首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
CD47-binding sequences from the carboxyl-terminal domain of thrombospondin-1 (TSP1) are known to regulate activity of the alpha(v)beta(3) integrin (Gao, G., Lindberg, F. P., Dimitry, J. M., Brown, E. J., and Frazier, W. A. (1996) J. Cell Biol. 135, 533-544). Here we show that peptides from the type 1 repeats of TSP1 also stimulate alpha(v)beta(3) integrin function in melanoma cells. Addition of soluble peptide 246 (KRFKQDGGWSHWSPWSS) enhances spreading of A2058 melanoma cells on several alpha(v)beta(3) integrin ligands, including vitronectin, recombinant TSP1 fragments containing the Arg-Gly-Asp sequence, and native TSP1. This activity requires the Trp residues and is independent of CD36-binding sequences in the type 1 repeats. Recombinant type 1 repeats expressed as a glutathione S-transferase fusion protein also enhance spreading on vitronectin and TSP1. Activation of alpha(v)beta(3) integrin by the soluble peptide 246 stimulates organization of F-actin and increases tyrosine phosphorylation of focal adhesion kinase. In contrast, direct adhesion of melanoma cells on immobilized peptide 246 inhibits tyrosine phosphorylation of focal adhesion kinase. Stimulation of alpha(v)beta(3) integrin function by the type 1 repeat peptide differs from that induced by CD47-binding TSP1 peptides in that heparan sulfate proteoglycans are required and pertussis toxin does not inhibit the former activity. Thus, the type 1 repeats contain a second sequence of TSP1 that can enhance alpha(v)beta(3) integrin signaling, and these two sequences stimulate recognition of both vitronectin and TSP1 by the alpha(v)beta(3) integrin.  相似文献   

2.
Thrombospondin-1 (TSP1) is a matricellular protein that displays both pro- and anti-adhesive activities. Binding to sulfated glycoconjugates mediates most high affinity binding of soluble TSP1 to MDA-MB-435 cells, but attachment and spreading of these cells on immobilized TSP1 is primarily beta1 integrin-dependent. The integrin alpha3beta1 is the major mediator of breast carcinoma cell adhesion and chemotaxis to TSP1. This integrin is partially active in MDA-MB-435 cells but is mostly inactive in MDA-MB-231 and MCF-7 cells, which require beta1 integrin activation to induce spreading on TSP1. Integrin-mediated cell spreading on TSP1 is accompanied by extension of filopodia containing beta1 integrins. TSP1 binding activity of the alpha3beta1 integrin is not stimulated by CD47-binding peptides from TSP1 or by protein kinase C activation, which activate alphavbeta3 integrin function in the same cells. In MDA-MB-231 but not MDA-MB-435 cells, this integrin is activated by pertussis toxin, whereas serum, insulin, insulin-like growth factor-1, and ligation of CD98 increase activity of this integrin in both cell lines. Serum stimulation is accompanied by increased surface expression of CD98, whereas insulin-like growth factor-1 does not increase CD98 expression. Thus, the pro-adhesive activity of TSP1 for breast carcinoma cells is controlled by several signals that regulate activity of the alpha3beta1 integrin.  相似文献   

3.
Exogenous soluble human alpha3 noncollagenous (NC1) domain of collagen IV inhibits angiogenesis and tumor growth. These biological functions are attributed to the binding of alpha3NC1 to integrin alphavbeta3. However, in some tumor cells that express integrin alphavbeta3, the alpha3NC1 domain does not inhibit proliferation, suggesting that integrin alphavbeta3 expression is not sufficient to mediate the anti-tumorigenic activity of this domain. Therefore, in the present study, we searched for novel binding receptors for the soluble alpha3NC1 domain in cells lacking alphavbeta3 integrin. In these cells, soluble alpha3NC1 bound integrin alpha3beta1; however, unlike alphavbeta3, alpha3beta1 integrin did not mediate cell adhesion to immobilized alpha3NC1 domain. Interestingly, in cells lacking integrin alpha3beta1, adhesion to the alpha3NC1 domain was enhanced due to activation of integrin alphavbeta3. These findings indicate that integrin alpha3beta1 is a receptor for the alpha3NC1 domain and transdominantly inhibits integrin alphavbeta3 activation. Thus integrin alpha3beta1, in conjunction with integrin alphavbeta3, modulates cellular responses to the alpha3NC1 domain, which may be pivotal in the mechanism underpinning its anti-angiogenic and anti-tumorigenic activities.  相似文献   

