首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Helisoma neurons B5, regenerating axonal arbors following crush-axotomyin vivo, displayed a transient (<24 h) reduction in excitability followed by a sustained period of hyperexcitability (>13 d). Neurons isolated into outgrowth-permissive cell culture conditions expressed a similar pattern of hypo- and hyperexcitability; however, excitability of neurons B5 in culture was elevated for only 5 d and then declined to a lower, stable level. The expression of these alterations in excitability was neurite outgrowth-independent and required the presence of ganglia-derived conditioning factors in the culture medium. Excitability of neurons in medium lacking conditioning factors fell by day 3 to minimal levels. Conditioned medium was effective in rescuing excitability of neurons deprived of conditioning factors during their first 3 days of cell culture, but not following longer periods of deprivation. Exposure to the protein synthesis inhibitor, anisomycin, blocked the ability of conditioning factors to rescue B5 neuronal excitability. Together, results from cell culture suggest that mechanisms underlying neuronal excitability following nerve injury are independent of process outgrowth state, but require exposure to conditioning factors derived from injured neural tissue within several days of axonal insult. Although changes in B5 neurite outgrowth and neuronal excitability were expressed simultaneously following axonal injury, their independence suggests the existence of an underlying regenerative state that regulates both cellular modifications.  相似文献   

2.
Nr-CAM is a neuronal cell adhesion molecule (CAM) belonging to the immunoglobulin superfamily that has been implicated as a ligand for another CAM, axonin-1, in guidance of commissural axons across the floor plate in the spinal cord. Nr-CAM also serves as a neuronal receptor for several other cell surface molecules, but its role as a ligand in neurite outgrowth is poorly understood. We studied this problem using a chimeric Fc-fusion protein of the extracellular region of Nr-CAM (Nr-Fc) and investigated potential neuronal receptors in the developing peripheral nervous system. A recombinant Nr-CAM-Fc fusion protein, containing all six Ig domains and the first two fibronectin type III repeats of the extracellular region of Nr-CAM, retains cellular and molecular binding activities of the native protein. Injection of Nr-Fc into the central canal of the developing chick spinal cord in ovo resulted in guidance errors for commissural axons in the vicinity of the floor plate. This effect is similar to that resulting from treatment with antibodies against axonin-1, confirming that axonin-1/Nr-CAM interactions are important for guidance of commissural axons through a spatially and temporally restricted Nr-CAM positive domain in the ventral spinal cord. When tested as a substrate, Nr-Fc induced robust neurite outgrowth from dorsal root ganglion and sympathetic ganglion neurons, but it was not effective for tectal and forebrain neurons. The peripheral but not the central neurons expressed high levels of axonin-1 both in vitro and in vivo. Moreover, antibodies against axonin-1 inhibited Nr-Fc-induced neurite outgrowth, indicating that axonin-1 is a neuronal receptor for Nr-CAM on these peripheral ganglion neurons. The results demonstrate a role for Nr-CAM as a ligand in axon growth by a mechanism involving axonin-1 as a neuronal receptor and suggest that dynamic changes in Nr-CAM expression can modulate axonal growth and guidance during development.  相似文献   

3.
Myelin-associated inhibitors expressed following injury to the adult central nervous system (CNS) induce growth cone collapse and retraction of the axonal cytoskeleton. Myelin-associated glycoprotein (MAG) is a bi-functional molecule that promotes neuritogenesis in some immature neurons during development then becomes inhibitory to neurite outgrowth as neurons mature. Progress is being made towards the elucidation of the downstream events that regulate myelin inhibition of regeneration in neuronal populations. However it is not known how adult-derived neural stem cells or progenitors respond to myelin during neuronal differentiation and neuritogenesis. Here we examine the effect of MAG on neurons derived from an adult rat hippocampal progenitor cell line (AHPCs). We show that, unlike their developmental counterparts, AHPC-derived neurons are susceptible to MAG inhibition of neuritogenesis during differentiation and display a 57% reduction in neurite outgrowth when compared with controls. We demonstrate that this effect can be overcome (by up to 69%) by activation of the neurotrophin, cyclic AMP and protein kinase A pathways or by Rho-kinase suppression. We also demonstrate that combination of these factors enhanced neurite outgrowth from differentiating neurons in the presence of MAG. This work provides important information for the successful generation of new neurons from adult neural stem cell populations within compromised adult circuitry and is thus directly relevant to endogenous repair and regeneration of the adult CNS.  相似文献   

