首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Jean H. Dussault 《CMAJ》1974,111(11):1195-1197
Serum thyrotropin (TSH) and prolactin levels were measured after intravenous administration of 400 μg of synthetic thyrotropin-releasing hormone (TRH) in 13 normal subjects and six hypothyroid patients before and after three days of administration of dexamethasone 2 mg per day. In the normal subjects dexamethasone suppressed baseline serum levels and secretion of TSH after TRH stimulation. On the other hand, it had no effect on the hypothyroid patients. In the control group dexamethasone also suppressed baseline serum levels but not secretion of prolactin after TRH stimulation. Dexamethasone had no effect on prolactin levels in the hypothyroid group. It is concluded that in normal patients short-term administration of dexamethasone has an inhibitory effect on TSH secretion at the pituitary level. As for prolactin, our results could indicate that TRH is a more potent stimulator of prolactin secretion than of TSH secretion, or that TSH and prolactin pituitary thresholds for TRH are different.  相似文献   

2.
The effect of caerulein (100 ng/kg/h X 1 h) on basal as well as on thyrotropin-releasing hormone (TRH)-stimulated prolactin and thyroid-stimulating hormone (TSH) secretion was studied in healthy male volunteers. The peptide did not change the basal levels of prolactin and TSH. However, during the infusion of caerulein, prolactin response to TRH was significantly increased whereas the TSH response was decreased. These data, showing an action of caerulein (a frog peptide which mimics the biological actions of cholecystokinin) on prolactin and TSH release, suggest that cholecystokinin may be involved in the physiological control of human pituitary secretion.  相似文献   

3.
M H Connors 《Life sciences》1977,21(10):1505-1510
The plasma TSH and prolactin responses to thyrotropin releasing hormone (TRH) were measured in 5 children with isolated growth hormone deficiency prior to, during and after the administration of human growth hormone (hGH). TSH and prolactin secretory patterns were not uniformly concordant. TSH responses to TRH infusion were suppressed in 4 subjects after 5 days or 1 month of hGH administration despite normal serum thyroxin concentrations. Prolactin responses were suppressed in all 5 subjects after 5 days of hGH administration. After 8 months of hGH therapy both TSH and prolactin responses returned toward pre-hGH values. Our finding that suppression of the TRH-induced TSH and prolactin secretory responses are reversible during hGH administration supports the concept of altered neuroregulation in this form of hypothalamic disorder.  相似文献   

4.
Unique association of hypothyrotropinemia with euthyroidism was described in 2 children of short stature. Both had a history of intrauterine growth retardation (IUGR), but showed an appropriate growth rate after infancy (5 cm/y). Growth hormone secretion after provocation tests was normal, whereas TSH response to TRH was absent. With a highly sensitive TSH radioimmunoassay (RIA) and a specific RIA for TSH-alpha-subunit, both responded to a high dose of TRH stimulation. Serum thyroid hormones were within the normal range, while prolactin response to TRH was exaggerated. Exogenous thyroxine (T4) supplement in case 1 did not improve his growth rate, indicating absence of hypothyroidism. Case 2 was treated with stanozolol, which accelerated his growth velocity to 8 cm/y. During the treatment, serum T4 gradually decreased to 50% of the initial level, but blunted TSH response to TRH remained unchanged. These results indicate that their thyrotrophs are resistant to TRH stimulation and the pituitary setpoint of TSH release is unusually high. The exact mechanism involved in maintaining euthyroidism despite hypothyrotropinemia remains to be elucidated, but a common history of IUGR appears to play a role in producing this pituitary-thyroid state.  相似文献   

