首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
1.  The plating efficiency of bacteriophage MX-1 on Myxococcus xanthus strains A and B and M. virescens V2 were compared. Comparison of strains V2 and A suggest that V2 is restrictive and A is not (restriction coefficient was approximately 8). A derivative of M. virescens V2 (strain V2-9) was obtained by repeated exposure of strain V2 to ultraviolet radiation. Strain V2-9 was also unrestrictive. Strain B is apparently unrestrictive too but analysis of phenotypic changes in phage derived from hosts V2, B and A suggested that some of the host-cell processes differ from orthodox restriction and modification.
2.  Cell-free extracts from M. virescens V2 were fractionated by ion-exchange chromatography and two restriction endonucleases, R. MviV2I and R. MviV2II were identified. Nuclease I was found to hydrolyse coliphage DNA at apparently one site only and MX-1 DNA at approximately 10 sites; nuclease II was found to hydrolyse MX-1 DNA at a very large number of sites and its restriction sequence was of comparable frequency with that of R. EcoRII. Modified MX-1 DNA, obtained from phage whose last host was M. virescens V2 was hydrolysed by nuclease II but not by nuclease I. The significance of these findings for restriction in myxococci is discussed.
  相似文献   

3.
Summary The content of 5-methylcytosine (5MC) and 6-methyladenine (6MA) in modified and nonmodified DNAs from B. subtilis and B. subtilis phage SPP1 were determined. Nonmodified SPP1 · O DNA contains about 15 5MC residues/molecule. Each modified SPP1 ·R DNA molecule carries 190 modification specific methyl groups. This number is sufficient to account for modification of the 80 restriction sites in SPP1 DNA (Bron and Murray, 1975) against endo R · Bsu R, assuming each modified site contains two 5MC residues. Resistance of SP01 DNA against endo R · Bsu R restriction both in vivo and in vitro is probably not due to methylation of endo R·Bsu R recognition sites.  相似文献   

4.
5.
Summary SPO1 DNA contains only 5 cleavage sites for restriction enzymes which recognize and cleave the sequence 5-G-G-C-C (HaeIII or BsuR). Fragments of SPO1 DNA cloned in E. coli to substitute 5-hydroxymethyluracil (HMU) by thymine (T) remain resistant to HaeIII indicating that this unexpectedly small number of cleavages by HaeIII is not correlated with the presence of HMU in the normal phage DNA. It was previously shown that SPO1 is neither subject to B. subtilis R restriction (Trautner et al., 1974) nor modification in vivo (Günthert et al., 1975). We now show that SPO1 DNA can however be restricted and modified in vitro.  相似文献   

6.
Summary The effects of the restriction system of Bacillus subtilis strain M on plasmid transformation were studied. Plasmid pHV1401 DNA prepared from B. subtilis transformed the restriction-proficient M strain 100 times more efficiently than the DNA prepared from Escherichia coli, while the two DNA preparations transformed restriction-deficient derivatives of that strain with similar efficiencies. This indicates that transformation with pHV1401 is sensitive to the M restriction system. pHV1401 contains three CTCGAG (XhoI sites). Successive removal of these abolished the effect of restriction. This indicates that the XhoI sites are the targets for the M restriction system.Abbreviations used Apr resistance to ampicillin - Cmr resistance to chloramphenicol - R/M restriction and modification - Tcr resistance to tetracycline  相似文献   

7.
A number of mutant forms of the antirestriction protein ArdA encoded by theardA gene located in a transmissive IncN plasmid pKM101 have been constructed. Proteins belonging to the Ard family are specific inhibitors of type I restriction–modification enzymes. Single mutational substitutions of negatively charged amino acid residues located in the antirestriction motif with hydrophobic alanine, E134A, E137A, D144A, or a double substitution E134A, E137A do not affect the antirestriction activity (Ard) of ArdA but almost completely abolish the antimodification activity (Amd). Mutational substitutions F107D and A110D in the assumed interface ArdA, which determines contact between monomers in the active dimer (Ard)2, cause an approximately 100-fold decrease in the antirestriction protein activity. It is hypothesized that the ArdA protein forms two complexes with the type I restriction–modification enzyme (R2M2S): (1) with a specific region in the S subunit involved in contact with the sK site in DNA; and (2) with a nonspecific region in the R subunit involved in DNA translocation and degradation by restriction endonucleases. The association of ArdA with the specific region inhibits restriction endonuclease and methyltransferase activities simultaneously, whereas the association of ArdA with a nonspecific region inhibits only restriction endonuclease activity of the R2M2S enzyme.  相似文献   

8.