4.
The formation of axonal connections in the nervous system involves cell-specific decisions of the growth cone. In this article we examine the contribution of early fate decisions to axonal pathfinding. Evidence is accumulating that different neuronal cell types in the cerebral cortex are specified during their final mitosis. It would seem that cortical projection neurons are pre-specified to choose particular pathways, since the newly generated neurons send out their axons in the correct direction from the onset of outgrowth. Pathfinding decisions that are made much later during development, such as the recognition of specific target-derived chemoattractants and the retraction of inappropriate axon collaterals, also seem to be at least partially pre-specified at much earlier developmental stages. Hence, the early determination of a neuron's phenotype includes the specification of axonal growth occuring over a protracted phase of development. Understanding more about the regulative events targeted to the growth cone should help us to unravel the decisions made by this specialized neuronal organelle.  相似文献   

5.
We describe culture systems for neurons of an adrenergic autonomic ganglion which: (a) permit cultivation of neurons without supporting cells, (b) permit separate harvest of somal and axonal material, and (c) permit direct access to the neuronal surface. The antimetabolites used to suppress supporting cell growth did not have demonstrable effects on neuronal polypeptide synthesis. Rapid neurite outgrowth, which characterized these cultures, was prevented by colchicine or cycloheximide and resumed promptly after their withdrawal. Axons separated from cell bodies showed no incorporation of label from leucine or fucose, but did exhibit incorporation of glucosamine. The major polypeptides present in this neuron, as demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, are described. No major differences in polypeptide content were observed when soma and axons were compared. Likewise, there were no differences detected in polypeptides synthesized by neurons in suspension or neurons actively extending processes. Analysis of the polypeptides within the neurites after labeling with amino acids indicated transport at a number of different rates; certain of these polypeptides corresponded in size and transport characteristics to polypeptides observed in the rabbit optic nerve after labeling of retinal ganglion cells. Tubulin and actin have been definitively identified in this cell type (18); we found proteins similar in size and proportionate amounts to be among the rapidly transported soluble polypeptides. The prominent polypeptides observed after several methods of surface labeling are described.  相似文献   

6.
Nogo-A, a member of the reticulon family, is present in neurons and oligodendrocytes. Nogo-A in central nervous system (CNS) myelin prevents axonal regeneration through interaction with Nogo receptor 1, but the function of Nogo-A in neurons is less known. We found that after axonal injury, Nogo-A is increased in dorsal root ganglion (DRG) neurons unable to regenerate following a dorsal root injury or a sciatic nerve ligation-cut injury and that exposure in vitro to CNS myelin dramatically enhanced neuronal Nogo-A mRNA and protein through activation of RhoA while inhibiting neurite growth. Knocking down neuronal Nogo-A by small interfering RNA results in a marked increase of neurite outgrowth. We constructed a nonreplicating herpes simplex virus vector (QHNgSR) to express a truncated soluble fragment of Nogo receptor 1 (NgSR). NgSR released from QHNgSR prevented myelin inhibition of neurite extension by hippocampal and DRG neurons in vitro. NgSR prevents RhoA activation by myelin and decreases neuronal Nogo-A. Subcutaneous inoculation of QHNgSR to transduce DRG neurons resulted in improved regeneration of myelinated fibers in both the dorsal root and the spinal dorsal root entry zone, with concomitant improvement in sensory behavior. The results indicate that neuronal Nogo-A is an important intermediate in neurite growth dynamics and its expression is regulated by signals related to axonal injury and regeneration, that CNS myelin appears to activate signaling events that mimic axonal injury, and that NgSR released from QHNgSR may be used to improve recovery after injury.  相似文献   

