首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: BACKGROUND: Poly(4-hydroxybutyrate) [poly(4HB)] is a strong thermoplastic biomaterial with remarkable mechanical properties, biocompatibility and biodegradability. However, it is generally synthesized when 4-hydroxybutyrate (4HB) structurally related substrates such as gamma-butyrolactone, 4-hydroxybutyrate or 1,4-butanediol (1,4-BD) are provided as precursor which are much more expensive than glucose. At present, high production cost is a big obstacle for large scale production of poly(4HB). RESULTS: Recombinant Escherichia coli strain was constructed to achieve hyperproduction of poly(4-hydroxybutyrate) [poly(4HB)] using glucose as a sole carbon source. An engineering pathway was established in E. coli containing genes encoding succinate degradation of Clostridium kluyveri and PHB synthase of Ralstonia eutropha. Native succinate semialdehyde dehydrogenase genes sad and gabD in E. coli were both inactivated to enhance the carbon flux to poly(4HB) biosynthesis. Four PHA binding proteins (PhaP or phasins) including PhaP1, PhaP2, PhaP3 and PhaP4 from R. eutropha were heterologously expressed in the recombinant E. coli, respectively, leading to different levels of improvement in poly(4HB) production. Among them PhaP1 exhibited the highest capability for enhanced polymer synthesis. The recombinant E. coli produced 5.5 g L-1 cell dry weight containing 35.4% poly(4HB) using glucose as a sole carbon source in a 48 h shake flask growth. In a 6-L fermentor study, 11.5 g L-1 cell dry weight containing 68.2% poly(4HB) was obtained after 52 h of cultivation. This was the highest poly(4HB) yield using glucose as a sole carbon source reported so far. Poly(4HB) was structurally confirmed by gas chromatographic (GC) as well as 1H and 13C NMR studies. CONCLUSIONS: Significant level of poly(4HB) biosynthesis from glucose can be achieved in sad and gabD genes deficient strain of E. coli JM109 harboring an engineering pathway encoding succinate degradation genes and PHB synthase gene, together with expression of four PHA binding proteins PhaP or phasins, respectively. Over 68% poly(4HB) was produced in a fed-batch fermentation process, demonstrating the feasibility for enhanced poly(4HB) production using the recombinant strain for future cost effective commercial development.  相似文献   

2.
Cupriavidus sp. USMAA1020 was isolated from Malaysian environment and able to synthesize poly(3-hydroxybutyrate-co-4-hydroxybutyrate), [P(3HB-co-4HB)] when grown on gamma-butyrolactone as the sole carbon source. The polyester was purified from freeze-dried cells and analyzed by nuclear magnetic resonance (NMR) spectroscopy. 1H and 13C NMR results confirmed the presence of 3HB and 4HB monomers. In a one-step cultivation process, P(3HB-co-4HB) accumulation by Cupriavidus sp. USMAA1020 was affected by carbon to nitrogen ratio (C/N). A two-step cultivation process accumulated P(3HB-co-4HB) copolyester with a higher 4HB fraction (53 mol%) in nitrogen-free mineral medium containing gamma-butyrolactone. The biosynthesis of P(3HB-co-4HB) was also achieved by using 4-hydroxybutyric acid and alkanediol as 1,4-butanediol. The composition of copolyesters varied from 32 to 51 mol% 4HB, depending on the carbon sources supplied. The copolyester produced by Cupriavidus sp. USMAA1020 has a random sequence distribution of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) units when analyzed by nuclear magnetic resonance (NMR) spectroscopy. When gamma-butyrolactone was used as the sole carbon source, the 4HB fraction in copolyester increased from 25 to 60 mol% as the concentration of gamma-butyrolactone in the culture medium increased from 2.5 g/L to 20.0 g/L.  相似文献   