Aims

To determine the herd prevalence of Enterobacteriaceae producing CTX‐M‐type extended‐spectrum β‐lactamases (ESBLs) among 381 dairy farms in Japan.

Methods and Results

Between 2007 and 2009, we screened 897 faecal samples using BTB lactose agar plates containing cefotaxime (2 μg ml?1). Positive isolates were tested using ESBL confirmatory tests, PCR and sequencing for CTX‐M, AmpC, TEM and SHV. The incidence of Enterobacteriaceae producing CTX‐M‐15 (= 7), CTX‐M‐2 (= 12), CTX‐M‐14 (= 3), CMY‐2 (= 2) or CTX‐M‐15/2/14 and CMY‐2 (= 4) in bovine faeces was 28/897 (3·1%) faecal samples. These genes had spread to Escherichia coli (= 23) and three genera of Enterobacteriaceae (= 5). Herd prevalence was found to be 20/381 (5·2%) dairy farms. The 23 E. coli isolates showed clonal diversity, as assessed by multilocus sequence typing and pulsed‐field gel electrophoresis. The pandemic E. coli strain ST131 producing CTX‐M‐15 or CTX‐M‐27 was not detected.

Conclusions

Three clusters of CTX‐M (CTX‐M‐15, CTX‐M‐2, CTX‐M‐14) had spread among Japanese dairy farms.

Significance and Impact of the Study

This is the first report on the prevalence of multidrug‐resistant CTX‐M‐15–producing E. coli among Japanese dairy farms.  相似文献   

9.

Aims

This study aimed to investigate the antifungal mechanism of carvacrol and eugenol to inhibit Rhizopus stolonifer and the control of postharvest soft rot decay in peaches.

Methods and Results

To investigate the antifungal mechanism, the effects of carvacrol and eugenol on the mycelium growth, leakages of cytoplasmic contents, mycelium morphology, cell membrane and membrane composition of R. stolonifer were studied. Carvacrol and eugenol both exhibited dose‐dependent antifungal activity against R. stolonifer, carvacrol at a concentration of 2 μl per plant and eugenol at a concentration of 4 μl per plant inhibited fungal growth completely. The two essential oils (EOs) increased cell membrane penetrability and caused the leakage of cytoplasm, nucleic acid and protein content. The observation using scanning electron microscopy and fluorescent microscopy showed modification of the hyphal morphology and breakage of the cell plasma membrane. Decreased ergosterol contents confirmed that the two EOs could destroy the membrane of R. stolonifer. For the in vivo test, the inhibition of soft rot disease and the induction of defence‐related enzymes were investigated. Carvacrol and eugenol significantly reduced the incidence and severity of soft rot decay in inoculated peaches. The best treatments for controlling soft rot decay were obtained at 0·5 μl l?1 for carvacrol and 1 μl l?1 for eugenol. The activities of defence‐related enzymes in peaches were also enhanced by fumigation with two EOs.

Conclusion

This study showed that carvacrol and eugenol could effectively inhibit the growth of R. stolonifer in vitro and successfully control the incidence of soft rot decay in honey peaches.

Significance and Impact of the Study

The above findings may be the main antifungal mechanism of carvacrol and eugenol on R. stolonifer. Furthermore, carvacrol and eugenol are helpful for their commercial application on the preservation of fresh fruit.  相似文献   

10.
Summary Bacteria with A-specific restriction plate unmodified phage with an efficiency of 10-2. One mutational event can produce restriction insensitive (sAo) mutants of . These differ from the original sA form of by no other property than their response to A-host specificity. Two-parental phage crosses involving sA and sAo, respectively, as non-selective marker allowed to map sA between genes cII and O. These data indicate that sA is the only site on DNA with affinity for A-specific restriction. DNA is thus an interesting substrate in in vitro A-specific restriction and modification. Using an assay based on the infectivity of DNA on helper-infected bacteria, A-specific modification activity was found in partially purified sonicates of bacteria with A-host specificity. In parallel to modification, 3H-methyl label from s-adenosylmethionine, the only cofactor required for modification, was transferred to unmodified DNA. No association of radioactivity was observed in control experiments with DNA from either modified ·A or from asAo mutant. These data suggest that A-specific modification is brought about by DNA methylation and that the sAo mutation not only abolished the affinity for A-specific restriction, but also for A-specific modification.  相似文献   

