首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein egress from the endoplasmic reticulum (ER) is driven by a conserved cytoplasmic coat complex called the COPII coat. The COPII coat complex contains an inner shell (Sec23/Sec24) that sorts cargo into ER-derived vesicles and an outer cage (Sec13/Sec31) that leads to coat polymerization. Once released from the ER, vesicles must tether to and fuse with the target membrane to deliver their protein and lipid contents. This delivery step also depends on the COPII coat, with coat proteins binding directly to tethering and regulatory factors. Recent findings have yielded new insight into how COPII-mediated vesicle traffic is regulated. Here we discuss the molecular basis of COPII-mediated ER–Golgi traffic, focusing on the surprising complexity of how ER-derived vesicles form, package diverse cargoes, and correctly target these cargoes to their destination.The port of entry into the secretory pathway is the endoplasmic reticulum (ER). Approximately one-third of the eukaryotic proteome traffics from this multifunctional organelle (Huh et al. 2003). This diverse set of cargo is translocated into the ER, folded, and modified before it travels to the Golgi, where further modifications occur. From the Golgi, cargo is sorted to other subcellular compartments to perform a variety of cellular functions. The highly conserved machinery required for these transport events was initially identified through genetic screens in the yeast Saccharomyces cerevisiae, and insights into the function of this machinery were provided through the use of in vitro transport assays. Advances in microscopy, in particular, the use of GFP fusion proteins and live cell imaging, have also played a critical role in understanding the dynamics of membrane traffic. In this article, we describe the mechanistic advances that have helped us to understand how diverse cargo correctly traffics from the ER to the Golgi complex in lower and higher eukaryotes. Even though these mechanisms are largely conserved, they are more complex at the molecular and organizational levels in metazoans.  相似文献   

2.
The secretory pathway in mammalian cells has evolved to facilitate the transfer of cargo molecules to internal and cell surface membranes. Use of automated microscopy-based genome-wide RNA interference screens in cultured human cells allowed us to identify 554 proteins influencing secretion. Cloning, fluorescent-tagging and subcellular localization analysis of 179 of these proteins revealed that more than two-thirds localize to either the cytoplasm or membranes of the secretory and endocytic pathways. The depletion of 143 of them resulted in perturbations in the organization of the COPII and/or COPI vesicular coat complexes of the early secretory pathway, or the morphology of the Golgi complex. Network analyses revealed a so far unappreciated link between early secretory pathway function, small GTP-binding protein regulation, actin cytoskeleton organization and EGF-receptor-mediated signalling. This work provides an important resource for an integrative understanding of global cellular organization and regulation of the secretory pathway in mammalian cells.  相似文献   

3.
The export of newly synthesized proteins from the endoplasmic reticulum is fundamental to the ongoing maintenance of cell and tissue structure and function. After co-translational translocation into the ER, proteins destined for downstream intracellular compartments or secretion from the cell are sorted and packaged into transport vesicles by the COPII coat protein complex. The fundamental discovery and characterization of the pathway has now been augmented by a greater understanding of the role of COPII in diverse aspects of cell function. We now have a deep understanding of how COPII contributes to the trafficking of diverse cargoes including extracellular matrix molecules, developmental signalling proteins, and key metabolic factors such as lipoproteins. Structural and functional studies have shown that the COPII coat is both highly flexible and subject to multiple modes of regulation. This has led to new discoveries defining roles of COPII in development, autophagy, and tissue organization. Many of these newly emerging features of the canonical COPII pathway are placed in a context of procollagen secretion because of the fundamental interest in how a coat complex that typically generates 80-nm transport vesicles can package a cargo reported to be over 300 nm. Here we review the current understanding of COPII and assess the current consensus on its role in packaging diverse cargo proteins.  相似文献   

4.
Coat protein complexes contain an inner shell that sorts cargo and an outer shell that helps deform the membrane to give the vesicle its shape. There are three major types of coated vesicles in the cell: COPII, COPI, and clathrin. The COPII coat complex facilitates vesicle budding from the endoplasmic reticulum (ER), while the COPI coat complex performs an analogous function in the Golgi. Clathrin-coated vesicles mediate traffic from the cell surface and between the trans-Golgi and endosome. While the assembly and structure of these coat complexes has been extensively studied, the disassembly of COPII and COPI coats from membranes is less well understood. We describe a proteomic and genetic approach that connects the J-domain chaperone auxilin, which uncoats clathrin-coated vesicles, to COPII and COPI coat complexes. Consistent with a functional role for auxilin in the early secretory pathway, auxilin binds to COPII and COPI coat subunits. Furthermore, ER–Golgi and intra-Golgi traffic is delayed at 15°C in swa2Δ mutant cells, which lack auxilin. In the case of COPII vesicles, we link this delay to a defect in vesicle fusion. We propose that auxilin acts as a chaperone and/or uncoating factor for transport vesicles that act in the early secretory pathway.  相似文献   