3.
4-Hydroxybutyrate (4HB) was produced by Aeromonas hydrophila 4AK4, Escherichia coli S17-1, or Pseudomonas putida KT2442 harboring 1,3-propanediol dehydrogenase gene dhaT and aldehyde dehydrogenase gene aldD from P. putida KT2442 which are capable of transforming 1,4-butanediol (1,4-BD) to 4HB. 4HB containing fermentation broth was used for production of homopolymer poly-4-hydroxybutyrate [P(4HB)] and copolymers poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-4HB)]. Recombinant A. hydrophila 4AK4 harboring plasmid pZL-dhaT-aldD containing dhaT and aldD was the most effective 4HB producer, achieving approximately 4 g/l 4HB from 10 g/l 1,4-BD after 48 h of incubation. The strain produced over 10 g/l 4HB from 20 g/l 1,4-BD after 52 h of cultivation in a 6-L fermenter. Recombinant E. coli S17-1 grown on 4HB containing fermentation broth was found to accumulate 83 wt.% of intracellular P(4HB) in shake flask study. Recombinant Ralstonia eutropha H16 grew to over 6 g/l cell dry weight containing 49 wt.% P(3HB-13%4HB) after 72 h.  相似文献   

4.
Hydrogen-oxidizing bacterium, Alcaligenes eutrophus autotrophically produces biodegradable plastic material, poly(D-3-hydroxybutyrate), P(3HB), from carbon dioxide, hydrogen, and oxygen. In autotrophic cultivation of the microorganism, it is essential to eliminate possible occurrence of gas explosions from the fermentation process. We developed a bench-plant scale, recycled-gas, closed-circuit culture system equipped with several safety features to perform autotrophic cultivation of A. eutrophus by maintaining the oxygen concentration in the substrate gas phase below the lower limit for a gas explosion (6.9%). The culture vessel utilized a baskettype agitator, resulting in a K(L) a value of 2970 h(-1). Oxygen gas was also directly fed to the fermentor separately from the other gases. As a result, 91.3 g . dm(-3) of the cells and 61.9 g . dm(-3) of P(3HB) were obtained after 40 h of cultivation under this oxygen-limited condition. The results compared favorably with those reported for mass production of P(3HB) by heterotrophic fermentation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
Poly(3-hydroxybutyrate) [P(3HB)] and other polyhydroxyalkanoates (PHAs) have been drawing much attention as biodegradable substitutes for conventional nondegradable plastics. For the economical production of P(3HB), various bacterial strains, either wild-type or recombinant, and new fermentation strategies were developed for the production of P(3HB) with high concentration and productivity. To reduce the cost of carbon substrate, several processes for P(3HB) production from cheap carbon sources were also developed. P(3HB) can now be produced to a content of 80% of cell dry weight with the productivity greater than 4 g/l per h. Fermentation strategy was also developed for the efficient production of medium chain length PHA by high cell density culture. With all these advances, P(3HB) and PHAs can be produced by bacterial fermentation at a cost (ca. $2/kg) similar to that of other biodegradable polymers under development.  相似文献   

6.
The synthesis of bacterial polyhydroxyalkanoates (PHA) is very much dependent on the expression and activity of a key enzyme, PHA synthase (PhaC). Many efforts are being pursued to enhance the activity and broaden the substrate specificity of PhaC. Here, we report the identification of a highly active wild-type PhaC belonging to the recently isolated Chromobacterium sp. USM2 (PhaC(Cs)). PhaC(Cs) showed the ability to utilize 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyhexanoate (3HHx) monomers in PHA biosynthesis. An in vitro assay of recombinant PhaC(Cs) expressed in Escherichia coli showed that its polymerization of 3-hydroxybutyryl-coenzyme A activity was nearly 8-fold higher (2,462 ± 80 U/g) than that of the synthase from the model strain C. necator (307 ± 24 U/g). Specific activity using a Strep2-tagged, purified PhaC(Cs) was 238 ± 98 U/mg, almost 5-fold higher than findings of previous studies using purified PhaC from C. necator. Efficient poly(3-hydroxybutyrate) [P(3HB)] accumulation in Escherichia coli expressing PhaC(Cs) of up to 76 ± 2 weight percent was observed within 24 h of cultivation. To date, this is the highest activity reported for a purified PHA synthase. PhaC(Cs) is a naturally occurring, highly active PHA synthase with superior polymerizing ability.  相似文献   