4.
Recent studies indicate that angiogenesis depends, in part, on ligation of integrin alpha(5)beta(1) by fibronectin. Evidence is now provided that integrin alpha(5)beta(1) regulates the function of integrin alpha(v)beta(3) on endothelial cells during their migration in vitro or angiogenesis in vivo. Secretion of fibronectin by endothelial cells leads to the ligation of integrin alpha(5)beta(1), which potentiates alpha(v)beta(3)-mediated migration on vitronectin without influencing alpha(v)beta(3)-mediated cell adhesion. Endothelial cell attachment to vitronectin suppresses protein kinase A (PKA) activity, while addition of soluble anti-alpha(5)beta(1) restores this activity. Moreover, agents that activate intracellular PKA, such as forskolin, dibutyryl cAMP or alpha(5)beta(1) antagonists, suppress endothelial cell migration on vitronectin in vitro or angiogenesis in vivo. In contrast, inhibitors of PKA reverse the anti-migratory or anti-angiogenic effects mediated by alpha(5)beta(1) antagonists. Therefore, alpha(v)beta(3)-mediated endothelial cell migration and angiogenesis can be regulated by PKA activity, which depends on the ligation state of integrin alpha(5)beta(1).  相似文献   

5.
《The Journal of cell biology》1995,129(6):1691-1705
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF family of growth factors, which interact with EGF receptor to exert mitogenic activity. The membrane-anchored form of HB- EGF, proHB-EGF, is biologically active, providing mitogenic stimulation to neighboring cells in a juxtacrine mode. ProHB-EGF forms a complex with diphtheria toxin receptor-associated protein (DRAP27)/CD9, a tetra membrane-spanning protein that upregulates the juxtacrine mitogenic activity of proHB-EGF. We explored whether other proteins associate with DRAP27/CD9 and proHB-EGF. Immunoprecipitation with anti-DRAP27/CD9 resulted in preferential coprecipitation of integrin alpha 3 beta 1 from Vero cell, A431 cell and MG63 cell lysates. Anti-integrin alpha 3 or anti-integrin beta 1 coprecipitated DRAP27/CD9 from the same cell lysates. Chemical cross-linking confirmed the physical association of DRAP27/CD9 and integrin alpha 3 beta 1. Using Vero-H cells, which overexpress HB-EGF, we also demonstrated the association of proHB-EGF with DRAP27/CD9 and integrin alpha 3 beta 1. Moreover, colocalization of proHB-EGF, DRAP27/CD9, and integrin alpha 3 beta 1 at cell-cell contact sites was observed by double-immunofluorescence staining. At cell-cell contact sites, DRAP27/CD9 was highly coincident with alpha- catenin and vinculin, suggesting that DRAP27/CD9, proHB-EGF, and integrin alpha 3 beta 1 are colocalized with adherence junction- locating proteins. These results indicate that direct interaction of growth factors and cell adhesion molecules may control cell proliferation during the cell-cell adhesion process.  相似文献   

6.
A synthetic peptide containing amino acid residues 190-201 of thrombospondin-1 (TSP1) promoted adhesion of MDA-MB-435 breast carcinoma cells when immobilized and inhibited adhesion of the same cells to TSP1 when added in solution. Adhesion to this peptide was enhanced by a beta(1) integrin-activating antibody, Mn(2+), and insulin-like growth factor I and was inhibited by an alpha(3)beta(1) integrin function-blocking antibody. The soluble peptide inhibited adhesion of cells to the immobilized TSP1 peptide or spreading on intact TSP1 but at the same concentrations did not inhibit attachment or spreading on type IV collagen or fibronectin. Substitution of several residues in the TSP1 peptide with Ala residues abolished or diminished the inhibitory activity of the peptide in solution, but only substitution of Arg-198 completely inactivated the adhesive activity of the immobilized peptide. The essential residues for activity of the peptide as a soluble inhibitor are Asn-196, Val-197, and Arg-198, but flanking residues enhance the inhibitory activity of this core sequence, either by altering the conformation of the active sequence or by interacting with the integrin. This functional sequence is conserved in all known mammalian TSP1 sequences and in TSP1 from Xenopus laevis. The TSP1 peptide also inhibited adhesion of MDA-MB-435 cells to the laminin-1 peptide GD6, which contains a potential integrin-recognition sequence Asn-Leu-Arg and is derived from a similar position in a pentraxin module. Adhesion studies using recombinant TSP1 fragments also localized beta1 integrin-dependent adhesion to residues 175-242 of this region, which contain the active sequence.  相似文献   

