首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prior studies have described a morphologically diverse group of intestinal microorganisms associated with surgeonfish. Despite their diversity of form, 16S rRNA gene surveys and fluorescent in situ hybridizations indicate that these bacteria are low-G+C gram-positive bacteria related to Epulopiscium spp. Many of these bacteria exhibit an unusual mode of reproduction, developing multiple offspring intracellularly. Previous reports have suggested that some Epulopiscium-like symbionts produce dormant or phase-bright intracellular offspring. Close relatives of Epulopiscium, such as Metabacterium polyspora and Clostridium lentocellum, are endospore-forming bacteria, which raises the possibility that the phase-bright offspring are endospores. Structural evidence and the presence of dipicolinic acid demonstrate that phase-bright offspring of Epulopiscium-like bacteria are true endospores. In addition, endospores are formed as part of the normal daily life cycle of these bacteria. In the populations studied, mature endospores were seen only at night and the majority of cells in a given population produced one or two endospores per mother cell. Phylogenetic analyses confirmed the close relationship between the endospore-forming surgeonfish symbionts characterized here and previously described Epulopiscium spp. The broad distribution of endospore formation among the Epulopiscium phylogenetic group raises the possibility that sporulation is a characteristic of the group. We speculate that spore formation in Epulopiscium-like symbionts may be important for dispersal and may also enhance survival in the changing conditions of the fish intestinal tract.  相似文献   

2.
Epulopiscium sp. type B is an enormous intestinal symbiont of the surgeonfish Naso tonganus. Intracellular offspring production in Epulopiscium shares features with endospore formation. Here, we characterize the spoIIE homolog in Epulopiscium. The timing of spoIIE gene expression and presence of interacting partners suggest that the activation of σ(F) occurs early in Epulopiscium offspring development.  相似文献   

3.
The guinea pig intestinal symbiont Metabacterium polyspora is an uncultured, endospore-forming member of the Firmicutes. Unlike most endospore-forming bacteria, sporulation is an obligate part of the M. polyspora life cycle when it is associated with a guinea pig. Binary fission is limited to a brief period in its life cycle, if exhibited at all. Instead, M. polyspora relies on the formation of multiple endospores for reproduction. Sporulation is initiated immediately after germination, which leaves little time for the cell to accumulate resources to support spore formation. Using immunolocalization of the nucleotide analogue bromodeoxyuridine (BrdU), we were able to follow replication dynamics in M. polyspora . BrdU was provided to cells within the guinea pig intestinal tract. BrdU was incorporated into DNA located within the forespores throughout development, at all stages prior to spore maturation. Our results suggest that in M. polyspora , DNA replication within the forespore is not suppressed during sporulation as it is in other endospore-forming bacteria. Replication within forespores would allow M. polyspora to maximize its reproductive potential and supply each endospore with at least one complete copy of the genome.  相似文献   

4.
The spatial patterning of proteins in bacteria plays an important role in many processes, from cell division to chemotaxis. In the asymmetrically dividing bacteria Caulobacter crescentus, a scaffolding protein, PopZ, localizes to both poles and aids the differential patterning of proteins between mother and daughter cells during division. Polar patterning of misfolded proteins in Escherichia coli has also been shown, and likely plays an important role in cellular ageing. Recent experiments on both of the above systems suggest that the presence of chromosome free regions along with protein multimerization may be a mechanism for driving the polar localization of proteins. We have developed a simple physical model for protein localization using only these two driving mechanisms. Our model reproduces all the observed patterns of PopZ and misfolded protein localization--from diffuse, unipolar, and bipolar patterns and can also account for the observed patterns in a variety of mutants. The model also suggests new experiments to further test the role of the chromosome in driving protein patterning, and whether such a mechanism is responsible for helping to drive the differentiation of the cell poles.  相似文献   

5.
Cell division is generally thought to be a process that produces an exact copy of the mother cell by precisely replicating its genomic DNA, doubling organelles, and segregating them into two cells. Many cell types from bacteria to human cells divide asymmetrically, however, to generate daughter cells with distinct characteristics. Such asymmetric divisions are fundamental to the lifespan of a cell, to embryonic development, and to stem cell homeostasis. Asymmetric division requires coordination of cellular asymmetry and the cell division machinery. Accumulating evidence suggests that the basic molecular mechanisms that govern this process are conserved from yeast to humans. In this review we highlight similarities in the mechanisms of asymmetric cell division in yeast and Drosophila male germline stem cells (GSCs) in the hope of extracting common themes underlying several systems.  相似文献   