7.
Production of poly(3-hydroxybutyrate) [P(3HB)] from wheyby fed-batch culture of recombinant Escherichia coli CGSC 4401 harboring a plasmid containing the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes was examined in a 30 l fermenter supplying air only. With lactose below 2 g l–1, cells grew to 12 g dry cell l–1 with 9% (w/w) P(3HB) content. Accumulation of P(3HB) could be triggered by increasing lactose to 20 g l–1. By employing this strategy, 51 g dry cell l–1 was obtained with a 70% (w/w) P(3HB) content after 26 h. The productivity was 1.35 g P(3HB) l–1 h–1. The same fermentation strategy was used in a 300 l fermenter, and 30 g dry cell l–1 with 67% (w/w) P(3HB) content was obtained in 20 h.  相似文献   

8.
A simple method for the recovery of microbial poly(3-hydroxybutyrate) [P(3HB)] from recombinant Escherichia coli harboring the Ralstonia eutropha PHA biosynthesis genes was developed. Various acids (HCl, H2SO4), alkalies (NaOH, KOH, and NH4OH), and surfactants (dioctylsulfosuccinate sodium salt [AOT], hexadecyltrimethylammonium bromide [CTAB], sodium dodecylsulfate [SDS], polyoxyethylene-p-tert-octylphenol [Triton X-100], and polyoxyethylene(20)sorbitan monolaurate [Tween 20]) were examined for their ability to digest non-P(3HB) cellular materials (NPCM). Even though SDS was an efficient chemical for P(3HB) recovery from recombinant E. coli, it is expensive and has waste disposal problem. NaOH and KOH were also efficient and economical for the recovery of P(3HB), and therefore, were used to optimize digestion condition. When 50 g DCW/L of recombinant E. coli cells having the P(3HB) content of 77% was treated with 0.2 N NaOH at 30 degrees C for 1 h, P(3HB) was recovered with purity of 98.5%. Using this simple recovery method, the effect of recovery method on the final production cost of P(3HB) was examined. Processes for the production of P(3HB) by recombinant E. coli from glucose with two different recovery methods, surfactant-hypochlorite digestion and simple digestion with NaOH, were designed and analyzed. By employing the fermentation process that resulted in P(3HB) concentration, P(3HB) content and P(3HB) productivity of 157 g/L, 77%, and 3.2 P(3HB) g/L-h, respectively, coupled with the recovery method of NaOH digestion, the production cost of P(3HB) was US$ 3.66/kg P(3HB), which was 25% less than that obtained by employing the surfactant-hypochlorite digestion method.  相似文献   

9.
Discharging the unrefined glycerine, a by-product from biodiesel production is the simplistic solution adopted for its management which has led to its price reduction in the market worldwide and created serious environmental impact. Therefore, we have explored the application of unrefined glycerine pitch as direct fermentative substrate in the biosynthesis of novel yellow-pigmented poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer by Cupriavidus sp. USMAHM13 through onestage cultivation. Utilization of glycerine pitch (10 g/L) together with 1,4-butanediol (5 g/L) had resulted in the highest achievement of 2.91 g/L of P(3HB-co-40%4HB) copolymer which was naturally dyed with the yellow pigment through the co-extraction process. Enhancement of 4HB monomer accumulation was also attained through the addition of ammonium acetate as nitrogen source. It was revealed that utilization of recovered crude glycerine from glycerine pitch was more preferred compared to the other recovered components. Utilization of glycerine pitch in the biosynthesis of P(3HB-co-4HB) copolymer would not only contribute to the efficient waste management but also would promote the development of cost-efficiency microbial fermentation.  相似文献   

10.
张鑫  陈国强 《生物工程学报》2011,27(12):1749-1754
4-羟基丁酸(4-HB)不仅具有医学应用价值,而且是合成生物材料P3HB4HB的重要前体.在烟酰胺腺嘌呤二核苷酸(NAD)参与情况下,大肠杆菌Escherichia coli S17-1(pZL-dhaT-aldD)可以把1,4-丁二醇(1,4-BD)转化为4HB.为提高4HB产率,通过过表达烟酸磷酸核糖转移酶(PncB)和烟酰胺腺嘌呤二核苷酸合成酶(NadE)增加胞内NAD含量,从而加速1,4-BD转化反应的进行.结果表明,PncB-NadE的表达使1,4-BD转化率比对照组增加13.03%,由10g/L的1,4-BD得到4.87 g/L的4HB,单位细胞的4HB产量由1.32 g/g提高40.91%至1.86 g/g.因此PncB和NadE可用于促进1,4-BD转化为4HB.  相似文献   

