首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The 3-hydroxybenzoate hydroxylase (MHBH) from Comamonas testosteroni KH122-3s is a single-component flavoprotein monooxygenase, a member of the glutathione reductase (GR) family. It catalyzes the conversion of 3-hydroxybenzoate to 3,4-dihydroxybenzoate with concomitant requirements for equimolar amounts of NADPH and molecular oxygen. The production of dihydroxy-benzenoid derivative by hydroxylation is the first step in the aerobic degradation of various phenolic compounds in soil microorganisms. To establish the structural basis for substrate recognition, the crystal structure of MHBH in complex with its substrate was determined at 1.8 A resolution. The enzyme is shown to form a physiologically active homodimer with crystallographic 2-fold symmetry, in which each subunit consists of the first two domains comprising an active site and the C-terminal domain involved in oligomerization. The protein fold of the catalytic domains and the active-site architecture, including the FAD and substrate-binding sites, are similar to those of 4-hydroxybenzoate hydroxylase (PHBH) and phenol hydroxylase (PHHY), which are members of the GR family, providing evidence that the flavoprotein aromatic hydroxylases share similar catalytic actions for hydroxylation of the respective substrates. Structural comparison of MHBH with the homologous enzymes suggested that a large tunnel connecting the substrate-binding pocket to the protein surface serves for substrate transport in this enzyme. The internal space of the large tunnel is distinctly divided into hydrophilic and hydrophobic regions. The characteristically stratified environment in the tunnel interior and the size of the entrance would allow the enzyme to select its substrate by amphiphilic nature and molecular size. In addition, the structure of the Xe-derivative at 2.5 A resolution led to the identification of a putative oxygen-binding site adjacent to the substrate-binding pocket. The hydrophobic nature of the xenon-binding site extends to the solvent through the tunnel, suggesting that the tunnel could be involved in oxygen transport.  相似文献   

3.
Growth of Klebsiella pneumoniae M5a1 on 3-hydroxybenzoate leads to the induction of 3-hydroxybenzoate monooxygenase, 2,5-dihydroxybenzoate dioxygenase, maleylpyruvate isomerase and fumarylpyruvate hydrolase. Growth in the presence of 2,5-dihydroxybenzoate also induces all of these enzymes including the 3-hydroxybenzoate monooxygenase which is not required for 2,5-dihydroxybenzoate catabolism. Mutants defective in 3-hydroxybenzoate monooxygenase fail to grow on 3-hydroxybenzoate but grow normally on 2,5-dihydroxybenzoate. Mutants lacking maleylpyruvate isomerase fail to grow on 3-hydroxybenzoate and 2,5-dihydroxybenzoate. Both kinds of mutants grow normally on 3,4-dihydroxybenzoate. Mutants defective in maleylpyruvate isomerase accumulate maleylpyruvate when exposed to 3-hydroxybenzoate and growth is inhibited. Secondary mutants that have additionally lost 3-hydroxybenzoate monooxygenase are no longer inhibited by the presence of 3-hydroxybenzoate. The 3-hydroxybenzoate monooxygenase gene (mhbM) and the maleylpyruvate isomerase gene (mhbI) are 100% co-transducible by P1 phage.  相似文献   

4.
Abstract We isolated 3-hydroxybenzoate-6-hydroxylase (E.C. 1.14.13.), an inducible enzyme that catalyzed the para -hydroxylation of 3-hydroxybenzoate (3-HBA) to 2,5-dihydroxybenzoate, from Klebsiella pneumoniae . Although the enzyme was found to be mainly induced by its substrate, a coordinated induction of 3-hydroxybenzoate hydroxylase and gentisate dioxygenase was also observed in the presence of the product of the reaction. The purified enzyme was a monomer with a molecular mass of 42 000. It contained FAD as a prosthetic group, utilized NADH or NADPH with similar efficiencies and its activity was inhibited by Cu2+, Fe2+ and Hg2+. Other properties, such as induction mechanism and kinetic parameters were also studied. Moreover, for the first time the amino acid composition of a 3-hydroxybenzoate-6-hydroxylase was determined.  相似文献   