7.
In addition to the three known beta(1) integrin recognition sites in the N-module of thrombospondin-1 (TSP1), we found that beta(1) integrins mediate cell adhesion to the type 1 and type 2 repeats. The type 1 repeats of TSP1 differ from typical integrin ligands in that recognition is pan-beta(1)-specific. Adhesion of cells that express one dominant beta(1) integrin on immobilized type 1 repeats is specifically inhibited by antagonists of that integrin, whereas adhesion of cells that express several beta(1) integrins is partially inhibited by each alpha-subunit-specific antagonist and completely inhibited by combining the antagonists. beta(1) integrins recognize both the second and third type 1 repeats, and each type 1 repeat shows pan-beta(1) specificity and divalent cation dependence for promoting cell adhesion. Adhesion to the type 2 repeats is less sensitive to alpha-subunit antagonists, but a beta(1) blocking antibody and two disintegrins inhibit adhesion to immobilized type 2 repeats. beta(1) integrin expression is necessary for cell adhesion to the type 1 or type 2 repeats, and beta(1) integrins bind in a divalent cation-dependent manner to a type 1 repeat affinity column. The widely used TSP1 function blocking antibody A4.1 binds to a site in the third type 2 repeat. A4.1 proximally inhibits beta(1) integrin-dependent adhesion to the type 2 repeats and indirectly inhibits integrin-dependent adhesion mediated by the TSP1 type 1 repeats. Although antibody A4.1 is also an antagonist of CD36 binding to TSP1, these data suggest that some biological activities of A4.1 result from antagonism of these novel beta(1) integrin binding sites.  相似文献   

8.
We recently reported that CD47 (integrin-associated protein) on sickle red blood cells (SS RBCs) activates G-protein-dependent signaling, which promotes cell adhesion to immobilized thrombospondin (TSP) under relevant shear stress. These data suggested that signal transduction in SS RBCs may contribute to the vaso-occlusive pathology observed in sickle cell disease. However, the CD47-activated SS RBC adhesion receptor(s) that mediated adhesion to immobilized TSP remained unknown. Here we demonstrate that the alpha4beta1 integrin (VLA-4) is the receptor that mediates CD47-stimulated SS RBC adhesion to immobilized TSP. This adhesion requires both the N-terminal heparin-binding domain and the RGD site of TSP. CD47 signaling induces an "inside-out" activation of alpha4beta1 on SS RBCs as indicated by an RGD-dependent interaction of this integrin with soluble, plasma fibronectin. However, CD47 engagement also induces an alpha4beta1-mediated, RGD-independent adhesion of SS RBCs to immobilized vascular cell adhesion molecule-1 (VCAM-1). CD47 signaling in SS RBCs appears to be independent of large scale changes in cAMP formation but nonetheless promotes alpha4beta1-mediated adhesion via a protein kinase A-dependent, serine phosphorylation of the alpha4 cytoplasmic domain. CD47-activated SS RBC adhesion absolutely requires the Src family tyrosine kinases and is also enhanced by treatment of SS RBCs with low concentrations of cytochalasin D, which may release alpha4beta1 from cytoskeletal restraints. In addition, CD47 co-immunoprecipitates with alpha4beta1 in a sickle reticulocyte-enriched fraction of SS RBCs. These studies therefore identify the alpha4beta1 integrin on SS RBCs as a CD47-activated receptor for TSP, VCAM-1, and plasma fibronectin, revealing novel binding characteristics of this integrin.  相似文献   