11.
A locally isolated Gram negative bacterium, Cupriavidus sp. USMAA9-39 was able to produce various types of biodegradable polyesters through a two-step cultivation process. These are copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)]. These polymers were synthesized by this bacterium when grown with a combination of some carbon sources. The biosynthesis of P(3HB-co-4HB) was achieved by using carbon sources such as γ-butyrolactone or 1,4-butanediol or by a combination of oleic acid with either γ-butyrolactone or 1,4-butanediol. Meanwhile, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was produced using 1-pentanol or valeric acid or by a combination of oleic acid with either 1-pentanol or valeric acid. When γ-butyrolactone or 1,4-butanediol with either valeric acid or 1-pentanol were used as mixed carbon sources, P(3HB-co-3HV-co-4HB) terpolymer were produced. The presence of 3HB, 3HV or/and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance (NMR) spectroscopy.  相似文献   

12.
利用Clostridium acetobutylicum的丁酸激酶基因 (buk) 和磷酸转丁酰基酶基因(ptb),以及Thiocapsa pfennigii的PHA合成酶基因,设计了一条能够合成多种聚羟基烷酸的代谢途径,用构建的质粒转化大肠杆菌,获得了重组大肠杆菌菌株.前期的研究表明,在合适的前体物条件下,该重组大肠杆菌能够合成包括聚羟基丁酸、聚(羟基丁酸-戊酸)等多种生物聚酯[Liu and Steinbüchel, Appl. Environ. Microbiol. 66739-743].利用该重组大肠杆菌,通过生物催化作用合成了3-巯基丙酸的同型共聚酯,同时利用该重组大肠杆菌还获得了含3-巯基丙酸单体的多种异型共聚物.实验首先研究了3-巯基丙酸对大肠杆菌生长的影响,在此基础上优化了培养过程中添加3-巯基丙酸的时机和浓度,结果表明,在实验的条件下,细胞合成聚(3-巯基丙酸)可达6.7%(占细胞干重),合成聚(3-羟基丁酸-3-巯基丙酸)(分子中3-巯基丙酸3-羟基丁酸=31)可达24.3%.实验进一步研究了同时或分别表达以上3个基因的重组大肠杆菌合成聚合物的能力,结果表明只有当3个基因同时表达时才能合成聚合物,说明3个基因对合成过程是必须的,从而表明了合成途径是按照设计的路线进行的.还通过GC/MS、GPC、IR等手段对合成的化合物进行了定性的研究.聚(3-巯基丙酸)或聚(3-羟基丁酸-3-巯基丙酸)等聚酯属于一类新型生物聚合物,它在分子骨架中含有硫酯键,不同于聚羟基烷酸酯的氧酯键,从而具有显著不同的物理、化学、光学等性质和具有重要的潜在应用价值.  相似文献   

13.
Park DH  Kim BS 《New biotechnology》2011,28(6):719-724
High-yield production of polyhydroxyalkanoates (PHAs) by Ralstonia eutropha KCTC 2662 was investigated using soybean oil and γ-butyrolactone as carbon sources. In flask culture, it was shown that R. eutropha KCTC 2662 accumulated PHAs during the growth phase. The optimum carbon to nitrogen ratio (C/N ratio) giving the highest cell and PHA yield was 20 g-soybean oil/g-(NH(4))(2)SO(4). The 4-hydroxybutyrate (4HB) fraction in the copolymer was not strongly affected by the C/N ratio. In a 2.5-L fermentor, a homopolymer of poly(3-hydroxybutyrate) [P(3HB)] was produced from soybean oil as the sole carbon source by batch and fed-batch cultures of R. eutropha with dry cell weights of 15-32 g/L, PHA contents of 78-83 wt% and yields of 0.80-0.82 g-PHA/g-soybean oil used. By co-feeding soybean oil and γ-butyrolactone as carbon sources, a copolymer of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] could be produced with dry cell weights of 10-21 g/L, yields of 0.45-0.56 g-PHA/g-soybean oil used (0.39-0.50g-PHA/g-carbon sources used) and 4HB fractions of 6-10 mol%. Higher supplementation of γ-butyrolactone increased the 4HB fraction in the copolymer, but decreased cell and PHA yield.  相似文献   