5.
A novel flavoprotein monooxygenase, 4-hydroxybenzoate 1-hydroxylase (decarboxylating), from Candida parapsilosis CBS604 was purified to apparent homogeneity. The enzyme is induced when the yeast is grown on either 4-hydroxybenzoate, 2,4-dihydroxybenzoate, or 3,4-dihydroxybenzoate as the sole carbon source. The purified monooxygenase is a monomer of about 50 kDa containing flavin adenine dinucleotide as weakly bound cofactor. 4-Hydroxybenzoate 1-hydroxylase from C. parapsilosis catalyzes the oxidative decarboxylation of a wide range of 4-hydroxybenzoate derivatives with the stoichiometric consumption of NAD(P)H and oxygen. Optimal catalysis is reached at pH 8, with NADH being the preferred electron donor. By using (18)O2, it was confirmed that the oxygen atom inserted into the product 1,4-dihydroxybenzene is derived from molecular oxygen. 19F nuclear magnetic resonance spectroscopy revealed that the enzyme catalyzes the conversion of fluorinated 4-hydroxybenzoates to the corresponding hydroquinones. The activity of the enzyme is strongly inhibited by 3,5-dichloro-4-hydroxybenzoate, 4-hydroxy-3,5-dinitrobenzoate, and 4-hydroxyisophthalate, which are competitors with the aromatic substrate. The same type of inhibition is exhibited by chloride ions. Molecular orbital calculations show that upon deprotonation of the 4-hydroxy group, nucleophilic reactivity is located in all substrates at the C-1 position. This, and the fact that the enzyme is highly active with tetrafluoro-4-hydroxybenzoate and 4-hydroxy-3-nitrobenzoate, suggests that the phenolate forms of the substrates play an important role in catalysis. Based on the substrate specificity, a mechanism is proposed for the flavin-mediated oxidative decarboxylation of 4-hydroxybenzoate.  相似文献   

6.
Abstract This paper is the first to describe the transformation of 3-hydroxybenzoate (3-HBA) by Pseudomonas putida BS893 by a new pathway via 2,3-dihydroxybenzoate (2,3-DBA) and catechol. We have compared the intermediates and appropriate enzyme activities in P. putida BS893 (pBS241) and in a cured derivative BS662 (Bph) thereof, for the ascertainment of plasmid or chromosomal genetic control over 3-HBA-catabolism. The results presented show that catabolism of 3-HBA in P. putida BS893 (pBS241) is controlled by chromosomal genes.  相似文献   

7.
Z He  J Wiegel 《Journal of bacteriology》1996,178(12):3539-3543
A 3,4-dihydroxybenzoate decarboxylase (EC 4.1.1.63) from Clostridium hydroxybenzoicum JW/Z-1T was purified and partially characterized. The estimated molecular mass of the enzyme was 270 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a single band of 57 kDa, suggesting that the enzyme consists of five identical subunits. The temperature and pH optima were 50 degrees C and pH 7.0, respectively. The Arrhenius energy for decarboxylation of 3,4-dihydroxybenzoate was 32.5 kJ . mol(-1) for the temperature range from 22 to 50 degrees C. The Km and kcat for 3,4-dihydroxybenzoate were 0.6 mM and 5.4 x 10(3) min(-1), respectively, at pH 7.0 and 25 degrees C. The enzyme optimally catalyzed the reverse reaction, that is, the carboxylation of catechol to 3,4-dihydroxybenzoate, at pH 7.0. The enzyme did not decarboxylate 2-hydroxybenzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, 2,3-dihydroxybenzoate, 2,4-dihydroxybenzoate, 2,5-dihydroxybenzoate, 2,3,4-trihydroxybenzoate, 3,4,5-trihydroxybenzoate, 3-F-4-hydroxybenzoate, or vanillate. The decarboxylase activity was inhibited by 25 and 20%, respectively, by 2,3,4- and 3,4,5-trihydroxybenzoate. Thiamine PPi and pyridoxal 5'-phosphate did not stimulate and hydroxylamine and sodium borohydride did not inhibit the enzyme activity, indicating that the 3,4-dihydroxybenzoate decarboxylase is not a thiamine PPi-, pyridoxal 5'-phosphate-, or pyruvoyl-dependent enzyme.  相似文献   

8.
Gram-positive bacteria of the genus Rhodococcus catabolize p-hydroxybenzoate (PHB) through the initial formation of 3,4-dihydroxybenzoate. High levels of p-hydroxybenzoate hydroxylase (PHBH) activity are induced in six different Rhodococcus species when these strains are grown on PHB as sole carbon source. The PHBH enzymes were purified to apparent homogeneity and appeared to be homodimers of about 95 kD with each subunit containing a relatively weakly bound FAD. In contrast to their counterparts from gram-negative microorganisms, the Rhodococcus PHBH enzymes prefer NADH to NADPH as external electron donor. All purified enzymes were inhibited by Cl and for five of six enzymes more pronounced substrate inhibition was observed in the presence of chloride ions.  相似文献   