9.
10.
The angiogenic inducer CCN1 (cysteine-rich 61, CYR61), a secreted matricellular protein of the CCN family, is a ligand of multiple integrins, including alpha 6 beta 1. Previous studies have shown that CCN1 interaction with integrin alpha 6 beta 1 mediates adhesion of fibroblasts, endothelial cells, and smooth muscle cells, as well as migration of smooth muscle cells. Recently, we have reported that CCN1-induced tubule formation of unactivated endothelial cells is also mediated through integrin alpha 6 beta 1. In this study, we demonstrate that human skin fibroblasts adhere specifically to the T1 sequence (GQKCIVQTTSWSQCSKS) within domain III of CCN1, and this process is blocked by anti-alpha 6 and anti-beta 1 monoclonal antibodies. Alanine substitution mutagenesis of the T1 sequence further defines the sequence TTSWSQCSKS as the critical determinant for mediating alpha 6 beta 1-dependent adhesion. Soluble T1 peptide specifically inhibits fibroblast adhesion to CCN1 in a dose-dependent manner. Furthermore, T1 also inhibits cell adhesion to other alpha 6 beta 1 ligands, including CCN2 (CTGF), CCN3 (NOV), and laminin, but not to ligands of other integrins. In addition, T1 specifically inhibits alpha 6 beta 1-dependent tubule formation of unactivated endothelial cells in a CCN1-containing collagen gel matrix. To confirm that T1 binds integrin alpha 6 beta 1 directly, we perform affinity chromatography and show that integrin alpha 6 beta 1 is isolated from an octylglucoside extract of fibroblasts on T1-coupled Affi-gel. Taken together, these findings define the T1 sequence in CCN1 as a novel binding motif for integrin alpha 6 beta 1, providing the basis for the development of peptide mimetics to examine the functional role of alpha 6 beta 1 in angiogenesis.  相似文献   

11.
Thrombospondin (TSP)-1 has been reported to modulate T cell behavior both positively and negatively. We found that these opposing responses arise from interactions of TSP1 with two different T cell receptors. The integrin alpha4beta1 recognizes an LDVP sequence in the NH2-terminal domain of TSP1 and was required for stimulation of T cell adhesion, chemotaxis, and matrix metalloproteinase gene expression by TSP1. Recognition of TSP1 by T cells depended on the activation state of alpha4beta1 integrin, and TSP1 inhibited interaction of activated alpha4beta1 integrin on T cells with its counter receptor vascular cell adhesion molecule-1. The alpha4beta1 integrin recognition site is conserved in TSP2. A recombinant piece of TSP2 containing this sequence replicated the alpha4beta1 integrin-dependent activities of TSP1. The beta1 integrin recognition sites in TSP1, however, were neither necessary nor sufficient for inhibition of T cell proliferation and T cell antigen receptor signaling by TSP1. A second TSP1 receptor, CD47, was not required for some stimulatory responses to TSP1 but played a significant role in its T cell antigen receptor antagonist and antiproliferative activities. Modulating the relative expression or function of these two TSP receptors could therefore alter the direction or magnitude of T cell responses to TSPs.  相似文献   

12.
The recognition of extracellular matrix components can be regulated by conformational changes that alter the activity of cell surface integrins. We now demonstrate that conformational regulation of the matrix glycoprotein thrombospondin-1 (TSP1) can also modulate its binding to an integrin receptor. F18 1G8 is a conformation-sensitive TSP1 antibody that binds weakly to soluble TSP1 in the presence of divalent cations. However, binding of the antibody to melanoma cells was strongly stimulated by adding exogenous TSP1 in the presence of calcium, suggesting that TSP1 undergoes a conformational change following its binding to the cell surface. This conformation was not induced by known cell surface TSP1 receptors, whereas binding of F18 was stimulated when TSP1 bound to fibronectin but not to heparin or fibrinogen. Conversely, binding of F18 to TSP1 enhanced TSP1 binding to fibronectin. Exogenous fibronectin also stimulated TSP1-dependent binding of F18 to melanoma cells. Binding of the fibronectin-TSP1 complex to melanoma cells was mediated by alpha4beta1 and alpha5beta1 integrins. Furthermore, binding to F18 or fibronectin strongly enhanced the adhesive activity of immobilized TSP1 for some cell types. This enhancement of adhesion was mediated by alpha3beta1 integrin and required that the alpha3beta1 integrin be in an active state. Fibronectin also enhanced TSP1 binding to purified alpha3beta1 integrin. Therefore, both fibronectin and the F18 antibody induce conformational changes in TSP1 that enhance the ability of TSP1 to be recognized by alpha3beta1 integrin. The conformational and functional regulation of TSP1 activity by fibronectin represents a novel mechanism for extracellular signal transduction.  相似文献   