7.
The extreme polarized morphology of neurons poses a challenging problem for intracellular trafficking pathways. The distant synaptic terminals must communicate via axonal transport with the cell soma for neuronal survival, function, and repair. Multiple classes of organelles transported along axons may establish and maintain the polarized morphology of neurons, as well as control signaling and neuronal responses to extracellular cues such as neurotrophic or stress factors. We reported previously that the motor-binding protein Sunday Driver (syd), also known as JIP3 or JSAP1, links vesicular axonal transport to injury signaling. To better understand syd function in axonal transport and in the response of neurons to injury, we developed a purification strategy based on anti-syd antibodies conjugated to magnetic beads to identify syd-associated axonal vesicles. Electron microscopy analyses revealed two classes of syd-associated vesicles of distinct morphology. To identify the molecular anatomy of syd vesicles, we determined their protein composition by mass spectrometry. Gene Ontology analyses of each vesicle protein content revealed their unique identity and indicated that one class of syd vesicles belongs to the endocytic pathway, whereas another may belong to an anterogradely transported vesicle pool. To validate these findings, we examined the transport and localization of components of syd vesicles within axons of mouse sciatic nerve. Together, our results lead us to propose that endocytic syd vesicles function in part to carry injury signals back to the cell body, whereas anterograde syd vesicles may play a role in axonal outgrowth and guidance.  相似文献   

8.
Abstract: The cell adhesion molecule L1 is a multifunctional protein in the nervous system characterizing cell adhesion, migration, and neurite outgrowth. In addition to full-length L1, we found an alternatively spliced variant lacking both the KGHHV sequence in the extracellular part and the RSLE sequence in the cytoplasmic part of L1. This L1 variant was expressed exclusively in nonneuronal cells such as Schwann cells, astrocytes, and oligodendrocytes, in contrast to the expression of the full-length L1 in neurons and cells of neuronal origin. To investigate the functions of the L1 variant, we established cell lines transfected with a cytoplasmic short L1 (L1cs) cDNA that lacks only the 12-bp segment encoding for the RSLE sequence. The promoting activities of homophilic cell adhesion, neurite outgrowth, and neuronal cell migration of L1cs-transfected cells (L4-2) were similar to those of full-length L1-transfected cells (L3-1), but the cell migratory activity of L4-2 itself was clearly lower than that of L3-1. In conclusion, the short form of L1 is a nonneuronal type, in contrast to the neuronal type of the full-length L1. Deletion of the four amino acids RSLE in the cytoplasmic region of L1 markedly reduced cell migratory activity, suggesting an importance of the RSLE sequence for the signaling events of neuronal migration mediated by L1.  相似文献   

9.
A large number of glycoproteins in the central nervous system are attached to the cell membrane via covalent linkage to glycosylphosphatidylinositol (GPI). Many of them, including the drosophila fasciclin 1 as well as the mammalian glycoproteins Thy-1, TAG1, N-CAM and F11,F3, contactin are members of the immunoglobulin gene superfamily. These and other GPI-linked molecules have been implicated in key developmental events including selective axonal fasciculation and highly specific growth to and innervation of target tissues. In model systems fasciclin 1, TAG1 and N-CAM have been shown to be capable of mediating cell-cell adhesion via a homophilic binding mechanism confirming their operational classification as cell adhesion molecules (CAMs). However, of these molecules, only N-CAM has been shown to mediate a complex response (neurite outgrowth) via a homophilic binding mechanism. Whether the other molecules in this family mediate biological responses by binding to themselves and/or other molecules remains to be determined. Studies on N-CAM provide an ideal model system for understanding the function of GPI anchors since alternative splicing of the NCAM gene generates both lipid-linked and transmembrane N-CAM isoforms. Recent studies have shown that neurons can recognise and respond (by increased neurite outgrowth) to both lipid-linked and transmembrane N-CAM isoforms expressed on the surface of non-neuronal cells following transfection with appropriate cDNAs. The major determinant of neuronal responsiveness was the level of N-CAM expression rather than the isoform type. Neurite outgrowth in response to transfected N-CAM is mediated by transmembrane N-CAM isoforms expressed by neurons and this involves the activation of classical second messenger pathways in the neurons. One possibility is that GPI anchors are utilised when a cell has simply to provide recognition or positional information to a second cell whereas transmembrane molecules might be required for cells that actively respond to such information. The hypothesis is compatible with all the known information on N-CAM expression and function and may be extended to other adhesive events.  相似文献   