6.
Spatial and numerical regulation of flagellar biosynthesis results in different flagellation patterns specific for each bacterial species. Campylobacter jejuni produces amphitrichous (bipolar) flagella to result in a single flagellum at both poles. These flagella confer swimming motility and a distinctive darting motility necessary for infection of humans to cause diarrheal disease and animals to promote commensalism. In addition to flagellation, symmetrical cell division is spatially regulated so that the divisome forms near the cellular midpoint. We have identified an unprecedented system for spatially regulating cell division in C. jejuni composed by FlhG, a regulator of flagellar number in polar flagellates, and components of amphitrichous flagella. Similar to its role in other polarly-flagellated bacteria, we found that FlhG regulates flagellar biosynthesis to limit poles of C. jejuni to one flagellum. Furthermore, we discovered that FlhG negatively influences the ability of FtsZ to initiate cell division. Through analysis of specific flagellar mutants, we discovered that components of the motor and switch complex of amphitrichous flagella are required with FlhG to specifically inhibit division at poles. Without FlhG or specific motor and switch complex proteins, cell division occurs more often at polar regions to form minicells. Our findings suggest a new understanding for the biological requirement of the amphitrichous flagellation pattern in bacteria that extend beyond motility, virulence, and colonization. We propose that amphitrichous bacteria such as Campylobacter species advantageously exploit placement of flagella at both poles to spatially regulate an FlhG-dependent mechanism to inhibit polar cell division, thereby encouraging symmetrical cell division to generate the greatest number of viable offspring. Furthermore, we found that other polarly-flagellated bacteria produce FlhG proteins that influence cell division, suggesting that FlhG and polar flagella may function together in a broad range of bacteria to spatially regulate division.  相似文献   

7.
8.
Summary A minimal medium was used to investigate the triggers regulating the initiation of solvent production and differentiation in Clostridium acetobutylicum P262. The accumulation of acid end-products caused the inhibition of cell division and the initiation of solvent production and cell differentiation. Initiation only occurred with a narrow pH range. Glucose or ammonium limited cultures failed to achieve the necessary threshold of acid end-products and solvent production and differentiation were not initiated. The addition of acid end-products or ammonium to cultures containing suboptimal levels of glucose or nitrogen respectively, enhanced solvent production. Resuspension of cells in media containing the threshold level of acid end-products and residual glucose induced endospore formation. Glucose or ammonium limitation did not induce sporulation and there was a requirement for glucose and ammonium during solventogenesis and endospore formation. Initiation of solvent production and clostridial stage formation were essential for sporulation. The induction of endospore formation in C. acetobutylicum P262 differs from that in the aerobic endospore forming bacteria where sporulation is initiated by nutrient starvation.  相似文献   

9.
10.
It is rare that there are molecular clues to the evolutionary origin of developmental traits. We have encountered an evolutionary juxtaposition that may explain the origin of the unique replicative morphology of Epulopiscium spp., the largest known bacteria, which reproduce by the internal production of multiple live offspring. We report here a 16S rRNA-based phylogenetic analysis of Metabacterium polyspora, a multiple-endospore-forming, uncultivated inhabitant of guinea pig cecum. Cells of M. polyspora were harvested from cecum contents by sedimentation in a Ficoll gradient and lysed. The bacterial 16S rRNA genes of this lysate were amplified by PCR. Sequence analysis of the cloned PCR products revealed two dominant, closely related 16S rRNA types. In situ hybridization of cecum contents with fluorescently labeled oligonucleotides, diagnostic of these two sequences, showed that they represent distinct strains of M. polyspora. Phylogenetic analyses of the sequences showed that M. polyspora is closely related to Epulopiscium spp. On the basis of this result and other correlations, we propose that the process of sporulation was modified in a predecessor of Epulopiscium spp. to produce live offspring instead of quiescent endospores.  相似文献   