13.
Endostatin derived from collagen XVIII is a potent endogenous anti-angiogenic factor that induces regression of various tumors of epithelial origin. Endostatin has been shown to inhibit endothelial cell functions, however, its effect remains controversial. We first attempted here to apply the inhibitory effect of recombinant human endostatin on chondrosarcomas, which originate from the mesenchyme, in nude mice. Endostatin induced reduction of chondrosarcoma growth and tumor angiogenesis in vivo. However, endostatin showed no effect on the proliferation and migration of chondrosarcoma cells in vitro. Next, we investigated the interactions between endostatin and endothelial cells in detail. Endostatin inhibited the migration on and attachment to collagen I but did not affect the proliferation of endothelial cells. Although the migration of endothelial cells was stimulated by angiogenic factors such as basic fibroblast growth factor and vascular endothelial growth factor, endostatin showed similar inhibitory effects on it in the presence and absence of the stimulants. Moreover, the inhibitory effect against endothelial cell attachment to collagen I was attenuated or modulated in the presence of neutralizing antibodies of alpha(2), alpha(5)beta(1), and alpha(V)beta(3) integrins but not that of alpha(1) integrin. Our results suggest that endostatin might suppress the alpha(2)beta(1) integrin function of endothelial cells via alpha(5)beta(1) or alpha(V)beta(3) integrin. We propose here that endostatin might be effective for anti-angiogenic therapy for human chondrosarcomas through the suppression of alpha(2)beta(1) integrin functions in endothelial cells.  相似文献   

14.
In endothelial cells (ECs) beta1 integrin function-blocking antibodies inhibit alphavbeta3 integrin-mediated adhesion to a recombinant alpha4-laminin fragment (ralpha4LN fragment). beta1 integrin sequestration of talin is not the mechanism by which beta1 integrin modulates alphavbeta3 integrin ligand binding. Rather, treatment of the ECs with beta1 integrin function-blocking antibodies enhances cAMP-dependent protein kinase (PKA) activity and increases beta3 integrin serine phosphorylation. The PKA inhibitor H-89 abrogates the effect of beta1 integrin function-blocking antibodies on beta3 integrin serine phosphorylation and EC-ralpha4LN fragment binding. beta3 integrin contains a serine residue at position 752. To confirm the importance of this residue in alphavbeta3 integrin-ralpha4LN fragment binding, we mutated it to alanine (beta3S752A) or aspartic acid (beta3S752D). Chinese hamster ovary (CHO) cells expressing wild type or beta3S752A integrin attach robustly to ligand. CHO cells expressing beta3S752D integrin do not. Because the beta3 cytoplasmic tail lacks a PKA consensus site, it is unlikely that PKA acts directly on beta3 integrin. Instead, we have tested an hypothesis that PKA regulates beta3 integrin serine phosphorylation indirectly through phosphorylation of inhibitor-1, which, when phosphorylated, inhibits protein phosphatase 1 (PP1). Treatment of ECs with beta1 integrin function-blocking antibodies significantly increases phosphorylation of inhibitor-1. Furthermore, blocking PP1 activity pharmacologically inhibits alphavbeta3-mediated cell adhesion to the ralpha4LN fragment when both PKA and beta1 integrin function are inhibited. Concomitantly, there is an increase in serine phosphorylation of the beta3 integrin cytoplasmic tail. These results indicate a novel mechanism by which beta1 integrin negatively modulates alphavbeta3 integrin-ligand binding via activation of PKA and inhibition of PP1 activity.  相似文献   