5.
Nearly a third of all eukaryotic proteins are transported from the ER to the Golgi apparatus through the secretory pathway using COPII coated vesicles. Evidence suggests that this transport occurs via 500–900 Å vesicles that bud from the ER membrane. It has been shown that procollagen molecules utilize the COPII proteins for transport, but it is unclear how the COPII coat can accommodate these ~3000 Å long molecules. We now present a cryogenic electron tomographic reconstruction of a Sec13/31 tubule that is approximately 3300 Å long containing a hollow cylindrical interior that is 300 Å in diameter, dimensions that are consistent with those that are required to encapsulate a procollagen molecule wrapped in a membrane and accessory COPII components. This structure suggests a novel mechanism that the COPII coat may employ to transport elongated cargo.  相似文献   

6.
Traffic COPs of the early secretory pathway   总被引:7,自引:1,他引:6  
Intracellular transport between the endoplasmic reticulum and Golgi compartments is mediated by coat protein complexes (COPI and COPII) that form transport vesicles and collect the desired set of cargo. Although the COPI and COPII coats are molecularly distinct, a number of mechanistic parallels appear to be emerging, most notably a general role for small guanine triphosphatases in co-ordinating coat assembly with cargo selection. A combination of morphological, biochemical, and genetic methods is revealing a very dynamic relationship between these compartments, and highlights a central role for COPs in directing traffic through the early secretory pathway. This review focuses on recent advances in molecular mechanisms underlying coated-vesicle assembly and connections with cellular structures.  相似文献   

7.
Transport of proteins from the endoplasmic reticulum (ER) to the Golgi is mediated by the sequential action of two coat complexes: COPII concentrates cargo for secretion at ER export sites, then COPI is subsequently recruited to nascent carriers and retrieves recycling proteins back to the ER. These carriers then move towards the Golgi along microtubules, driven by the dynein/dynactin complexes. Here we show that the Sec23p component of the COPII complex directly interacts with the dynactin complex through the carboxy-terminal cargo-binding domain of p150(Glued). Functional assays, including measurements of the rate of recycling of COPII on the ER membrane and quantitative analyses of secretion, indicate that this interaction underlies functional coupling of ER export to microtubules. Together, our data suggest a mechanism by which membranes of the early secretory pathway can be linked to motors and microtubules for subsequent organization and movement to the Golgi apparatus.  相似文献   

8.
Erv14p is a conserved integral membrane protein that traffics in COPII-coated vesicles and localizes to the early secretory pathway in yeast. Deletion of ERV14 causes a defect in polarized growth because Axl2p, a transmembrane secretory protein, accumulates in the endoplasmic reticulum and is not delivered to its site of function on the cell surface. Herein, we show that Erv14p is required for selection of Axl2p into COPII vesicles and for efficient formation of these vesicles. Erv14p binds to subunits of the COPII coat and binding depends on conserved residues in a cytoplasmically exposed loop domain of Erv14p. When mutations are introduced into this loop, an Erv14p-Axl2p complex accumulates in the endoplasmic reticulum, suggesting that Erv14p links Axl2p to the COPII coat. Based on these results and further genetic experiments, we propose Erv14p coordinates COPII vesicle formation with incorporation of specific secretory cargo.  相似文献   

9.
A structural view of the COPII vesicle coat   总被引:6,自引:0,他引:6  
The COPII vesicle coat coordinates the budding of transport vesicles from the endoplasmic reticulum in the initial step of the secretory pathway. The coat orchestrates a sequence of events including self-assembly on the membrane, cargo and SNARE molecule selection, and deformation of the membrane into a bud to drive vesicle fission. Recent molecular-level studies have helped to explain how the three components of yeast COPII - Sar1 GTPase, the Sec23/24 subcomplex and the Sec13/31 subcomplex - combine to organize this complex process.  相似文献   