5.
The effects of gonadectomy on the secretion of prolactin, LH, TSH, and thyroxine were investigated. Blood serum hormone concentrations were analysed before and at 20, 120, and 180 min after a single iv TRH injection in each of eight healthy intact and castrated male beagle dogs before (control) and after 4-week treatment with the dopamine-2 receptor agonist cabergoline. Under control conditions the mean prolactin, TSH, and thyroxine concentrations were similar in intact and gonadectomised dogs, and administration of TRH provoked a significant (p < 0.01) increase in concentrations of the three hormones. The overall inhibitory effect of cabergoline treatment on prolactin secretion was more pronounced in the castrated dogs compared with the intact group. Cabergoline significantly suppressed the TRH-induced prolactin increase in each group (p < 0.01). Corresponding TRH-stimulated TSH concentrations were not affected by cabergoline. In the gonadectomised dogs, thyroxine concentrations before and at 120 and 180 min after TRH injection were significantly lower than under control conditions. LH concentrations were always higher (p < 0.01) in gonadectomised dogs compared with the intact dogs, but appeared to be affected neither by TRH nor by cabergoline administration. It can thus be concluded from the results, that gonadectomy does not result in hyperprolactinaemia in male dogs, while LH concentrations are significantly increased due to missing androgen feedback. Thyroid function remains unaffected by gonadectomy. Testicular steroids appear to interact with central dopaminergic and probably other neuroendocrine mechanisms regulating the secretion of prolactin, TSH, and thyroxine. Thus, long-term dopamine-2 receptor agonistic treatment may lead to a hypothyroid condition in castrated male dogs.  相似文献   

6.
The previously reported refractoriness of pituitary response to thyrotropin-releasing hormone (TRH) stimuli was investigated here in an in vitro perfusion system using pituitary tissue from euthyroid and hypothyroid rats. Thyroid-stimulating hormone (TSH) and prolactin (PRL) responses to TRH (28 pmol) were significantly greater in hypothyroid tissue compared with euthyroid. Hypothyroid tissue showed a reduction in response to two consecutive stimuli in both TSH and PRL, however the TSH decline in response was more marked than PRL. Euthyroid tissue showed no significant decline in response to TRH. An increase in the dose of TRH (112 pmol), administered to euthyroid tissue, resulted in increased TSH and PRL response, but no decline in response to sequential stimuli was observed. Three consecutive stimuli by TRH (28 pmol) of hypothyroid tissue resulted in a consistent decline in TSH response. The decline in PRL response only reached statistical significance by the third stimulation. Euthyroid and hypothyroid pituitary tissue was subjected to sequential depolarising stimulation with KCl (50 mumol). Euthyroid tissue showed no decline in response in either TSH or PRL. In hypothyroid tissue only, the decline in TSH response reached statistical significance. This decline in TSH response was significantly smaller than the decline in response observed in hypothyroid tissue stimulated with TRH. Refractoriness of hypothyroid pituitary tissue to repeated TRH stimuli is reported here. Our data suggest that the decline in hormonal response cannot be explained solely on the basis of tissue depletion.  相似文献   

7.
The effects of 40 mg oral and 200 microgram intravenous TRH were studied in patients with active acromegaly. Administration of oral TRH to each of 14 acromegalics resulted in more pronounced TSH response in all patients and more pronounced response of triiodothyronine in most of them (delta max TSh after oral TRh 36.4 +/- 10.0 (SEM) mU/l vs. delta max TSH after i.v. TRH 7.7 +/- 1.5 mU/l, P less than 0.05; delta max T3 after oral TRH 0.88 +/- 0.24 nmol/vs. delta max T3 after i.v. TRH 0.23 +/- 0.06 nmol/l, P less than 0.05). Oral TRH elicited unimpaired TSH response even in those acromegalics where the TSH response to i.v. TRH was absent or blunted. In contrast to TSH stimulation, oral TRH did not elicit positive paradoxical growth hormone response in any of 8 patients with absent stimulation after i.v. TRH. In 7 growth hormone responders to TRH stimulation the oral TRH-induced growth hormone response was insignificantly lower than that after i.v. TRH (delta max GH after oral TRH 65.4 +/- 28.1 microgram/l vs. delta max GH after i.v. TRH 87.7 +/- 25.6 microgram/l, P greater than 0.05). In 7 acromegalics 200 microgram i.v. TRH represented a stronger stimulus for prolactin release than 40 mg oral TRH (delta max PRL after i.v. TRH 19.6 +/- 3.22 microgram/, delta max PRL after oral TRH 11.1 +/- 2.02 microgram/, P less than 0.05). Conclusion: In acromegalics 40 mg oral TRH stimulation is useful in the evaluation of the function of pituitary thyrotrophs because it shows more pronounced effect than 200 microgram TRH intravenously. No advantage of oral TRH stimulation was seen in the assessment of prolactin stimulation and paradoxical growth hormone responses.  相似文献   