15.
In addition to its recognition by alpha3beta1 and alpha4beta1 integrins, the N-terminal pentraxin module of thrombospondin-1 is a ligand for alpha6beta1 integrin. alpha6beta1 integrin mediates adhesion of human microvascular endothelial and HT-1080 fibrosarcoma cells to immobilized thrombospondin-1 and recombinant N-terminal regions of thrombospondin-1 and thrombospondin-2. alpha6beta1 also mediates chemotaxis of microvascular cells to thrombospondin-1 and thrombospondin-2. Using synthetic peptides, LALERKDHSG was identified as an alpha6beta1-binding sequence in thrombospondin-1. This peptide inhibited alpha6beta1-dependent cell adhesion to thrombospondin-1, thrombospondin-2, and the E8 fragment of murine laminin-1. The Glu residue in this peptide was required for activity, and the corresponding residue (Glu90) in the N-terminal module of thrombospondin-1 was required for its recognition by alpha6beta1, but not by alpha4beta1. alpha6beta1 was also expressed in human umbilical vein endothelial cells; but in these cells, only certain agonists could activate the integrin to recognize thrombospondins. Selective activation of alpha6beta1 integrin in microvascular endothelial cells by the anti-beta1 antibody TS2/16 therefore accounts for their adhesion responses to thrombospondins and explains the distinct functions of alpha4beta1 and alpha6beta1 integrins as thrombospondin receptors in microvascular and large vessel endothelial cells.  相似文献   

16.
Upon plating on basement membrane Matrigel, NIH3T3 cells formed an anastomosing network of cord-like structures, inhibitable by anti-alpha6beta1 integrin antibodies. For NIH3T3 cells transfected with human CD151 protein, the formation of a cord-like network was also inhibitable by anti-CD151 antibodies. Furthermore, CD151 and alpha6beta1 were physically associated within NIH3T3 cells. On removal of the short 8-amino acid C-terminal CD151 tail (by deletion or exchange), exogenous CD151 exerted a dominant negative effect, as it almost completely suppressed alpha6beta1-dependent cell network formation and NIH3T3 cell spreading on laminin-1 (an alpha6beta1 ligand). Importantly, mutant CD151 retained alpha6beta1 association and did not alter alpha6beta1-mediated cell adhesion to Matrigel. In conclusion, the CD151-alpha6beta1 integrin complex acts as a functional unit that markedly influences cellular morphogenesis, with the CD151 tail being of particular importance in determining the "outside-in" functions of alpha6beta1-integrin that follow ligand engagement. Also, antibodies to alpha6beta1 and CD151 inhibited formation of endothelial cell cord-like networks, thus pointing to possible relevance of CD151-alpha6beta1 complexes during angiogenesis.  相似文献   

17.
Thrombospondin-1 (TSP1) can inhibit angiogenic responses directly by interacting with VEGF and indirectly by engaging several endothelial cell TSP1 receptors. We now describe a more potent mechanism by which TSP1 inhibits VEGF receptor-2 (VEGFR2) activation through engaging its receptor CD47. CD47 ligation is known to inhibit downstream signaling targets of VEGFR2, including endothelial nitric-oxide synthase and soluble guanylate cyclase, but direct effects on VEGFR2 have not been examined. Based on FRET and co-immunoprecipitation, CD47 constitutively associated with VEGFR2. Ligation of CD47 by TSP1 abolished resonance energy transfer with VEGFR2 and inhibited phosphorylation of VEGFR2 and its downstream target Akt without inhibiting VEGF binding to VEGFR2. The inhibitory activity of TSP1 in large vessel and microvascular endothelial cells was replicated by a recombinant domain of the protein containing its CD47-binding site and by a CD47-binding peptide derived from this domain but not by the CD36-binding domain of TSP1. Inhibition of VEGFR2 phosphorylation was lost when CD47 expression was suppressed in human endothelial cells and in murine CD47-null cells. These results reveal that anti-angiogenic signaling through CD47 is highly redundant and extends beyond inhibition of nitric oxide signaling to global inhibition of VEGFR2 signaling.  相似文献   