11.
Bacteria ensure the fidelity of genetic inheritance by the coordinated control of chromosome segregation and cell division. Here, we review the molecules and mechanisms that govern the correct subcellular positioning and rapid separation of newly replicated chromosomes and plasmids towards the cell poles and, significantly, the emergence of mitotic-like machineries capable of segregating plasmid DNA. We further describe surprising similarities between proteins involved in DNA partitioning (ParA/ParB) and control of cell division (MinD/MinE), suggesting a mechanism for intracellular positioning common to the two processes. Finally, we discuss the role that the bacterial cytoskeleton plays in DNA partitioning and the missing link between prokaryotes and eukaryotes that is bacterial mechano-chemical motor proteins.  相似文献   

12.
13.
All living cells must cope with protein aggregation, which occurs as a result of experiencing stress. In previously studied bacteria, aggregated protein is collected at the cell poles and is retained throughout consecutive cell divisions only in old pole‐inheriting daughter cells, resulting in aggregation‐free progeny within a few generations. In this study, we describe the in vivo kinetics of aggregate formation and elimination following heat and antibiotic stress in the asymmetrically dividing bacterium Caulobacter crescentus. Unexpectedly, in this bacterium, protein aggregates form as multiple distributed foci located throughout the cell volume. Time‐lapse microscopy revealed that under moderate stress, the majority of these protein aggregates are short‐lived and rapidly dissolved by the major chaperone DnaK and the disaggregase ClpB. Severe stress or genetic perturbation of the protein quality control machinery induces the formation of long‐lived aggregates. Importantly, the majority of persistent aggregates neither collect at the cell poles nor are they partitioned to only one daughter cell type. Instead, we show that aggregates are distributed to both daughter cells in the same ratio at each division, which is driven by the continuous elongation of the growing mother cell. Therefore, our study has revealed a new pattern of protein aggregate inheritance in bacteria.  相似文献   

14.
Cell growth and differentiation in developing tissues are, at first impression, quite different endeavors from readjusting synaptic strength during activity-dependent synaptic plasticity in mature neurons. Nevertheless, it is becoming increasingly clear that these two distinct processes share multiple intracellular signaling events. How these common pathways result in cell division (during proliferation), large-scale cellular remodeling (during differentiation) or synapse-specific changes (during synaptic plasticity) is only starting to be elucidated. Here we review the latest findings on two prototypical examples of these shared mechanisms: the Ras-PI3K pathway and the intracellular signaling elicited by neural cell adhesion molecules interacting with growth factor receptors.  相似文献   

15.
The ultrastructure and development of Bacillus penetrans in root-knot nematodes, Meloidogyne spp., was studied with a transmission electron microscope. Host infection was by a germ tube from the cup-shaped sporangium containing the endospore. The prokaryotic vegetative cells contained septa formed by an ingrowth of the inner layer of the trilaminate cell wall and were associated with mesosomes. Structure of the endospore was similar to other bacteria with a spore protoplast enclosed within two cortical layers and three spore coats. An exosporium which may function in attachment and host specificity surrounded the endospore. Ultrastructural changes accompanying sporulation were similar to those reported for other endospore-forming bacteria but with some parasite specialization. The filamentous vegetative growth was characteristic of some Actinomycetales. Endospore development at the apices of dichotomously branched filaments of the thallus resembled the genus Actinobifida.  相似文献   

16.
A large number of proteins are known to reside at specific subcellular locations in bacterial cells. However, the molecular mechanisms by which many of these proteins are anchored at these locations remains unclear. During endospore formation in Bacillus subtilis, several integral membrane proteins are located specifically at the interface of the two adjacent cells of the developing sporangium, the mother cell and forespore. The mother cell membrane protein SpoIIIAH recognizes the cell-cell interface through an interaction with the forespore membrane protein SpoIIQ, and then the other proteins are positioned there by the SpoIIIAH-SpoIIQ complex. In this study, we investigated the molecular mechanisms underlying the formation of the SpoIIIAH-SpoIIQ complex. Using gel filtration chromatography and isothermal titration calorimetry, we measured the binding parameters that characterize the SpoIIIAH-SpoIIQ interaction in vitro. We also demonstrated that the interaction of SpoIIIAH and SpoIIQ is governed by their YscJ and degenerate LytM domains, respectively. Therefore, the LytM domain of SpoIIQ provides the positional cue that dictates the localization of mother cell membrane proteins to the mother cell-forespore interface.  相似文献   

