‐passerine bird revealed by geolocators. This supports that swifts have diverse but individual‐specific ‘step‐by‐step’ migration patterns revealing high flexibility through individual strategies.  相似文献   

13.
Aim To identify the migration routes and wintering grounds of the core populations of the near‐threatened pallid harrier, Circus macrourus, and highlight conservation needs associated with these phases of the annual cycle. Location Breeding area: north‐central Kazakhstan; Wintering areas: Sahel belt (Burkina Faso to Ethiopia) and north‐west India. Methods We used ring recovery data from Kazakhstan and satellite tracking data from 2007 to 2008 on six adults breeding in north‐central Kazakhstan to determine migration routes and locate wintering areas. In addition, one first‐year male was tagged in winter 2007–2008 in India. Results Data evidenced an intercontinental migratory divide within the core pallid harrier population, with birds wintering in either Africa or India. The six individuals tagged in north‐central Kazakhstan followed a similar route (west of the Caspian Sea and Middle East) towards east Africa, before spreading along the Sahel belt to winter either in Sudan, Ethiopia, Niger or Burkina Faso. Spring migration followed a shorter, more direct route, with marked interindividual variation. The bird tagged in India spent the summer in central Kazakhstan. Half of the signal losses (either because of failure or bird mortality) occurred on the wintering areas and during migration. Main conclusions Our study shows that birds from one breeding area may winter over a strikingly broad range within and across continents. The intercontinental migratory divide of pallid harriers suggests the coexistence of distinct migratory strategies within the core breeding population, a characteristic most likely shared by a number of threatened species in central Asia. Conservation strategies for species like the pallid harrier, therefore, require considering very large spatial scales with possibly area‐specific conservation issues. We highlight urgent research priorities to effectively inform the conservation of these species.  相似文献   

14.
In a female White Stork the complete migration cycle could be tracked by satellite from the nesting site to the wintering grounds in the Sudan and Tanzania and back to the nest. The migration route extended over 16 000 km, autumn migration lasted 100 days, homeward migration 70 days, wintering 58 and 41 days in northeastern and southeastern Africa, respectively. The maximum daily route was about 350 km. Up to Turkey the bird migrated together with its male. Homeward migration was performed within a relatively narrow corridor in which autumn migration took place, but in detail the routes of the two migratory seasons showed substantial differences. These data together with those from some raptors in which complete annual migration cycles could be tracked indicate that homeward migration is based on navigation (vector navigation and/or true navigation) rather than on route reversal.  相似文献   

15.
Tracking studies normally focus on long‐distance migrants, meaning that our understanding about short‐distance migration remains limited. In this study, we present the first individual tracks of the Eurasian golden plover Pluvialis apricaria, a short‐distance migrant, which were tracked from a Scandinavian breeding population using geolocators. In addition, golden plovers are known for their cold spell‐induced winter movements, and this study provides some first individual tracking data on this type of movements. In three cases the plovers spent the winter in NW Europe and in four cases they departed during winter from NW Europe to spend the rest of the winter in Iberia or Morocco (one bird that was tracked during two subsequent migration cycles moved to Iberia in the first winter but remained in NW Europe during the second winter). The four winter departures were associated with a cold spell in NW Europe during which maximum temperatures dropped to freezing. Cold spell‐induced winter movements were notably long and fast. The birds that remained at their NW European wintering site did not experience such cold spell. However, the plovers did not always move in response to freezing temperatures, as demonstrated by the individual that was tracked for a second season, when it experienced four cold spells at its wintering site in NW France without leaving. Little information was obtained about spring migration, but one bird had a prominent counter‐clockwise loop migration pattern through E Europe. Due to their cold spell winter movements, golden plovers exhibit great flexibility in migration patterns, resulting in a notably large spread in final wintering areas.  相似文献   

16.
Eleonora's falcon (Falco eleonorae) is a rare raptor species that delays its breeding period until late summer to feed its young with passerines at the peak of autumn migration. Since the 1950s, this slender winged falcon has been believed to migrate along a historical route via the Red Sea to its main wintering area in Madagascar. In our study, we used satellite telemetry to investigate the real migration route of Eleonora's falcons and found that the species displayed a highly individual migration pattern. Furthermore, juvenile falcons migrated via West Africa to Madagascar and two juveniles could be tracked during spring migration and to their summering areas in East and West Africa. As juveniles migrated independently of adults, we discuss inherited navigation strategies forming part of a complex navigation system. We propose the idea of an orientation mechanism that naive falcons could apply during their long-distance migration towards their faraway wintering area located in the open ocean.  相似文献   

17.
ABSTRACT.   Because their breeding and wintering areas are in remote locations, little is known about the biology of Black-necked Cranes ( Grus nigricollis ), including their migratory behavior. Using satellite telemetry, we monitored the migration of Black-necked Cranes ( N = 6) in China to determine migration routes and the location of stopover sites. From 2005 to 2007, four cranes were tracked during two spring migrations and one fall migration, one was tracked during one spring and one fall migration, and one was tracked during one spring migration. On average, the cranes made seven flights over a 5-d period to migrate 651 km to breeding areas in the spring. In the fall, birds averaged six flights in 5 d to migrate 694 km. The routes traveled by cranes during spring and autumn migration were similar. Both the migration distances and duration of migration are the shortest reported for any crane species to date. Most stopover sites were in areas along rivers and close to wetlands in the Daliang Mountains and the Ruoergai Plateau. Conservation measures are needed to reduce habitat loss (wetland and pasture) in the Daliang Mountains and establish a reserve for stopover sites in the Ruoergai marshes, such as Longriba and Bai River in Hongyuan County.  相似文献   