10.
In neurons, proper distribution of mitochondria in axons and at synapses is critical for neurotransmission, synaptic plasticity, and axonal outgrowth. However, mechanisms underlying mitochondrial trafficking throughout the long neuronal processes have remained elusive. Here, we report that syntabulin plays a critical role in mitochondrial trafficking in neurons. Syntabulin is a peripheral membrane-associated protein that targets to mitochondria through its carboxyl-terminal tail. Using real-time imaging in living cultured neurons, we demonstrate that a significant fraction of syntabulin colocalizes and co-migrates with mitochondria along neuronal processes. Knockdown of syntabulin expression with targeted small interfering RNA or interference with the syntabulin-kinesin-1 heavy chain interaction reduces mitochondrial density within axonal processes by impairing anterograde movement of mitochondria. These findings collectively suggest that syntabulin acts as a linker molecule that is capable of attaching mitochondrial organelles to the microtubule-based motor kinesin-1, and in turn, contributes to anterograde trafficking of mitochondria to neuronal processes.  相似文献   

11.
To understand how our brains function, it is necessary to know how neurons position themselves and target their axons and dendrites to their correct locations. Several evolutionarily conserved axon guidance molecules have been shown to help navigate axons to their correct target site. The Caenorhabditis elegans Eph receptor tyrosine kinase (RTK), VAB-1, has roles in early neuroblast and epidermal cell movements, but its roles in axon guidance are not well understood. Here, we report that mutations that disrupt the VAB-1 Eph receptor tyrosine kinase cause incompletely penetrant defects in axonal targeting and neuronal cell body positioning. The predominant axonal defect in vab-1 mutant animals was an overextension axon phenotype. Interestingly, constitutively active VAB-1 tyrosine kinase signaling caused a lack of axon outgrowth or an early termination phenotype, opposite to the loss-of-function phenotype. The combination of loss-of-function and gain-of-function analyses suggests that the VAB-1 Eph RTK is required for targeting or limiting axons and neuronal cells to specific regions, perhaps by transducing a repellent or stop cue.  相似文献   

12.
P G McGuire  N W Seeds 《Neuron》1990,4(4):633-642
The ability of differentiating sensory neurons to remodel a fibronectin substratum was examined. During the early stages of neurite outgrowth, fibronectin was cleared from areas beneath the neuronal soma and processes. The removal of fibronectin occurred in the presence and absence of plasminogen and was associated with the release of fibronectin fragments into the culture medium. The degradation of fibronectin was dependent upon neuronal contact with the substratum. Extraction of cells with the nonionic detergent Triton X-114 identified plasminogen activator and plasmin associated with the cell surface. These findings suggest that the plasminogen activator/plasmin system may play an important role in the interaction of differentiating sensory neurons with the extracellular matrix during axonal outgrowth.  相似文献   