8.
9.
A study was carried out in 10 patients with multiple pituitary hormone deficiencies to determine the response of thyroid-stimulating hormone (TSH) and prolactin (PRL) to thyrotropin-releasing hormone (TRH) and their suppressibility by treatment with triiodothyronine (T3) given at a dose of 60 microgram/day for 1 week. In 3 patients the basal tsh values were normal and in 7 patients, 2 of whom had not received regular thyroid replacement therapy, they were elevated. The response of TSH to TRH was normal in 6 patients and exaggerated in 4 (of these, 1 patient had not received previous substitution therapy and 2 had received only irregular treatment). The basal and stimulated levels of TSH were markedly suppressed by the treatment with T3. The basal PRL levels were normal in 7 and slightly elevated in 3 patients. The response of PRL to TRH stimulation was exaggerated in 2, normal in 6 and absent in 2 patients. The basal PRL levels were not suppressible by T3 treatment but in 4 patients this treatment reduced the PRL response to TRH stimulation. From these findings the following conclusions are drawn: (1) T3 suppresses TSH at the pituitary level, and (2) the hyperreactivity of TSH to TRH and the low set point of suppressibility are probably due to a lack of TRH in the type of patients studied.  相似文献   

10.
The pattern of TSH secretion in man in pulsatile in addition to the well known circadian variation. The mechanism triggering TSH pulses remains unclear to date. Infusions of somatostatin or dopamine rapidly lowering basal TSH levels without suppressing the pulsatile pattern suggest that an episodic disinhibition exerted by a physiological inhibitor is not a likely cause. On the same basis, thyroid hormones do not appear to be candidates, since they similarly inhibit basal TSH levels after a time lag of several hours but again do not suppress pulsatile release of the hormone. In contrast, bolus injections of dexamethasone completely abolish pulsatile release of TSH for several hours despite a normal sensitivity of the pituitary to exogenous TRH, suggesting a hypothalamic action of the drug. The hypothesis that pulsatile TSH release might be governed by a pulsatile mode of a hypothalamic stimulator is supported by the observation that an infusion of nifedipine, a calcium channel blocker, which in vitro selectively inhibits the TRH effect on TSH but not prolactin secretion, exerts a comparable effect when it is infused in vivo.  相似文献   

11.
The effect of TRH induced secretion of TSH and prolactin (hPrl) on plasma renin activity (PRA), water and electrolyte excretion, was studied in 7 normal males before and after an intravenous injection of 2 ml normal saline or 200 microgram TRH. Plasma hPrl and TSH rose significantly (p less than 0.01) in all 7 subjects after TRH but not after saline injection. No significant differences in the hourly excretion of sodium, potassium and free water clearance were noted before and after either saline or TRH injection. Mean PRA values of the 7 subjects were similar after either the 2 ml saline of TRH injection. Our results indicate that despite a correlation between basal hPrl and sodium excretion as well as free water clearance, acute TRH induced elevation of hPrl is not associated with changes of urinary sodium and potassium excretion, free water clearance and PRA in normal males. These findings provide some evidence against a direct osmoregulatory role of hPrl in man.  相似文献   