10.
COPII and COPI mediate the formation of membrane vesicles translocating in opposite directions within the secretory pathway. Live-cell and electron microscopy revealed a novel mode of function for COPII during cargo export from the ER. COPII is recruited to membranes defining the boundary between the ER and ER exit sites, facilitating selective cargo concentration. Using direct observation of living cells, we monitored cargo selection processes, accumulation, and fission of COPII-free ERES membranes. CRISPR/Cas12a tagging, the RUSH system, and pharmaceutical and genetic perturbations of ER-Golgi transport demonstrated that the COPII coat remains bound to the ER–ERES boundary during protein export. Manipulation of the cargo-binding domain in COPII Sec24B prohibits cargo accumulation in ERES. These findings suggest a role for COPII in selecting and concentrating exported cargo rather than coating Golgi-bound carriers. These findings transform our understanding of coat proteins’ role in ER-to-Golgi transport.  相似文献   

11.
Secretory proteins are exported from the endoplasmic reticulum (ER) in transport vesicles formed by the coat protein complex II (COPII). We detected Erv26p as an integral membrane protein that was efficiently packaged into COPII vesicles and cycled between the ER and Golgi compartments. The erv26Delta mutant displayed a selective secretory defect in which the pro-form of vacuolar alkaline phosphatase (pro-ALP) accumulated in the ER, whereas other secretory proteins were transported at wild-type rates. In vitro budding experiments demonstrated that Erv26p was directly required for packaging of pro-ALP into COPII vesicles. Moreover, Erv26p was detected in a specific complex with pro-ALP when immunoprecipitated from detergent-solublized ER membranes. Based on these observations, we propose that Erv26p serves as a transmembrane adaptor to link specific secretory cargo to the COPII coat. Because ALP is a type II integral membrane protein in yeast, these findings imply that an additional class of secretory cargo relies on adaptor proteins for efficient export from the ER.  相似文献   

12.
Proteins trafficking through the secretory pathway must first exit the endoplasmic reticulum (ER) through membrane vesicles created and regulated by the COPII coat protein complex. Cranio-lenticulo-sutural dysplasia (CLSD) was recently shown to be caused by a missense mutation in SEC23A, a gene encoding one of two paralogous COPII coat proteins. We now elucidate the molecular mechanism underlying this disease. In vitro assays reveal that the mutant form of SEC23A poorly recruits the Sec13-Sec31 complex, inhibiting vesicle formation. Surprisingly, this effect is modulated by the Sar1 GTPase paralog used in the reaction, indicating distinct affinities of the two human Sar1 paralogs for the Sec13-Sec31 complex. Patient cells accumulate numerous tubular cargo-containing ER exit sites devoid of observable membrane coat, likely representing an intermediate step in COPII vesicle formation. Our results indicate that the Sar1-Sec23-Sec24 prebudding complex is sufficient to form cargo-containing tubules in vivo, whereas the Sec13-Sec31 complex is required for membrane fission.  相似文献   

13.
Protein trafficking is achieved by a bidirectional vesicle flow between the various compartments of the eukaryotic cell. COPII coated vesicles mediate anterograde protein transport from the endoplasmic reticulum to the Golgi apparatus, whereas retrograde Golgi-to-endoplasmic reticulum vesicles use the COPI coat. Inactivation of COPI vesicle formation in conditional sec21 (gamma-COP) mutants rapidly blocks transport of certain proteins along the early secretory pathway. We have identified the integral membrane protein Mst27p as a strong suppressor of sec21-3 and ret1-1 mutants. A C-terminal KKXX motif of Mst27p that allows direct binding to the COPI complex is crucial for its suppression ability. Mst27p and its homolog Yar033w (Mst28p) are part of the same complex. Both proteins contain cytoplasmic exposed C termini that have the ability to interact directly with COPI and COPII coat complexes. Site-specific mutations of the COPI binding domain abolished suppression of the sec21 mutants. Our results indicate that overexpression of MST27 provides an increased number of coat binding sites on membranes of the early secretory pathway and thereby promotes vesicle formation. As a consequence, the amount of cargo that can bind COPI might be important for the regulation of the vesicle flow in the early secretory pathway.  相似文献   

14.
George Palade, a founding father of cell biology and of the American Society for Cell Biology (ASCB), established the ultrastructural framework for an analysis of how proteins are secreted and membranes are assembled in eukaryotic cells. His vision inspired a generation of investigators to probe the molecular mechanisms of protein transport. My laboratory has dissected these pathways with complementary genetic and biochemical approaches. Peter Novick, one of my first graduate students, isolated secretion mutants of Saccharomyces cerevisiae, and through cytological analysis of single and double mutants and molecular cloning of the corresponding SEC genes, we established that yeast cells use a secretory pathway fundamentally conserved in all eukaryotes. A biochemical reaction that recapitulates the first half of the secretory pathway was used to characterize Sec proteins that comprise the polypeptide translocation channel in the endoplasmic reticulum (ER) membrane (Sec61) and the cytoplasmic coat protein complex (COPII) that captures cargo proteins into transport vesicles that bud from the ER.  相似文献   