14.
Fermentation strategies for the production of poly(3-hydroxybutyrate) (PHB) from whey by recombinant Escherichia coli strain CGSC 4401 harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes were developed. The pH-stat fed-batch cultures of E. coli CGSC 4401 harboring pJC4, a stable plasmid containing the A. latus PHA biosynthesis genes, were carried out with a concentrated whey solution containing 280 g of lactose equivalent per liter. Final cell and PHB concentrations of 119.5 and 96.2 g/liter, respectively, were obtained in 37.5 h, which resulted in PHB productivity of 2.57 g/liter/h.  相似文献   

15.
A newly isolated poly(3-hydroxybutyrate) [P(3HB)] producing strain, ST1C, was identified as Bacillus aryabhattai based on its morphological, biochemical and molecular characteristics. It synthesized and accumulated relatively high amounts of P(3HB). The aim of this work was to establish if it could convert an inexpensive liquid waste product from the production of biodiesel, biodiesel liquid waste (BLW), to P(3HB). Using a mineral salt medium (MSM) containing 2.0 % (v/v) glycerol present in the BLW and both normal batch and a draw and fill culture method, B. aryabhattai ST1C produced a maximum P(3HB) content and biomass concentration of 72.31 % dry cell weight (DCW) and 7.24 g/L, respectively, over a 24 h cultivation period in the draw and fill cultivation method. From 24 h to the end of cultivation at 72 h both the P(3HB) content and the biomass concentrations continuously reduced. Concentrations of glycerol in the BLW in this MSM above 3.0 % (v/v) or from pure glycerol (PG) or with an added NaCl concentration of greater than 3.0 % significantly reduced both the maximum P(3HB) content and the biomass concentrations.  相似文献   

16.
研究结果表明,V.natriegens可以利用葡萄糖,果糖,以及糖蜜为碳源合成聚羟基丁酸[Poly(3HB)] ,当以糖蜜为碳源时,积累的Poly(3HB)达到细胞干重的28.4%,实验结果还表明,Poly(3HB)的积累滞后于细胞生长,在培养前加入过量的碳源,不仅没有Poly(3HB)积累,还抑制细胞的生长,测定了与Poly(3HB)合成相关的PHA聚合酶,β-酮硫解酶和乙酰乙酰CoA还原酶的活性。结果表明,伴随Poly(3HB)合成,PHA聚合酶活性从无到有,β-酮硫解酶活性提高了10倍以上。进一步通过利用脂肪酸合成代谢抑制物-浅蓝菌素(cerulenin),研究了脂肪酸从头合成途径与Poly(3HB)合成途径的关系。发现浅蓝菌素能够明显降低细胞Poly(3HB)的累积。根据以上结果,推测在V.natrigens中可能存在两条代谢途径参与Poly(3HB)的合成。  相似文献   

17.
Lamellar thickening behavior of microbial polyesters, poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] annealed at various temperatures was investigated to make sure of the occurrence of cocrystallization of both components. All the copolymers showed steep increases in melting points accompanied by partial melting as the annealing temperature increased up to just below the melting points. In contrast, long periods of P(3HB-co-7mol% 3HV) increased to twice, similar to those of P(3HB), with increasing annealing temperature up to just below the melting point, while long periods of P(3HB-co-7mol% 4HB) and P(3HB-co-92mol% 3HV) only increased up to one and a half times. Lattice indices of unit cell of the former crystal were increased slightly, while those of the latter crystal remained unchanged. These results imply that the P(3HB) crystal can occlude the 3HV component to some extent, but hardly includes the 4HB component, and P(3HV) crystal also excludes the 3HB component.  相似文献   