9.
Resonance Raman spectra were obtained for complexes of protocatechuate-3,4-dioxygenase with substrate and hydroxybenzoate inhibitors. The data establish metal coordination by these bound species and demonstrate further that tyrosine ligation, present in the resting enzyme, is not altered in the complexes. For the inhibitors, 3-chloro-4-hydroxybenzoate and 3-fluoro-4-hydroxybenzoate, the data are interpreted as indicating iron ligation by the phenolate functionality. For the substrate, 3,4-dihydroxyphenylproprionate, chelation via the o-dihydroxy grouping is proposed. In all three complexes tyrosine ligands present in the resting enzyme are not displaced. The inhibitor scattering intensity was utilized as an internal standard to estimate that two tyrosines are coordinated to the iron at the active site.  相似文献   

10.
Catechol-O-methyltransferase is inactivated rapidly by incubation with N-iodoacetyl-3,5-dimethoxy-4-hydroxyphenylethylamine; not by the N-acetyl analogue. Iodoacetate or iodoacetamide produce slight inactivation. Inactivation is first order with respect to enzyme activity. A kinetic analysis suggests the formation of a dissociable enzyme-inhibitor complex prior to inactivation. Substrate, 3,4-dihydroxybenzoate, protects the enzyme from alkylation and loss of activity.  相似文献   

11.
We found the occurrence of 4-hydroxybenzoate decarboxylase in Enterobacter cloacae P240, isolated from soils under anaerobic conditions, and purified the enzyme to homogeneity. The purified enzyme was a homohexamer of identical 60 kDa subunits. The purified decarboxylase catalyzed the nonoxidative decarboxylation of 4-hydroxybenzoate without requiring any cofactors. Its K m value for 4-hydroxybenzoate was 596 μM. The enzyme also catalyzed decarboxylation of 3,4-dihydroxybenzoate, for which the K m value was 6.80 mM. In the presence of 3 M KHCO3 and 20 mM phenol, the decarboxylase catalyzed the reverse carboxylation reaction of phenol to form 4-hydroxybenzoate with a molar conversion yield of 19%. The K m value for phenol was calculated to be 14.8 mM. The gene encoding the 4-hydroxybenzoate decarboxylase was isolated from E. cloacae P240. Nucleotide sequencing of recombinant plasmids revealed that the 4-hydroxybenzoate decarboxylase gene codes for a 475-amino-acid protein. The amino acid sequence of the enzyme is similar to those of 4-hydroxybenzoate decarboxylase of Clostridium hydroxybenzoicum (53% identity), VdcC protein (vanillate decarboxylase) of Streptomyces sp. strain D7 (72%) and 3-octaprenyl-4-hydroxybenzoate decarboxylase of Escherichia coli (28%). The hypothetical proteins, showing 96–97% identities to the primary structure of E. cloacae P240 4-hydroxybenzoate decarboxylase, were found in several bacterial strains.  相似文献   

12.
The 4-amino-3-hydroxybenzoate-assimilating Bordetella sp. strain 10d produces a deaminase that catalyzes the deamination of 2-amino-5-carboxymuconic 6-semialdehyde. A gene encoding the deaminase, ahdB , was cloned and expressed in Escherichia coli; ahdB is located downstream from the previously reported genes encoding 4-amino-3-hydroxybenzoate 2,3-dioxygenase ( ahdA ) and a LysR-type regulator. The deduced amino acid sequence of ahdB shows 30–33% identity to those of previously reported 2-aminomuconate deaminases. We identified a region (RAGDFLXVSG) conserved in AhdB and three other deaminases. The recombinant enzyme AhdB was purified to homogeneity. After a coupled enzyme assay with purified AhdA, AhdB, and the substrate 4-amino-3-hydroxybenzoate, the final product, formed by the action of AhdA, AhdB, and by nonenzymatic decarboxylation, was identified by HPLC, MS, and 1H-nuclear magnetic resonance analyses as 2-hydroxymuconic 6-semialdehyde.  相似文献   