13.
14.
The small GTPase RhoG plays a central role in actin remodelling during diverse biological processes such as neurite outgrowth, cell migration, phagocytosis of apoptotic cells, and the invasion of pathogenic bacteria. Although it is known that RhoG stimulates neurite outgrowth in the rat pheochromocytoma PC12 cell line, neither the physiological function nor the regulation of this GTPase in neuronal differentiation is clear. Here, we identify RhoG as an inhibitor of neuronal process complexity, which is regulated by the microRNA miR-124. We find that RhoG inhibits dendritic branching in hippocampal neurons in vitro and in vivo. RhoG also inhibits axonal branching, acting via an ELMO/Dock180/Rac1 signalling pathway. However, RhoG inhibits dendritic branching dependent on the small GTPase Cdc42. Finally, we show that the expression of RhoG in neurons is suppressed by the CNS-specific microRNA miR-124 and connect the regulation of RhoG expression by miR-124 to the stimulation of neuronal process complexity. Thus, RhoG emerges as a cellular conductor of Rac1 and Cdc42 activity, in turn regulated by miR-124 to control axonal and dendritic branching.  相似文献   

15.
Neurite outgrowth (e.g. axonal or dendrite outgrowth) of neurons is necessary for the development and functioning of the central nervous system. It is well accepted that the differentiation of neurons and neurite outgrowth involve alterations in gene expression. Furthermore, mitochondria play a role in different aspects of neurite outgrowth. Here we show that the expression of Ndufb11, a gene encoding the mitochondrial protein NP15.6 is decreased in the course of neuronal differentiation. NP15.6 is homologous to the bovine protein ESSS, a component of the mitochondrial complex 1. The homologous human NDUFB11 gene is localized to Xp11.3-Xp11.23, a region associated with neurogenetic disorders. The down-regulation of NP15.6 correlates with neurite outgrowth of PC12 cells induced by nerve growth factor. Furthermore, we analyzed the expression of Ndufb11 in the embryonic and adult mouse.  相似文献   

16.
Thy-1 is a membrane glycoprotein suggested to stabilize or inhibit growth of neuronal processes. However, its precise function has remained obscure, because its endogenous ligand is unknown. We previously showed that Thy-1 binds directly to α(V)β(3) integrin in trans eliciting responses in astrocytes. Nonetheless, whether α(V)β(3) integrin might also serve as a Thy-1-ligand triggering a neuronal response has not been explored. Thus, utilizing primary neurons and a neuron-derived cell line CAD, Thy-1-mediated effects of α(V)β(3) integrin on growth and retraction of neuronal processes were tested. In astrocyte-neuron co-cultures, endogenous α(V)β(3) integrin restricted neurite outgrowth. Likewise, α(V)β(3)-Fc was sufficient to suppress neurite extension in Thy-1(+), but not in Thy-1(-) CAD cells. In differentiating primary neurons exposed to α(V)β(3)-Fc, fewer and shorter dendrites were detected. This effect was abolished by cleavage of Thy-1 from the neuronal surface using phosphoinositide-specific phospholipase C (PI-PLC). Moreover, α(V)β(3)-Fc also induced retraction of already extended Thy-1(+)-axon-like neurites in differentiated CAD cells as well as of axonal terminals in differentiated primary neurons. Axonal retraction occurred when redistribution and clustering of Thy-1 molecules in the plasma membrane was induced by α(V)β(3) integrin. Binding of α(V)β(3)-Fc was detected in Thy-1 clusters during axon retraction of primary neurons. Moreover, α(V)β(3)-Fc-induced Thy-1 clustering correlated in time and space with redistribution and inactivation of Src kinase. Thus, our data indicates that α(V)β(3) integrin is a ligand for Thy-1 that upon binding not only restricts the growth of neurites, but also induces retraction of already existing processes by inducing Thy-1 clustering. We propose that these events participate in bi-directional astrocyte-neuron communication relevant to axonal repair after neuronal damage.  相似文献   