17.
R B Jensen  K Gerdes 《The EMBO journal》1999,18(14):4076-4084
The parA locus of plasmid R1 encodes a prokaryotic centromere-like system that mediates genetic stabilization of plasmids by an unknown mechanism. The locus codes for two proteins, ParM and ParR, and a centromere-like DNA region (parC) to which the ParR protein binds. We showed recently that ParR mediates specific pairing of parC-containing DNA molecules in vitro. To obtain further insight into the mechanism of plasmid stabilization, we examined the intracellular localization of the components of the parA system. We found that ParM forms discrete foci that localize to specific cellular regions in a simple, yet dynamic pattern. In newborn cells, ParM foci were present close to both cell poles. Concomitant with cell growth, new foci formed at mid-cell. A point mutation that abolished the ATPase activity of ParM simultaneously prevented cellular localization and plasmid partitioning. A parA-containing plasmid localized to similar sites, i.e. close to the poles and at mid-cell, thus indicating that the plasmid co-localizes with ParM. Double labelling of single cells showed that plasmid DNA and ParM indeed co-localize. Thus, our data indicate that parA is a true partitioning system that mediates pairing of plasmids at mid-cell and subsequently moves them to the cell poles before cell division.  相似文献   

18.
Chromosome strand segregation during sporulation in Bacillus subtilis   总被引:2,自引:0,他引:2  
After the initiation of spore formation in Bacillus subtilis, the products of the final round of DNA replication segregate into two cells, i.e. the prespore and the mother cell. The prespore, which is known to contain a single completed chromosome, develops into a mature endospore which can be readily separated from mother cells and non-sporulating cells on the basis of its resistance properties. We have used a procedure originally developed to label the terminus region of the B. subtilis chromosome to specifically label the newly synthesized strands of DNA during the final round of DNA replication before sporulation. We have purified prespore DNA and used strand-specific probes to measure the radioactivity incorporated. The results show that the sister chromosomes segregate at random into the prespore. This result has implications for the segregation of chromosomes during vegetative growth and for the generation of cellular asymmetry during sporulation.  相似文献   

19.
Filamentation is a reversible morphological change triggered in response to various stresses that bacteria might encounter in the environment, during host infection or antibiotic treatments. Here we re-visit the dynamics of filament formation and recovery using a consistent framework based on live-cells microscopy. We compare the fate of filamentous Escherichia coli induced by cephalexin that inhibits cell division or by UV-induced DNA-damage that additionally perturbs chromosome segregation. We show that both filament types recover by successive and accelerated rounds of divisions that preferentially occur at the filaments' tip, thus resulting in the rapid production of multiple daughter cells with tightly regulated size. The DNA content, viability and further division of the daughter cells essentially depends on the coordination between chromosome segregation and division within the mother filament. Septum positioning at the filaments' tip depends on the Min system, while the nucleoid occlusion protein SlmA regulates the timing of division to prevent septum closure on unsegregated chromosomes. Our results not only recapitulate earlier conclusions but provide a higher level of detail regarding filaments division and the fate of the daughter cells. Together with previous reports, this work uncovers how filamentation recovery allows for a rapid cell proliferation after stress treatment.  相似文献   

20.
The study of microbial heterogeneity at the single-cell level is a rapidly growing area of research in microbiology and biotechnology due to its significance in pathogenesis, environmental biology, and industrial biotechnologies. However, the tools available for efficiently and precisely probing such heterogeneity are limited for most bacteria. Here we describe the development and application of flow-cytometric (FC) and fluorescence-assisted cell-sorting techniques for the study of endospore-forming bacteria. We show that by combining FC light scattering (LS) with nucleic acid staining, we can discriminate, quantify, and enrich all sporulation-associated morphologies exhibited by the endospore-forming anaerobe Clostridium acetobutylicum. Using FC LS analysis, we quantitatively show that clostridial cultures commonly perform multiple rounds of sporulation and that sporulation is induced earlier by the overexpression of Spo0A, the master regulator of endospore formers. To further demonstrate the power of our approach, we employed FC LS analysis to generate compelling evidence to challenge the long-accepted view in the field that the clostridial cell form is the solvent-forming phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号