11.
12.
Summary R124 and R124/3 are R plasmids that carry the genes for two different restriction and modification systems. The phenotype of strains carrying either of these plasmids along with the F'lac + plasmid, is restriction-deficient (Res-). The Res- phenotype is not due to selection of preexisting mutants but rather to a complex mutational event caused by the F plasmid. Restriction-deficient mutants carry extensive deletions and other DNA rearrangements. Tn7 insertion is used to locate the restriction gene. Many of the Res- mutants are genetically unstable and revert at exceptionally high frequencies. Reversion is accompanied by DNA rearrangements which result in a net gain of 9 kb of DNA. F derivates of F+ which do not cause restriction-deficiency but do cause deletion were used to distinguish between the DNA rearrangements associated with restriction-deficiency and those associated with deletion. From Res+ revertants of strains carrying F'lac + and R124 or R124/3 we have isolated F plasmids that now carry the genes for the R124 or R124/3 restriction and modification systems. It is suggested that interaction between part of the F plasmid and that segment of the R plasmid which controls the switch in Res-Mod specificity which has been observed (Glover et al. 1983) is responsible for the production of restriction-deficiency.  相似文献   

13.
Total DNA isolated from Rhizobium leguminosarum VF39SM cells is resistant to cleavage by the restriction endonuclease PstI. Plasmid curing and transfer studies localized this phenotype to pRleVF39b, the second smallest of six plasmids found in this bacterium. In vitro selection for vector modification was employed to isolate a presumptive methylase gene (M.Rle39BI) from a plasmid gene library. Total and plasmid DNAs isolated from E. coli containing M.RleBI were resistant to digestion by PstI. Sequence data suggested that a putative restriction endonuclease (R.Rle39BI) was also encoded on the same fragment. The two genes were flanked by identical copies of a putative insertion sequence, which was also present in several copies elsewhere in the VF39SM genome. The presence of this element in other strains examined suggested that this element is indeed an insertion sequence. The differences in G/C content between the DNA coding for the R/M system and that of the IS element suggest that this DNA region may have been acquired by horizontal transfer. Received: 28 January 1997 / Accepted: 3 June 1997  相似文献   

14.
Summary The activity of the EcoK DNA restriction system of Escherichia coli reduces both the plating efficiency of unmodified phage and the transforming ability of unmodified pBR322 plasmid DNA. However, restriction can be alleviated in wild-type cells, by UV irradiation and expression of the SOS response, so that 103-to 104-fold increases in phage growth and fourfold increases in plasmid transformation occurred with unmodified DNA. Restriction alleviation was found to be a transient effect because induced cells, which initially failed to restrict unmodified plasmid DNA, later restricted unmodified phage . Although the SOS response was needed for restriction alleviation, constitutive SOS induction, elicited genetically with a recA730 mutation, did not alleviate restriction and UV irradiation was still needed. A hitherto unsuspected involvement of the umuDC operon in this alleviation of restriction is characterized and, by differential complementation, was separated from the better known role of umuDC in mutagenic DNA repair. The need for cleavage of UmuD for restriction alleviation was shown with plasmids encoding cleavable, cleaved, and non-cleavable forms of UmuD. However, UV irradiation was still needed even when cleaved UmuD was provided. The possibility that restriction alleviation occurs by a general inhibition of the EcoK restriction/modification complex was tested and discounted because modification of was not reduced by UV irradiation. An alternative idea, that restriction activity was competitively reduced by an increase in EcoK modification, was also discounted by the lack of any increase in the modification of Ral, a naturally undermodified phage. Other possible mechanisms for restriction alleviation are discussed.  相似文献   

15.

Aims

This study aimed to characterize the impact of lytic and temperate bacteriophages on the genetic and phenotypic diversity of Mannheimia haemolytica from feedlot cattle.

Methods and Results

Strictly lytic phages were not detected from bovine nasopharyngeal (n = 689) or water trough (n = 30) samples, but Myoviridae‐ or Siphoviridae‐like phages were induced from 54 of 72 M. haemolytica strains by mitomycin C, occasionally from the same strain. Phages with similar restriction fragment length polymorphism profiles (RFLP ≥70% relatedness) shared common host serotypes 1 or 2 (< 0·000 1). Likewise, phages with similar RFLP tended to occur in genetically related host bacteria (70–79% similarity). Host range assays showed that seven phages from host serotypes 1, 2 and 6 lysed representative strains of serotypes 1, 2 or 8. The genome of vB_MhM_1152AP from serotype 6 was found to be collinear with P2‐like phage φMhaA1‐PHL101.