12.
The effect of chronic administration of sulpiride on serum human growth hormone (hGH), prolactin and thyroid stimulating hormone (TSH) was examined in 6 normal subjects. Sulpiride was given orally at a dose of 300 mg (t.i.d.) for 30 days. Sulpiride raised serum prolactin levels in all subjects examined. In addition, sulpiride suppressed hGH release induced by L-dopa, although the basal hGH level was not changed. Sulpiride treatment appeared to antagonize partially the inhibitory effect of L-dopa on prolactin release. Following thyrotropin-releasing hormone (TRH) injection, the percent increment in prolactin levels from the baseline in sulpiride-treated subjects was less than in controls without sulpiride. In contrast, both the basal and TRH-stimulated TSH levels were not influenced by sulpiride. These observations suggest that sulpiride suppresses L-dopa-induced hGH release and stimulates prolactin release, presumably by acting against the dopaminergic mechanism either on the hypothalamus or on the pituitary. The decreased prolactin response to TRH after sulpiride treatment may indicate a diminished reserve capacity in pituitary prolactin release.  相似文献   

13.
Thyroid hormone serum concentrations, the thyrotropin (TSH) and prolactin (PRL) response to thyrotropin-releasing hormone (TRH) were evaluated in patients undergoing cardiopulmonary bypass (CPB) conducted in hypothermia. During CPB a marked decrease of thyroxine (T4) and triiodothyronine (T3) concentration with a concomitant increase of reverse T3 (rT3) were observed similarly to other clinical states associated with the 'low T3 syndrome'. Furthermore, in the present study elevated FT4 and FT3 concentrations were observed. In a group of patients, TRH administered during CPB at 26 degrees C elicited a markedly blunted TSH response. In these patients, PRL concentration was elevated but did not significantly increase after TRH. The increased concentrations of FT4 and FT3 were probably due to the large doses of heparin administered to these patients. Thus, the blunted response of TSH to TRH might be the consequence of the elevation of FT4 and FT3 in serum, however, other factors might play a role since also the PRL response to TRH was blocked.  相似文献   

14.
15.
TRH and its two analogs with modified hormonal activity were examined for the capacity to antagonize acute and chronic effects of ethanol in mice. It has been demonstrated that L-pyroglutamyl-L-seryl-L-leucinamide, an analog of TRH, that does not affect the secretion of TSH and decreases prolactin production has the same capacity as TRH to reduce the time of ethanol narcosis but produces a lesser effect on the ethanol-induced fall of rectal temperature. Both the drugs did not affect the ethanol-altered ability of mice to hold on the rotating bar. Methyl ether of TRH, a hormonally inactive analog, was ineffective as shown by all the tests. Neither TRH nor its analogs changed the development of tolerance to chronic administration of ethanol, recorded by the rotating bar test and rectal temperature drop.  相似文献   

16.
The effect of bombesin (5 ng/kg/min X 2.5 h) on basal pituitary secretion as well as on the response to thyrotropin releasing hormone (TRH; 200 micrograms) plus luteinizing hormone releasing hormone (LHRH; 100 micrograms) was studied in healthy male volunteers. The peptide did not change the basal level of growth hormone (GH), prolactin, thyroid-stimulating hormone (TSH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). On the contrary, the pituitary response to releasing hormones was modified by bombesin administration. When compared with control (saline) values, prolactin and TSH levels after TRH were lower during bombesin infusion, whereas LH and FSH levels after LHRH were higher. Thus bombesin affects in man, as in experimental animals, the secretion of some pituitary hormones.  相似文献   

17.
The pituitary-thyroid axis of 12 patients, exposed to transsphenoidal pituitary microsurgery because of nonfunctioning adenomas (6), prolactinomas (3) and craniopharyngioma (1), or to major pituitary injury (1 apoplexy, 1 accidental injury), was controlled more than 6 months following the incidents. The patients did not receive thyroid replacement therapy and were evaluated by measurement of the serum concentration of thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3), T3-resin uptake test and thyrotropin (TSH, IRMA method) before and after 200 micrograms thyrotropin releasing hormone (TRH) iv. The examination also included measurement of prolactin (PRL) and cortisol (C) in serum. Apart from 1 patient with pituitary apoplexy all had normal basal TSH levels and 9 showed a significant TSH response to TRH. Compared to 40 normal control subjects the 12 patients had significantly decreased levels of T4, T3 and rT3 (expressed in free indices), while the TSH levels showed no change. Five of the patients, studied before and following surgery, had all decreased and subnormal FT4I (free T4 index) after surgery, but unchanged FT3I and TSH. The levels of FT4I were positively correlated to both those of FT3I and FrT3I, but not to TSH. The TSH and thyroid hormone values showed no relationship to the levels of PRL or C of the patients exposed to surgery. It is concluded that the risk of hypothyroidism in patients exposed to pituitary microsurgery is not appearing from the TSH response to TRH, but from the thyroid hormone levels.  相似文献   