17.
The hindbrain of the chick embryo contains three classes of motor neurons: somatic, visceral, and branchial motor. During development, somata of neurons in the last two classes undergo a laterally directed migration within the neuroepithelium; somata translocate towards the nerve exit points, through which motor axons are beginning to extend into the periphery. All classes of motor neuron are immunopositive for the SC1/DM-GRASP cell surface glycoprotein. We have examined the relationship between patterns of motor neuron migration, axon outgrowth, and expression of the SC1/DM-GRASP mRNA and protein, using anterograde or retrograde axonal tracing, immunohistochemistry, and in situ hybridization. We find that as motor neurons migrate laterally, SC1/DM-GRASP is down-regulated, both on neuronal somata and axonal surfaces. Within individual motor nuclei, these lateral, more mature neurons are found to possess longer axons than the young, medial cells of the population. Labelling of sensory or motor axons growing into the second branchial arch also shows that motor axons reach the muscle plate first, and that SC1/DM-GRASP is expressed on the muscle at the time growth cones arrive. 1994 John Wiley & Sons, Inc.  相似文献   

18.
19.
Semaphorins (sema) constitute a family of molecules sharing a common extracellular domain (semaphorin domain). This family includes several types of secreted and membrane-associated molecules that are grouped into eight subclasses (subclasses 1-7 and viral semaphorins). Subclass 3 semaphorins are secreted molecules involved in axonal guidance, mainly through repulsive gradients and induction of growth cone collapse. More recently sema 3 molecules have been identified as positive factors in dependence of the type of neurons. Besides their axonal guidance function, some semaphorins have been implicated in apoptosis and survival. We investigated the effect of sema3C on survival and neurite outgrowth of rat cerebellar granule neurons (CGNs) in culture. 3T3 cells were stably transfected with sema3C. Several clonal lines were established and tested for their neuritogenic activity and one, S3C-8, was selected for the bulk of experiments. S3C-8 was co-cultured with CGNs. Sema3C enhanced CGN viability as assessed in co-cultures of CGNs with monolayers of S3C-8 in comparison with co-cultures of CGNs with control mock-transfected 3T3 cells. Moreover sema3C induced neuritogenesis of cultured CGNs, which express neuropilin-1 and -2. S3C-8 cells, overexpressing sema3C, were significantly more neuritogenic for CGN than poly l-lysine (PLL), a positive substrate for CGNs, as assessed by the measurement of the length of neurites and confirmed by Tau expression along the time of culture. CGNs co-cultured with S3C-8, showed up-regulation of the expression of axonal microtubule-associated proteins (MAPs) such as Tau, phosphorylated MAP2C and mode I-phosphorylated MAP1B compared with neurons cultured on control 3T3 cells. We also found increased expression of a specific marker of neuronal cell bodies and dendrites, high molecular weight MAP2 (HMW-MAP2). Interestingly, there was no accompanying up-regulation of a marker enriched within the neuronal somatodendritic domain, mode II-phosphorylated MAP1B. These data support the idea that secreted sema3C favors survival and neuritogenesis of cultured CGNs.  相似文献   

20.
Inhibition of the proteasome by lactacystin, a specific blocker of the catalytic beta-subunits, results in transient neurite outgrowth by neuronal cell lines. Vice versa, as demonstrated in this study, treatment of pheochromocytoma (PC12) cells with nerve growth factor (NGF) or other differentiating agents reduces proteasomal activity. This is accompanied by an increase in mRNA and protein levels of the catalytically active subunits beta1, beta2 and beta5, but not of their inducible counterparts, indicating changes in subunit composition of the proteasome during neuronal differentiation. In contrast to neuronal cell lines, however, pre-treatment of primary neurons with proteasome inhibitors completely prevents axon formation, and lower concentrations of lactacystin (0.5-5 microm) significantly reduce axonal elongation and branching in vitro. Furthermore, established axonal networks degenerate rapidly and long-term survival of peripheral neurons is impaired in the presence of proteasome inhibitors. Axonal pathology is reminiscent of the morphological changes observed in neurodegenerative disorders and supports a crucial role of the constitutive catalytic subunits in axon initiation, maintenance and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号