Conclusions

Prophages are a significant component of the genome of M. haemolytica and contribute significantly to host diversity. Further characterization of the role of prophage in virulence and persistence of M. haemolytica in cattle could provide insight into approaches to control this potential respiratory pathogen.

Significance and Impact of the Study

This study demonstrated that prophages are widespread within the genome of M. haemolytica isolates and emphasized the challenge of isolating lytic phage as a therapeutic against this pathogen.  相似文献   

16.
The BstF5I restriction–modification system from Bacillus stearothermophilus F5, unlike all known restriction–modification systems, contains three genes encoding DNA methyltransferases. In addition to revealing two DNA methylases responsible for modification of adenine in different DNA strands, it has been first shown that one bacterial cell has two DNA methylases, M.BstF5I-1 and M.BstF5I-3, with similar substrate specificity. The boundaries of the gene for DNA methyltransferase M.BstF5I-1 have been verified. The bstF5IM-1 gene was cloned in pJW and expressed in Escherichia coli. Homogeneous samples of M.BstF5I-1 and M.BstF5I-3 were obtained by chromatography with different sorbents. The main kinetic parameters have been determined for M.BstF5I-1 and M.BstF5I-3, both modifying adenine in the recognition site 5"-GGATG-3".  相似文献   

17.

Background  

The discovery of restriction endonucleases and modification DNA methyltransferases, key instruments of genetic engineering, opened a new era of molecular biology through development of the recombinant DNA technology. Today, the number of potential proteins assigned to type II restriction enzymes alone is beyond 6000, which probably reflects the high diversity of evolutionary pathways. Here we present experimental evidence that a new type IIC restriction and modification enzymes carrying both activities in a single polypeptide could result from fusion of the appropriate genes from preexisting bipartite restriction-modification systems.  相似文献   

18.
Type-I DNA restriction–modification (R/M) systems are important agents in limiting the transmission of mobile genetic elements responsible for spreading bacterial resistance to antibiotics. EcoKI, a Type I R/M enzyme from Escherichia coli, acts by methylation- and sequence-specific recognition, leading to either methylation of DNA or translocation and cutting at a random site, often hundreds of base pairs away. Consisting of one specificity subunit, two modification subunits, and two DNA translocase/endonuclease subunits, EcoKI is inhibited by the T7 phage antirestriction protein ocr, a DNA mimic. We present a 3D density map generated by negative-stain electron microscopy and single particle analysis of the central core of the restriction complex, the M.EcoKI M2S1 methyltransferase, bound to ocr. We also present complete atomic models of M.EcoKI in complex with ocr and its cognate DNA giving a clear picture of the overall clamp-like operation of the enzyme. The model is consistent with a large body of experimental data on EcoKI published over 40 years.  相似文献   

19.
Summary The NgoPII restriction endonuclease, which recognizes the sequence 5-GGCC-3, differs from its isoschizomer HaeIII in being sensitive to methylation at the external cytosine residue. The entire nucleotide sequence of a cloned 3.3 kb segment of Neisseria gonorrhoeae strain P9 chromosomal DNA which harbours the NgoPII restriction-modification system has been determined. This data, coupled with sub-cloning experiments, indicates that the restriction endonuclease (R.NgoII) and modification (M.NgoII) genes are transcribed from separate promoters but are arranged in tandem, with the R.NgoPII gene being located on the 5 side of the M.NgoPII gene. Unlike all previously reported restriction systems the 3 end of the endonuclease open reading frame overlaps the 5 end of the methylase open reading frame by 8 codons. This overlap may have implications for the regulation of the NgoPII restriction-modification system.  相似文献   

20.
A novel plasmid-mediated DNA restriction-modification system in E. coli   总被引:1,自引:0,他引:1  
R plasmids from 101 clinical isolates were transferred to E. coli J62 by conjugation and tested for the presence of R plasmid-mediated restriction-modification DNA systems. Thirty R plasmids were found to inhibit phage λ. vir development. Ten plasmids determined restriction modification system; nine of them proved identical with R.M. EcoRII. One transconjugant, E. coli J62 pLG74, was shown to have a restriction-modification system different from all the known R plasmid-mediated systems. Site-specific endonuclease has been isolated from E. coli J62 pLG74 which differed from all the known restriction endonucleases in the number of cleavage sites on phages λ, φX 174, virus SV40, plasmid pBR322 DNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号