18.
While exploring the interaction between thyrotropin releasing hormone (TRH) and normal rat anterior pituitary cells in monolayer culture we observed that cells dissociated with the use of trypsin did not respond to TRH with an increase in either TSH or prolactin (PRL) release. The dissociated cells were cultured for 3 days, then washed to remove serum proteins and exposed to 10?6M TRH for 3 hours. TSH and PRL secretion from stimulated and unstimulated cultures was determined by radio-immunoassay and normalized using cell protein. When such trypsin-dissociated cells were exposed to 0.5 mM dibutyryl cyclic AMP the release of both TSH and PRL doubled indicating that the intracellular secretory machinery was functional and that the block to TRH was proximal to the formation of cyclic AMP and presumably at the level of a TRH surface receptor. Previous studies have shown that such trypsin-dissociated cells respond to LHRH and a crude hypothalamic extract with a dose dependent increase in LH, FSH and ACTH release. This rules out a non-specific effect of trypsin. When pituitary cells were dissociated with a non-trypsin technique, the unstimulated release of both TSH and PRL was comparable to that found with the trypsin-dissociated cultures. However, these cultures did respond to TRH with an increase in TSH release although again no effect was seen with PRL. The susceptibility of the cells to trypsin suggests the possibility that a protein moiety may be closely associated with the function of the receptor.  相似文献   

19.
A girl aged 4 years with goiter and accelerated physical and skeletal growth was found to be hyperthyroid on the basis of elevated serum thyroid hormone level, nevertheless both the basal TSH and TSH responsiveness to TRH were maintained within the normal range. Serum TSH was suppressed by exogenous T3 and dexamethasone administration, but not significantly changed after propylthiouracil (PTU) treatment. The diurnal rhythmicity of anterior pituitary hormones was preserved with the high nocturnal peak of TSH and prolactin. Clinically, neither thyrotoxic signs nor evidences of pituitary tumor were observed. Her accelerated growth and elevated thyroid hormone level appeared to be induced by inappropriate secretion of TSH. In view of the literature, this is the first case of the syndrome of inappropriate secretion of TSH excluding the neoplastic origin in Japan.  相似文献   

20.
The aim of this study was to evaluate plasma thyrotropin (TSH), prolactin (PRL) and growth hormone (GH) responses to the TSH-releasing hormone (TRH) test and to a combined arginine-TRH test (ATT-TRH) in 10 normal subjects and in 15 acromegalic patients. In controls, TSH responsiveness to TRH was enhanced by ATT (p less than 0.001). When considering the 15 acromegalic patients as a whole, no significant difference in TSH responses was detected during the two tests. However, patients without suppression of plasma GH levels after oral glucose load showed an increased TSH responsiveness to the ATT-TRH test if compared to TRH alone (p less than 0.025), while patients with partial suppression of plasma GH levels after glucose ingestion showed a decreased TSH responsiveness to ATT-TRH (p less than 0.05). No difference was recorded in PRL and GH responses, evaluated as area under the curve, during TRH or ATT-TRH tests in controls and in acromegalics. In conclusion, (1) normal subjects have an enhanced TSH response to the ATT-TRH test and (2) acromegalic patients without suppression of GH levels after oral glucose load show a TSH responsiveness to the ATT-TRH test similar to that of controls, while acromegalics with partial GH suppression after oral glucose load have a decreased TSH responsiveness to the ATT-TRH test. These data suggest that acromegaly is a heterogeneous disease as far as the somatostatinergic tone is concerned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号