13.
14.
The ability of strain Rhodococcus opacus 1CP to utilize 3-hydroxybenzoate (3-HBA) and gentisate in concentrations up to 600 and 700 mg/L, respectively, as sole carbon and energy sources in liquid mineral media was demonstrated. Using high-performance liquid chromatography (HPLC) and thin-layer chromatography, 2,5-dihydroxybenzoate (gentisate) was identified as the key intermediate of 3-hydroxybenzoate transformation. In the cell-free extracts of the strain grown on 3-HBA or gentisate, the activities of 3-hydroxybenzoate 6-hydroxylase, gentisate 1,2-dioxygenase, and maleylpyruvate isomerase were detected. During growth on 3-HBA, low activity of catechol 1,2-dioxygenase was detected. Based on the data obtained, the pathway of 3-HBA metabolism by strain R. opacus 1CP was proposed.  相似文献   

15.
We found a bacterium, Pandoraea sp. 12B-2, of which whole cells catalyzed not only the decarboxylation of 2,6-dihydroxybenzoate but also the regioselective carboxylation of 1,3-dihydroxybenzene to 2,6-dihydroxybenzoate. The whole cells of Pandoraea sp. 12B-2 also catalyzed the regioselective carboxylation of phenol and 1,2-dihydroxybenzene to 4-hydroxybenzoate and 2,3-dihydroxybenzoate, respectively. The molar conversion ratio of the carboxylation reaction depended on the concentration of KHCO3 in the reaction mixture. Only 5 or 48 % of 1,3-dihydroxybenzene added was converted into 2,6-dihydroxybenzoate in the presence of 0.1 M or 3 M KHCO3, respectively. The addition of acetone to the reaction mixture increased the initial rate of the carboxylation reaction, but the final molar conversion yield reached almost the same value. When the efficient production of 2,6-dihydroxybenzoate was optimized using the whole cells of Pandoraea sp. 12B-2, the productivity of 2,6-dihydroxybenzoate topped out at 1.43 M, which was the highest value so far reported. No formation of any other products was observed after the carboxylation reaction.  相似文献   

16.
The pathways used by three bacterial strains of the genus Bacillus to degrade 4-hydroxybenzoate are delineated. When B. brevis strain PHB-2 is grown on 4-hydroxybenzoate, enzymes of the protocatechuate branch of the beta-ketoadipate pathway are induced. In contrast, B. circulans strain 3 contains high levels of the enzymes of the protocatechuate 2,3-dioxygenase pathway after growth on 4-hydroxybenzoate. B. laterosporus strain PHB-7a degrades 4-hydroxybenzoate by a novel reaction sequence. After growth on 4-hydroxybenzoate, strain PHB-7a contains high levels of gentisate oxygenase (EC 1.13.11.4) and maleylpyruvate hydrolase. Whole cells of strain PHB-7a (grown on 4-hydroxylbenzoate) accumulate 2,5-dihydroxybenzoate (gentisate) from 4-hydroxybenzoate when incubated in the presence of 1mM alpha,alpha'-dipyridyl. Thus, strain PHB-7a appears to convert 4-hydroxybenzoate to gentisate, which is further degraded by the glutathione-independent gentisic acid pathway. These pathway delineations provide evidence that Bacillus species are derived from a diverse evolutionary background.  相似文献   

17.
Siderophores are small-molecule iron chelators that many bacteria synthesize and secrete in order to survive in iron-depleted environments. Biosynthesis of enterobactin, the Escherichia coli catecholate siderophore, requires adenylation of 2,3-dihydroxybenzoic acid (2,3-DHB) by the cytoplasmic enzyme EntE. The DHB-AMP product is then transferred to the active site of holo-EntB subsequent to formation of an EntE-EntB complex. Here we investigate the binding of 2,3-DHB to EntE and how DHB binding affects EntE-EntB interaction. We overexpressed and purified recombinant forms of EntE and EntB with N-terminal hexahistidine tags (H6-EntE and H6-EntB). Isothermal titration calorimetry showed that 2,3-DHB binds to H6-EntE with a 1:1 stoichiometry and a Kd of 7.4 μM. Fluorescence spectra revealed enhanced 2,3-DHB emission at 440 nm (λex = 280 nm) when bound to H6-EntE due to fluorescence resonance energy transfer (FRET) between EntE intrinsic fluorophore donors and bound 2,3-DHB acceptor. A FRET signal was not observed when H6-EntE was mixed with either 2,5-dihydroxybenzoic acid or 3,5-dihydroxybenzoic acid. The H6-EntE-2,3-DHB FRET signal was quenched by H6-EntB in a concentration-dependent manner. From these data, we were able to determine the EC50 of EntE-EntB interaction to be approximately 1.5 μM. We also found by fluorescence and CD measurements that H6-EntB can bind 2,3-DHB, resulting in conformational changes in the protein. Additional alterations in H6-EntB near-UV and far-UV CD spectra were observed upon mixture with H6-EntE and 2,3-DHB, suggesting that further conformational rearrangements occur in EntB upon interaction with substrate-loaded EntE. We also found that H6-EntB as a bait protein pulled down a higher concentration of chromosomally expressed EntE in the presence of exogenous 2,3-DHB. Taken together, our results show that binding of 2,3-DHB to EntE and EntB primes these proteins for efficient complexation, thus facilitating direct channeling of the siderophore precursor 2,3-DHB-AMP.  相似文献   