18.
Summary Recombinant strains of Pseudomonas oleovorans, which harbour the poly(3-hydroxybutyrate)-biosynthetic genes of Alcaligenes eutrophus, accumulated poly(hydroxyalkanoates), composed of 3-hydroxybutyrate(3HB), 3-hydroxyhexanoate (3HHx) and 3-hydroxyactanoate (3HO), up to 70% of the cell dry weight if the cells were cultivated with sodium octanoate as the carbon source. Physiological and chemical analysis revealed multiple evidence that this polymer is a blend of the homopolyester poly(3HB) and of the copolyester poly(3HHx-co-3HO) rather than a random or a block copolyester of 3HB, 3HHx and 3HO. The molar ratio between poly(3HHx-co-3HO) and poly(3HB) varied drastically during the process of fermentation. Whereas synthesis of poly(3HHx-co-3HO) started immediately after ammonium was exhausted in the medium, synthesis of poly(3HB) occurred only after a lag-phase. From freeze-dried cells poly(3HHx-co-3HO) was much more readily extracted with chloroform than was poly(3HB). The blend was fractionated into petrol-ether-insoluble poly(3HB) and petrol-ether-soluble poly(3HHx-co-3HO). The molecular weight values of these polyesters measured by gel permeation chromatography were 2.96 × 106 and 0.35 × 106 and were similar of those polymers accumulated by A. eutrophus or by wild-type P. oleovorans, respectively. Offprint requests to: A. Steinbüchel  相似文献   

19.
A locally isolated Gram-negative bacterium, Cupriavidus sp. USMAA2-4 was found capable of producing terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)] using γ-butyrolactone or 1,4-butanediol with either valeric acid or 1-pentanol as the carbon source. The present of 3HB, 3HV and 4HB monomers were confirmed by gas chromatography (GC) and nuclear magnetic resonance (NMR) analysis. PHA concentration of 1.9 g/l was the highest value obtained using the combination of 1,4-butanediol and 1-pentanol through one-step cultivation process. PHA concentration obtained through two-step cultivation process was higher for all the combinations and the highest value achieved was 2.5 g/l using γ-butyrolactone and 1-pentanol as carbon source. Various molar fractions of 4HB and 3HV ranging from 6 to 14 mol% and 39 to 87 mol%, respectively were produced through two-step cultivation process by manipulating the concentration of γ-butyrolactone. As the culture aeration was reduced, the molar fraction of 3HV and 4HB increased from 40 to 67 mol% and 10 to 24 mol%, respectively while the dry cell weight and PHA content decreased. The terpolymer produced was characterized using gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The number-average molecular weight (M n) and the melting temperature (T m)) of the terpolymer were in the range of 177–484 kDa and 160–164°C, respectively.  相似文献   

20.
Alcaligenes latus has been known to produce poly(3-hydroxybutyrate) (PHB) in a growth-associated manner even under nutrient-sufficient conditions. However, the PHB content obtained by fed-batch culture was always low, at ca. 50%, which makes the recovery process inefficient. In this study, the effect of applying nitrogen limitation on the production of PHB by A. latus was examined. In flask and batch cultures, the PHB synthesis rate could be increased considerably by applying nitrogen limitation. The PHB content could be increased to 87% by applying nitrogen limitation in batch culture, which was considerably higher than that typically obtainable (50%) under nitrogen-sufficient conditions. In fed-batch culture, cells were first cultured by the DO-stat feeding strategy without applying nitrogen limitation. Nitrogen limitation was applied at a cell concentration of 76 g (dry cell weight)/liter, and the sucrose concentration was maintained within 5 to 20 g/liter. After 8 h of nitrogen limitation, the cell concentration, PHB concentration, and PHB content reached 111.7 g (dry cell weight)/liter, 98.7 g/liter, and 88%, respectively, resulting in a productivity of 4.94 g of PHB/liter/h. The highest PHB productivity, 5.13 g/liter/h, was obtained after 16 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号