15.
What is the first membrane fusion step in the secretory pathway? In mammals, transport vesicles coated with coat complex (COP) II deliver secretory cargo to vesicular tubular clusters (VTCs) that ferry cargo from endoplasmic reticulum exit sites to the Golgi stack. However, the precise origin of VTCs and the membrane fusion step(s) involved have remained experimentally intractable. Here, we document in vitro direct tethering and SNARE-dependent fusion of endoplasmic reticulum–derived COPII transport vesicles to form larger cargo containers. The assembly did not require detectable Golgi membranes, preexisting VTCs, or COPI function. Therefore, COPII vesicles appear to contain all of the machinery to initiate VTC biogenesis via homotypic fusion. However, COPI function enhanced VTC assembly, and early VTCs acquired specific Golgi components by heterotypic fusion with Golgi-derived COPI vesicles.  相似文献   

16.
Communication between compartments of the exocytic and endocytic pathways in eukaryotic cells involves transport carriers - vesicles and tubules - that mediate the vectorial movement of cargo. Recent studies of transport-carrier formation in the early secretory pathway have provided new insights into the mechanisms of cargo selection by coat protein complex-II (COPII) adaptor proteins, the construction of cage-protein scaffolds and fission. These studies are beginning to produce a unifying molecular and structural model of coat function in the formation and fission of vesicles and tubules in endomembrane traffic.  相似文献   

17.
Hughson FM 《Cell》2008,134(3):384-385
Anterograde transport in the early secretory pathway is mediated by COPII-coated vesicles. Stagg et al. (2008) have now visualized the double-layered COPII coat using electron cryomicroscopy, providing insight into how coats are assembled to accommodate cargo of different sizes.  相似文献   

18.
The secretory pathway is of vital importance for eukaryotic cells and has a pivotal role in the synthesis, sorting, processing and secretion of a large variety of bioactive molecules involved in intercellular communication. One of the key processes in the secretory pathway concerns the transport of cargo proteins from the ER (endoplasmic reticulum) to the Golgi. Type‐I transmembrane proteins of ~24 kDa are abundantly present in the membranes of the early secretory pathway, and bind the COPI and COPII coat complexes that cover vesicles travelling between the membranes. These p24 proteins are thought to play an important role in the selective transport processes at the ER—Golgi interface, although their exact functioning is still obscure. One model proposes that p24 proteins couple cargo selection in the lumen with vesicle coat recruitment in the cytosol. Alternatively, p24 proteins may furnish subcompartments of the secretory pathway with the correct subsets of machinery proteins. Here we review the current knowledge of the p24 proteins and the various roles proposed for the p24 family members.  相似文献   

19.
COPII and the regulation of protein sorting in mammals   总被引:1,自引:0,他引:1  
Secretory proteins are transported to the Golgi complex in vesicles that bud from the endoplasmic reticulum. The cytoplasmic coat protein complex II (COPII) is responsible for cargo sorting and vesicle morphogenesis. COPII was first described in Saccharomyces cerevisiae, but its basic function is conserved throughout all eukaryotes. Nevertheless, the COPII coat has adapted to the higher complexity of mammalian physiology, achieving more sophisticated levels of secretory regulation. In this review we cover aspects of mammalian COPII-mediated regulation of secretion, in particular related to the function of COPII paralogues, the spatial organization of cargo export and the role of accessory proteins.  相似文献   

20.
Bauer M  Pelkmans L 《FEBS letters》2006,580(23):5559-5564
The clathrin, COPI and COPII scaffolds are paradigm vesicle coats in membrane trafficking. Recent advances in our understanding of the caveolar coat have generated a new paradigm. It represents those membrane coats, where a considerable part of the protein component is lipid modified, and integrated into the cytosolic leaflet of the vesicle membrane by a hairpin-like hydrophobic structure. Such coat proteins are permanently associated with membranes, and form oligomers early after synthesis. These oligomers assemble into a coat that has high affinity for particular lipids, creating lipid microdomains within the membrane. The combined protein-lipid structure should be considered as the scaffold that entraps ligands, either through affinity with the protein or with the lipid component, and that has the ability to shape membranes. Besides scaffolds assembled by caveolins, scaffolds assembled by reticulons and PHB domain-containing proteins such as the reggie/flotillin proteins fit this paradigm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号