18.
Fnq26 from Streptomyces cinnamonensis DSM 1042 is a new member of the recently identified CloQ/Orf2 class of prenyltransferases. The enzyme was overexpressed in E. coli and purified to apparent homogeneity, resulting in a soluble, monomeric protein of 33.2 kDa. The catalytic activity of Fnq26 is independent of the presence of Mg(2+) or other divalent metal ions. With flaviolin (2,5,7-trihydroxy-1,4-naphthoquinone) as substrate, Fnq26 catalyzes the formation of a carbon-carbon-bond between C-3 (rather than C-1) of geranyl diphosphate and C-3 of flaviolin, i.e. an unusual "reverse" prenylation. With 1,3-dihydroxynaphthalene and 4-hydroxybenzoate as substrates Fnq26 catalyzes O-prenylations.  相似文献   

19.
Evidence for a new pathway in the bacterial degradation of 4-fluorobenzoate   总被引:3,自引:0,他引:3  
Six bacterial strains able to use 4-fluorobenzoic acid as their sole source of carbon and energy were isolated by selective enrichment from various water and soil samples from the Stuttgart area. According to their responses in biochemical and morphological tests, the organisms were assigned to the genera Alcaligenes, Pseudomonas, and Aureobacterium. To elucidate the degradation pathway of 4-fluorobenzoate, metabolic intermediates were identified. Five gram-negative isolates degraded this substrate via 4-fluorocatechol, as described in previous studies. In growth experiments, these strains excreted 50 to 90% of the fluoride from fluorobenzoate. Alcaligenes sp. strains RHO21 and RHO22 used all three isomers of monofluorobenzoate. Alcaligenes sp. strain RHO22 also grew on 4-chlorobenzoate. Aureobacterium sp. strain RHO25 transiently excreted 4-hydroxybenzoate into the culture medium during growth on 4-fluorobenzoate, and stoichiometric amounts of fluoride were released. In cell extracts from this strain, the enzymes for the conversion of 4-fluorobenzoate, 4-hydroxybenzoate, and 3,4-dihydroxybenzoate could be detected. All these enzymes were inducible by 4-fluorobenzoate. These data suggest a new pathway for the degradation of 4-fluorobenzoate by Aureobacterium sp. strain RHO25 via 4-hydroxybenzoate and 3,4-dihydroxybenzoate.  相似文献   

20.
Six bacterial strains able to use 4-fluorobenzoic acid as their sole source of carbon and energy were isolated by selective enrichment from various water and soil samples from the Stuttgart area. According to their responses in biochemical and morphological tests, the organisms were assigned to the genera Alcaligenes, Pseudomonas, and Aureobacterium. To elucidate the degradation pathway of 4-fluorobenzoate, metabolic intermediates were identified. Five gram-negative isolates degraded this substrate via 4-fluorocatechol, as described in previous studies. In growth experiments, these strains excreted 50 to 90% of the fluoride from fluorobenzoate. Alcaligenes sp. strains RHO21 and RHO22 used all three isomers of monofluorobenzoate. Alcaligenes sp. strain RHO22 also grew on 4-chlorobenzoate. Aureobacterium sp. strain RHO25 transiently excreted 4-hydroxybenzoate into the culture medium during growth on 4-fluorobenzoate, and stoichiometric amounts of fluoride were released. In cell extracts from this strain, the enzymes for the conversion of 4-fluorobenzoate, 4-hydroxybenzoate, and 3,4-dihydroxybenzoate could be detected. All these enzymes were inducible by 4-fluorobenzoate. These data suggest a new pathway for the degradation of 4-fluorobenzoate by Aureobacterium sp. strain RHO25 via 4-hydroxybenzoate and 3,4-dihydroxybenzoate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号