18.
Ecological barriers such as oceans, mountain ranges or glaciers can have a substantial influence on the evolution of animal migration. Along the migration flyway connecting breeding sites in the North American Arctic and wintering grounds in Europe or Africa, nearctic species are confronted with significant barriers such as the Atlantic Ocean and the Greenland icecap. Using geolocation devices, we identified wintering areas used by ringed plovers nesting in the Canadian High‐Arctic and investigated migration strategies used by these nearctic migrants along the transatlantic route. The main wintering area of the ringed plovers (n = 20) was located in western Africa. We found contrasting seasonal migration patterns, with ringed plovers minimizing continuous flight distances over the ocean in spring by making a detour to stop in Iceland. In autumn, however, most individuals crossed the ocean in one direct flight from southern Greenland to western Europe, as far as southern Spain. This likely resulted from prevailing anti‐clockwise winds associated with the Icelandic low‐pressure system. Moreover, the plovers we tracked largely circumvented the Greenland icecap in autumn, but in spring, some plovers apparently crossed the icecap above the 65°N. Our study highlighted the importance of Iceland as a stepping‐stone during the spring migration and showed that small nearctic migrants can perform non‐stop transatlantic flights from Greenland to southern Europe.  相似文献   

19.
Routes of migrating soaring birds   总被引:1,自引:0,他引:1  
YOSSI LESHEM  YORAM YOM-TOV 《Ibis》1998,140(1):41-52
Soaring migrants travelling through Israel use three principal routes which are used in the opposite directions during the spring and autumn: (1) the Western Route lies mainly along the western edge of the central mountain range, (2) the Eastern Route lies mainly along the Jordan Valley, crossing the mountain range during part of the day, continuing southward along the Dead Sea towards the Sinai, and joining the Western Route in autumn and (3) the Southern-Elat Mountains Route. The geomorphological structure of Israel, with a central mountain range dividing the country roughly into three landscape units, plays a central role in route selection. In the autumn, the Western Route migration axis is deflected at the beginning of the day from east to west for 10–25 km, depending on weather conditions and the flock's roosting locations. Between 10.00 h and 11.00 h, the daily breeze blowing from the Mediterranean Sea influences the migration axis, which is slowly deflected back to the east. A parallel deflection of the migration axis occurs in the Eastern Route in the autumn. The route moves southwest over the eastern slopes of the central mountain range during the morning hours and over the slope, which absorbs direct radiation from the sun, creating good soaring conditions. Towards late afternoon, when the breeze from the sea starts, the axis is deflected to the east, to the Jordan Valley. In the Elat Mountains, the wind flow plays a similar role, but because the topography of the southern Arava Valley causes a change in wind direction, the axis moves during the day in a north-south direction. In addition to the axis movement on a daily scale, a seasonal deflection of the migration axis from east to west also exists. During autumn migration, early migrants (e.g. White Storks Ciconia ciconia) tend to travel on an eastern route, while late migrants (e.g. White Pelican Pelecanus onocrotalus) travel along the Mediterranean coast. This fluctuation was probably because of sub-optimal soaring conditions along the coastal plain during August. In September, temperature differences between the sea and land decrease and the influence of the marine inversion gradually declines, until its influence disappears completely in October. A comparison of the numbers of soaring birds seen over Israel in the autumn and spring shows significant seasonal differences in the use of the various routes. For example, only one species, the Steppe Eagle Aquila nipalensis, flies over the Elat Mountains in the autumn, compared to more than 30 species in the spring. In the autumn, White Storks pass over only along the Jordan Valley axis, whereas in the spring, about half the migrating storks also pass over the western edge of the central mountain range. Honey Buzzards Pernis apivorus fly along the Western Route in large numbers in the autumn, while concentrating almost totally over the Elat Mountains in the spring. These differences are related to the global migration routes between the breeding and the wintering grounds in relation to the Red Sea, which birds avoid crossing, thus causing them to follow different routes in autumn, and spring.  相似文献   

20.
Long-term monitoring of the dates of arrival, breeding, and autumn migration in 25 passerine bird species on the Kurshskaya (Courland) Spit, the Baltic Sea, has shown that spring migration and nesting in most species wintering in Europe or Africa have shifted to earlier dates in the past two decades, whereas the dates of autumn migration in most species studied have not changed significantly. In 16 bird species, a significant negative correlation of the timing of arrival and breeding with the average spring air temperature and the North Atlantic Oscillation index (NAO) in February and March was revealed. In years with early and warm springs, birds arrived at the spit and nested considerably earlier than in years with cold springs. The dates of autumn migration in most species studied largely depended on the timing of nesting but not on weather conditions in autumn. The data obtained indicate that the main factor responsible for long-term changes in the timing of arrival, nesting, and autumn migrations of passerine birds in the Baltic Region is climate fluctuations that led to considerable changes in thermal conditions in the Northern Hemisphere in the 20th century. The hypothesis is proposed that recent climate warming has caused changes in the timing of not only the arrival of birds in Europe but also of their spring migrations from Africa. Further changes in the dates of passerine bird arrival and breeding in the Palearctic in subsequent years will largely depend on the dynamics of winter and spring air temperatures in the Northern Hemisphere, whereas the timing of autumn migrations will be determined mainly by the dates of their arrival and nesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号