18.
Endostatin, the C-terminal fragment of collagen XVIII, is a potent inhibitor of angiogenesis. Observations that endostatin inhibits endothelial cell migration and induces disassembly of the actin cytoskeleton provide putative cellular mechanisms for this effect. To understand the mechanisms of endostatin-induced intracellular signaling, we analyzed the association of recombinant endostatin with endothelial cell lipid rafts and the roles of its heparin- and integrin-binding properties in this interaction. We observed that a fraction of cell surface-bound endostatin partitioned in low density membrane raft fractions together with caveolin-1. Heparinase treatment of cells prevented the recruitment of endostatin to the lipid rafts but did not affect the association of endostatin with the non-raft fraction, whereas preincubation of endostatin with soluble alpha5beta1 integrin prevented the association of endostatin with the endothelial cell membrane. Endostatin treatment induced recruitment of alpha5beta1 integrin into the raft fraction via a heparan sulfate proteoglycan-dependent mechanism. Subsequently, through alpha5beta1 integrin, heparan sulfate, and lipid raft-mediated interactions, endostatin induced Src-dependent activation of p190RhoGAP with concomitant decrease in RhoA activity and disassembly of actin stress fibers and focal adhesions. These observations provide a cell biological mechanism, which plausibly explains the anti-angiogenic mechanisms of endostatin in vivo.  相似文献   

19.
This paper shows that, in confluent human umbilical vein endothelial cell (EC) monolayers, the integrin heterodimers alpha 2 beta 1 and alpha 5 beta 1, but not other members of the beta 1 subfamily, are located at cell-cell contact borders and not at cellular free edges. Also the alpha v chain, but not its most common partner beta 3, that is widely expressed in EC cell-matrix junctions, is found at cell-cell borders. In EC monolayers, the putative ligands of alpha 2 beta 1 and alpha 5 beta 1 receptors, i.e., laminin, collagen type IV, and fibronectin, are also organized in strands corresponding to cell-cell borders. The location of the above integrin receptors is not an artifact of in vitro culture since it has been noted also in explanted islets of the native umbilical vein endothelium. The integrins alpha 2 beta 1 and alpha 5 beta 1 play a role in the maintenance of endothelial monolayer continuity in vitro. Indeed, specific antibodies to alpha 2 beta 1, alpha 5 beta 1, and the synthetic peptide GRGDSP alter its continuity without any initial cell detachment. Moreover, antibodies to alpha 5 beta 1 increase the permeation of macromolecules across confluent EC monolayers. In contrast beta 3 antibodies were ineffective. It is suggested that the relocation of integrins to cell-cell borders is a feature of cells programmed to form polarized monolayers since integrins have a different distribution in nonpolar confluent dermal fibroblasts. The conclusion is that some members of the integrin superfamily collaborate with other intercellular molecules to form lateral junctions and to control both the monolayer integrity and the permeability properties of the vascular endothelial lining. This also suggest that integrins are adhesion molecules provided with a unique biochemical adaptability to different biological functions.  相似文献   

20.
Angiogenesis depends on proper collagen biosynthesis and cross-linking, and type I collagen is an ideal angiogenic scaffold, although its mechanism is unknown. We examined angiogenesis using an assay wherein confluent monolayers of human umbilical vein endothelial cells were overlain with collagen in a serum-free defined medium. Small spaces formed in the cell layer by 2 h, and cells formed net-like arrays by 6-8 h and capillary-like lumens by 24 h. Blocking of alpha2beta1, but not alpha1 or alpha(v)beta3 integrin function halted morphogenesis. We found that a triple-helical, homotrimeric peptide mimetic of a putative alpha2beta1 binding site: alpha1(I)496-507 GARGERGFP*GER (where single-letter amino acid nomenclature is used, P* = hydroxyproline) inhibited tube formation, whereas a peptide carrying another putative site: alpha1(I)127-138 GLP*GERGRP*GAP* or control peptides did not. A chemical inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), SB202190, blocked tube formation, and p38 MAPK activity was increased in collagen-treated cultures, whereas targeting MAPK kinase (MEK), focal adhesion kinase (FAK), or phosphatidylinositol 3-kinase (PI3K) had little effect. Collagen-treated cells had fewer focal adhesions and 3- to 5-fold less activated FAK. Thus capillary morphogenesis requires endothelial alpha2beta1 integrin engagement of a single type I collagen integrin-binding site, possibly signaling via p38 MAPK and focal adhesion disassembly/FAK inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号